1
|
Zhou C, Li G, Wang S, Li Z, Qian X, Cheng J. Novel Insecticidal Benzo[4,5]imidazo[1,2-b]pyrazole Derivatives Idenatified Through Ring-Closure Scaffold Hopping on Fipronil. Chem Biodivers 2025; 22:e202402148. [PMID: 39462210 DOI: 10.1002/cbdv.202402148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
A series of innovative benzo[4,5]imidazo[1,2-b]pyrazole scaffold containing compounds were rationally designed through a ring-closure scaffold hopping strategy and synthetized with an intermediate derivatization approach. Physicochemical properties analysis indicated the potential pesticide-likeness of the target compounds. The optimal target compound A14 showed relatively good insecticidal activity against P. xylostella, with an LC50 value of 37.58 mg/L, and demonstrated lower acute fish toxicity compared to fipronil. Docking binding mode analysis demonstrated that compound A14 bound to GABAR through a H-bond between the amide group and the residue of 6'Thr. The differences in binding modes between benzo[4,5]imidazo[1,2-b]pyrazole target compounds and fipronil may be a key factor for the reduced insecticidal activities. The elucidated binding mode and SAR profile lay a foundation for the further structural optimization of insecticidal benzo[4,5]imidazo[1,2-b]pyrazole derivatives.
Collapse
Affiliation(s)
- Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, PO Box 544, Shanghai, 200237, P. R. China
| | - Guanglong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, PO Box 544, Shanghai, 200237, P. R. China
| | - Sihui Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, PO Box 544, Shanghai, 200237, P. R. China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, PO Box 544, Shanghai, 200237, P. R. China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, PO Box 544, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, PO Box 544, Shanghai, 200237, P. R. China
| |
Collapse
|
2
|
Fatima A, Aslam S, Janiad S, Faisal S, Irfan A, Iqbal J, Shazly GA, Zafar AM, Shaheen A, Noreen S, Mateev E, Bin Jardan YA. Synthesis and biological evaluation of rationally designed pyrazoles as insecticidal agents. Mol Divers 2025:10.1007/s11030-024-11094-2. [PMID: 39849238 DOI: 10.1007/s11030-024-11094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025]
Abstract
The current research focused on the synthesis of two series of pyrazole derivatives and evaluation of their insecticidal effectiveness. In the first series, seven pyrazole Schiff bases 3a-g were successfully synthesized with yields (79-95%) by condensing phenylfuran-2-carbaldehyde with substituted pyrazole rings. In the second series, eleven amino acid-pyrazole conjugates 6a-k were synthesized utilizing acetic acid, sulfuric acid, morpholine, and EDC. HCl achieving yields of 59% to 94%. The synthesized compounds were assessed for their chemotherapeutic efficacy against locusts and termites by calculating LC50 values, thereby determining their potential as anti-termite and anti-locust agents. Among the eighteen synthesized pyrazole compounds, the Schiff base pyrazole molecules 3f (LC50 = 0.001 μg/mL) and 3d (LC50 = 0.006 μg/mL) demonstrated excellent anti-termite activity compared to the reference drug fipronil (LC50 = 0.038 μg/mL). Pyrazole derivative 6 h with LC50 = 47.68 μg/mL exhibited superior anti-locust activity than the reference drug fipronil (LC50 = 63.09 μg/mL). Additionally, compound 3b, containing NO2 functionality at the meta position, exhibited notable and significant anti-locust activity with an LC50 values of 100.00 μg/mL. However, the highest mortality was caused by the glycine conjugate of fipronil 6 h of the 2nd series with an LC50 value of 47.68 μg/mL, which also proved to be a potent anti-locust agent. This study explores the efficacy of biologically active pyrazole structures as potential insecticidal agents through a combination of virtual molecular docking analysis and biological experimental investigations. The results demonstrate a strong correlation between the computational predictions and experimental outcomes, suggesting that the pyrazole derivatives exhibit significant insecticidal properties. The findings highlight the potential of these compounds in the development of innovative insecticides, paving the way for future research in pest control strategies.
Collapse
Affiliation(s)
- Aroog Fatima
- Department of Chemistry, The Women University Multan, Multan, 2023, Pakistan
| | - Samina Aslam
- Department of Chemistry, The Women University Multan, Multan, 2023, Pakistan.
| | - Sara Janiad
- Department of Microbiology and Molecular Genetics, The Women University Multan, Multan, 2023, Pakistan
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Javed Iqbal
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, 64200, Pakistan
| | - Gamal A Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ansa Madeeha Zafar
- Department of Chemistry, Government Sadiq College Women University, Bahawalpur, 63100, Pakistan
| | - Aqeela Shaheen
- Department of Chemistry, Government Sadiq College Women University, Bahawalpur, 63100, Pakistan
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Emilio Mateev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, Sofia, Bulgaria
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
Qiao X, Zhou T, Zhang J, Zhang L, Lu Y, Huang J. Functional validation of A2'N mutation of the RDL GABA receptor against fipronil via molecular modeling and genome engineering in drosophila. PEST MANAGEMENT SCIENCE 2024; 80:1924-1929. [PMID: 38086568 DOI: 10.1002/ps.7929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Insect RDL (resistant to dieldrin) receptors are essential pentameric ligand-gated chloride channels that mediate the neuroinhibitory effect of GABA, the chief inhibitory neurotransmitter in the central nervous system. These receptors serve as primary targets for various insecticides, including noncompetitive antagonists (NCAs) such as cyclodiene organochlorines and phenylpyrazoles, as well as allosteric modulators like meta-diamides and isoxazolines. This study focuses on a newly discovered A2'N mutation within the RDL receptors, identified in fipronil-resistant planthoppers. Despite in vitro electrophysiological studies have proposed its role in conferring target-site resistance, in vivo genetic functional validation of this mutation remains unexplored. RESULTS Our research employed toxicity bioassays, assessing various Rdl genotypes against a spectrum of insecticides, including fipronil, α-endosulfan, broflanilide, and isocycloseram. Results revealed distinct resistance profiles for A2'N and A2'S mutants, indicating different binding interactions of RDL receptors with NCAs. Significantly, the A2'N heterozygote showed substantial resistance to fipronil, despite its homozygous lethality. Molecular modeling and docking simulations further supported these findings, highlighting unique binding poses for fipronil and α-endosulfan. CONCLUSION This study confirmed that A2'N mutation of the RDL GABA receptor confer high resistance to fipronil in vivo. The observed resistance in A2'N mutants is likely attributable to a steric hindrance mechanism, wherein the introduction of larger side chains hampers fipronil binding, even in a heterozygous state. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Tianhao Zhou
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jing Zhang
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, China
| | - Lixin Zhang
- Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang, China
| | | | - Jia Huang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Li P, Abd El-Aty AM, Jiang H, Shen J, Wang Z, Wen K, Li J, Wang S, Wang J, Hammock BD, Jin M. Immunoassays and Emerging Analytical Techniques of Fipronil and its Metabolites for Food Safety: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2059-2076. [PMID: 38252458 PMCID: PMC11790034 DOI: 10.1021/acs.jafc.3c07428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Fipronil, classified as a phenylpyrazole insecticide, is utilized to control agricultural, public health, and veterinary pests. Notably, its unique ecological fate involves degradation to toxic metabolites, which poses the risk of contamination in water and foodstuffs and potential human exposure through the food chain. In response to these concerns, there is a pressing need to develop analytical methodologies for detecting fipronil and its metabolites. This review provides a concise overview of the mode of action, metabolism, and toxicology of fipronil. Additionally, various detection strategies, encompassing antibody-based immunoassays and emerging analytical techniques, such as fluorescence assays based on aptamer/molecularly imprinted polymer/fluorescent probes, electrochemical sensors, and Raman spectroscopy, are thoroughly reviewed and discussed. The focus extends to detecting fipronil and its metabolites in crops, fruits, vegetables, animal-derived foods, water, and bodily fluids. This comprehensive exploration contributes valuable insights into the field, aiming to foster the development and innovation of more sensitive, rapid, and applicable analytical methods.
Collapse
Affiliation(s)
- Peipei Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Haiyang Jiang
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health safety, College of Veterinary Medicine China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China
| | - Jia Li
- Jinhua Miaozhidizhi Agricultural Technology Co., Ltd., Jinhua 321000, China
| | - Shuting Wang
- Hangzhou Municipal Center for Disease Control and Prevention, Zhejiang Hangzhou 310021, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Bruce D. Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, and Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
5
|
Li G, Xiao K, Shi M, Shuai J, Xu Z, Li Z, Cheng J. 4-oxo-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-d]pyrimidine derivatives: design, synthesis, insecticidal assay and binding mode studies. Chem Biodivers 2022; 19:e202200236. [PMID: 35781793 DOI: 10.1002/cbdv.202200236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/02/2022] [Indexed: 11/09/2022]
Abstract
A series of 4-oxo-4,5,6,7-tetrahydro-1 H -pyrazolo[3,4- d ]pyrimidine derivatives were designed and synthesized based on the fipronil low energy conformation by scaffold hopping strategy. Physicochemical properties calculation, insecticidal activities evaluation and binding mode studies were also performed. As a result, the insecticidal activities of the target compounds were lower than that of fipronil. The differences in binding mode between these compounds and fipronil may be the major reason for reduced insecticidal activities.
Collapse
Affiliation(s)
- Guanglong Li
- East China University of Science and Technology, School of pharmacy, Meilong Road 130, 200237, Shanghai, CHINA
| | - Keya Xiao
- East China University of Science and Technology, School of pharmacy, Meilong Road 130, Shanghai, CHINA
| | - Man Shi
- East China University of Science and Technology, School of pharmacy, Meilong Road 130, Shanghai, CHINA
| | - Jing Shuai
- East China University of Science and Technology, School of pharmacy, Meilong Road 130, Shanghai, CHINA
| | - Zhiping Xu
- East China University of Science and Technology, School of pharmacy, Meilong Road 130, Shanghai, CHINA
| | - Zhong Li
- East China University of Science and Technology, School of pharmacy, Meilong Road 130, Shanghai, CHINA
| | - Jiagao Cheng
- East China University of Science and Technology, School of pharmacy, Meilong Road 130, 200237, Shanghai, CHINA
| |
Collapse
|
6
|
Felsztyna I, Villarreal MA, García DA, Miguel V. Insect RDL Receptor Models for Virtual Screening: Impact of the Template Conformational State in Pentameric Ligand-Gated Ion Channels. ACS OMEGA 2022; 7:1988-2001. [PMID: 35071887 PMCID: PMC8771969 DOI: 10.1021/acsomega.1c05465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The RDL receptor is one of the most relevant protein targets for insecticide molecules. It belongs to the pentameric ligand-gated ion channel (pLGIC) family. Given that the experimental structures of pLGICs are difficult to obtain, homology modeling has been extensively used for these proteins, particularly for the RDL receptor. However, no detailed assessments of the usefulness of homology models for virtual screening (VS) have been carried out for pLGICs. The aim of this study was to evaluate which are the determinant factors for a good VS performance using RDL homology models, specially analyzing the impact of the template conformational state. Fifteen RDL homology models were obtained based on different pLGIC templates representing the closed, open, and desensitized states. A retrospective VS process was performed on each model, and their performance in the prioritization of active ligands was assessed. In addition, the three best-performing models among each of the conformations were subjected to molecular dynamics simulations (MDS) in complex with a representative active ligand. The models showed variations in their VS performance parameters that were related to the structural properties of the binding site. VS performance tended to improve in more constricted binding cavities. The best performance was obtained with a model based on a template in the closed conformation. MDS confirmed that the closed model was the one that best represented the interactions with an active ligand. These results imply that different templates should be evaluated and the structural variations between their channel conformational states should be specially examined, providing guidelines for the application of homology modeling for VS in other proteins of the pLGIC family.
Collapse
Affiliation(s)
- Iván Felsztyna
- Facultad
de Ciencias Exactas, Físicas y Naturales, Departamento de Química.
Cátedra de Química Biológica, Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto
de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Marcos A. Villarreal
- Facultad
de Ciencias Químicas, Departamento de Química Teórica
y Computacional, Universidad Nacional de
Córdoba, Córdoba 5016, Argentina
- Instituto
de Investigaciones en Físico-Química de Córdoba
(INFIQC), CONICET-Universidad Nacional de
Córdoba, Córdoba 5016, Argentina
| | - Daniel A. García
- Facultad
de Ciencias Exactas, Físicas y Naturales, Departamento de Química.
Cátedra de Química Biológica, Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto
de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Virginia Miguel
- Facultad
de Ciencias Exactas, Físicas y Naturales, Departamento de Química.
Cátedra de Química Biológica, Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto
de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| |
Collapse
|