1
|
Wang H, Chao L, Shen S, You P, Li L, Chen X, Hong Z, Chai Y. Exploring the pharmacological mechanism of Bu-Wang San on Alzheimer's disease through multiple GEO datasets of the human hippocampus, network pharmacology, and metabolomics based on GC-MS and UPLC-Q/TOF-MS. JOURNAL OF ETHNOPHARMACOLOGY 2025; 350:119994. [PMID: 40389089 DOI: 10.1016/j.jep.2025.119994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/15/2025] [Accepted: 05/17/2025] [Indexed: 05/21/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bu-Wang San (BWS) is a prominent traditional Chinese medicine known for calming the mind and promoting intelligence. It has been reported to improve learning and memory, enhance memory ability, and promote synaptic plasticity. However, the complexity of the material basis and the diversity of therapeutic targets of BWS on Alzheimer's disease (AD) have not been elucidated. AIM OF THE STUDY This study aimed to investigate the therapeutic material basis and the mechanism of BWS in AD treatment by comprehensively analyzing multiple GEO datasets of the human hippocampus, network pharmacology, and multi-platform metabolomics validation. MATERIALS AND METHODS Three GEO datasets of the human hippocampus were utilized to identify AD-associated targets using weighted gene co-expression network analysis (WGCNA) and differential analysis. Network pharmacology analyses were performed to investigate BWS's therapeutic material basis and predict the therapeutic targets of BWS on AD. A rat model was induced through the concurrent administration of AlCl3 and D-galactose to validate BWS's therapeutic potential and underlying mechanisms in AD. To validate the results of GEO data mining and network pharmacology, a comprehensive metabolomics approach integrating gas chromatography-mass spectrometry (GC-MS) and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was conducted on rat serum samples to uncover potential metabolic alterations and their associated pathways. RESULTS A total of 6367 genes were selected as AD drug targets through WGCNA analysis and enrichment analysis of disease-associated gene expression profiles in the GEO database. Network pharmacology was performed in this study for the identification of potential interactions between the components of BWS and its targets, TP53, STAT3, EGFR, MAOA, NOS3, PPARG, PRKCA, MAPK8, AChE, ARG1, among others, which were among the top 25 highest probable targets of BWS acting on AD. The multi-platform metabolomics indicated that amino sugar and nucleotide sugar metabolism, glycine, serine and threonine metabolism pathways, and other pathways may be associated with the AD model based on AlCl3 and D-galactose. The comparison of differential metabolites between the AD model group and the BWS intervention group revealed that 66 of the 97 differential metabolites exhibited a pullback trend, indicating a potential therapeutic effect of BWS on these metabolites. CONCLUSION This study builds a systematic strategy combining GEO datasets, network pharmacology, and multi-platform metabolomics and provides valuable insights into the pharmacological mechanism of BWS on AD. The results suggest that BWS may exert its therapeutic effects on AD by modulating the amino sugar and nucleotide sugar metabolism, glycerophospholipid metabolism, glycine, serine and threonine metabolism pathway and acting on the drug targets of ARG1, MAOA, AChE, XDH, GAD2 et al. This strategy provides a deep understanding of the molecular mechanisms of herbal medicine in treating AD at a systematic level.
Collapse
Affiliation(s)
- Hui Wang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Liang Chao
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Shuqi Shen
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Piaoxue You
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Ling Li
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Zhanying Hong
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Yifeng Chai
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
2
|
Khan MR, Khan MS, Manoharan R, Karthikeyan S, Alhosaini K, Odeibat HAM, Ahmad MDI, Al-Okail M, Al-Twaijry N. Inhibitory Potential of Carnosine and Aminoguanidine Towards Glycation and Fibrillation of Albumin: In-vitro and Simulation Studies. J Fluoresc 2025; 35:29-42. [PMID: 37971607 DOI: 10.1007/s10895-023-03485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Carnosine is beta-alanyl histidine, a dipeptide, endogenously produced in our body by the carnosine synthase enzyme. It is an antioxidant, thus protecting from the deleterious effect of advanced glycation end products (AGEs). Similarly, aminoguanidine (AG) also prevents AGEs formation by scavenging free radicals such as reactive oxygen species (ROS)/reactive carbonyl species (RCS). This study used experimental and computational techniques to perform a comparative analysis of carnosine and AG and their inhibiting properties against glycated human serum albumin (HSA). Fructose-mediated glycation of albumin produced fluorescent structures, such as pentosidine and malondialdehyde. These AGEs were significantly reduced by carnosine and AG. At 20 mM, carnosine and AG quenches pentosidine fluorescence by 66% and 83%, respectively. A similar inhibitory effect was observed for malondialdehyde. Protein hydrophobicity and tryptophan fluorescence were restored in the presence of carnosine and AG. Aminoguanidine decreased fibrillation in HSA, while carnosine did not significantly affect aggregation/fibrillation. In addition, molecular docking study observed binding scores of -5.90 kcal/mol and -2.59 kcal/mol by HSA-aminoguanidine and HSA-carnosine complex, respectively. Aminoguanidine forms one conventional hydrogen bond with ARG A:10 and a salt bridge with ASP A:13, ASP A:259, ASP A:255, and ASP A:256 from the amine group. Similarly, carnosine forms only hydrogen bonds with GLU A:501 and GLN A:508 from the amine and hydroxy group. The root mean square deviation (RMSD) calculated from simulation studies was 1 nm upto 70 ns for the HSA-aminoguanidine complex and the spectrum of HSA-carnosine was significantly deviated and not stabilized. The superior inhibitory activity of aminoguanidine could be due to additional salt bridge bonding with albumin. Conclusively, aminoguanidine can be the better treatment choice for diabetes-associated neurological diseases.
Collapse
Affiliation(s)
- Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Rupavarshini Manoharan
- Division of Physics, School of Advanced Sciences, Vellore Institute of Technology University, Chennai Campus, Chennai, 600127, India
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology University, Chennai Campus, Chennai, 600127, India
| | - Khaled Alhosaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | | | - M D Irshad Ahmad
- Department of Structural Biology, School of Medicine, UTHEALTH Science Centre, San Antonio, TX, 78229, USA
| | - Majed Al-Okail
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Nojood Al-Twaijry
- Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Samal M, Srivastava V, Khan M, Insaf A, Penumallu NR, Alam A, Parveen B, Ansari SH, Ahmad S. Therapeutic Potential of Polyphenols in Cellular Reversal of Patho-Mechanisms of Alzheimer's Disease Using In Vitro and In Vivo Models: A Comprehensive Review. Phytother Res 2025; 39:25-50. [PMID: 39496498 DOI: 10.1002/ptr.8344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 11/06/2024]
Abstract
Alzheimer's disease (AD) is considered one of the most common neurological conditions associated with memory and cognitive impairment and mainly affects people aged 65 or above. Even with tremendous progress in modern neuroscience, a permanent remedy or cure for this crippling disease is still unattainable. Polyphenols are a group of naturally occurring potent compounds that can modulate the neurodegenerative processes typical of AD. The present comprehensive study has been conducted to find out the preclinical and clinical potential of polyphenols and elucidate their possible mechanisms in managing AD. Additionally, we have reviewed different clinical studies investigating polyphenols as single compounds or cotherapies, including those currently recruiting, completed, terminated, withdrawn, or suspended in AD treatment. Natural polyphenols were systematically screened and identified through electronic databases including Google Scholar, PubMed, and Scopus based on in vitro cell line studies and preclinical data demonstrating their potential for neuroprotection. A total of 63 significant polyphenols were identified. A multimechanistic pathway for polyphenol's mode of action has been proposed in the study. Out of 63, four potent polyphenols have been identified as promising potential candidates, based on their reported clinical efficacy. Polyphenols hold tremendous scope for the development of a future drug molecule as a phytopharmaceutical that may be incorporated as an adjuvant to the therapeutic regime. However, more high-quality studies with novel delivery methods and combinatorial approaches are required to overcome obstacles such as bioavailability and blood-brain barrier crossing to underscore the therapeutic potential of these compounds in AD management.
Collapse
Affiliation(s)
- Monalisha Samal
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Varsha Srivastava
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Muzayyana Khan
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Areeba Insaf
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Naveen Reddy Penumallu
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Aftab Alam
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Bushra Parveen
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shahid Hussain Ansari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
4
|
Zazeri G, Povinelli APR, Bertozo LDC, Jones AM, Ximenes VF. The Role of Medium Polarity in the Efficiency of Albumin Binding with Hydrophobic Ligands: Experimental Studies and a Molecular Dynamics Investigation. Int J Mol Sci 2024; 25:12664. [PMID: 39684376 DOI: 10.3390/ijms252312664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 12/18/2024] Open
Abstract
This study evaluates how the polarity of the medium affects the binding efficiency of hydrophobic ligands with human serum albumin (HSA). The polarity of the aqueous medium was changed by adding 1,4-dioxane in concentrations of 0%, 10%, and 20% w/w, resulting in solvent mixtures with decreasing dielectric constants (ε = 80, 72, and 63). The addition of 1,4-dioxane did not affect the integrity of the protein, as confirmed by Far-UV-CD, Rayleigh scattering, and time-resolved fluorescence experiments. The impact of medium polarity on the binding constants was evaluated using 1,6-diphenyl-1,3,5-hexatriene (DPH), octyl gallate (OG), quercetin, and rutin as ligands. The association constants of DPH decreased as the medium hydrophobicity increased: at 0%, Ka = 19.8 × 105 M-1; at 10%, Ka = 5.3 × 105 M-1; and at 20%, Ka = 1.7 × 105 M-1. The decrease was still higher using OG: at 0%, Ka = 5.2 × 106 M-1; and at 20%, Ka = 2.2 × 105 M-1. The results in the same direction were obtained using quercetin and rutin as ligands. Molecular dynamics simulations illustrated the hydrophobic effect at the molecular level. The energy barrier for DPH to detach from the protein's hydrophobic site and to move into the bulk solution was higher at 0% (9 kcal/mol) than at 20% 1,4-dioxane (7 kcal/mol). The difference was higher for OG, with 14 and 6 kcal/mol, respectively. Based on these findings, it was shown that the difference in hydrophobicity between the protein's microenvironment and the surrounding solvent is an essential component for the effectiveness of the interaction. These results shed light on albumin-ligand complexation, a molecular interaction that has been extensively studied.
Collapse
Affiliation(s)
- Gabriel Zazeri
- Departamento de Física, Universidade Federal de Roraima (UFRR), Boa Vista 69310-000, RR, Brazil
| | - Ana Paula Ribeiro Povinelli
- Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | | | - Alan M Jones
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
5
|
Gil MV, Fernández-Rivera N, Gutiérrez-Díaz G, Parrón-Ballesteros J, Pastor-Vargas C, Betancor D, Nieto C, Cintas P. Antioxidant Activity and Hypoallergenicity of Egg Protein Matrices Containing Polyphenols from Citrus Waste. Antioxidants (Basel) 2024; 13:1154. [PMID: 39456407 PMCID: PMC11504875 DOI: 10.3390/antiox13101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
This study reports on the interactions of egg proteins, which represent a major health concern in food allergy, with polyphenols obtained from orange and lemon peels. The antioxidant properties of such citrus peel extracts prior to protein binding were evaluated. The resulting edible, and therefore inherently safe, matrices exhibit reduced IgE binding compared to pure proteins in indirect immunological assays (ELISA) using individual sera from patients allergic to ovalbumin and lysozyme. The reduced allergenicity could arise from the interactions with polyphenols, which alter the structure and functionality of the native proteins. It is hypothesized that the anti-inflammatory and antioxidant properties of the polyphenols, described as inhibitors of the allergic response, could add immunomodulatory features to the hypoallergenic complexes. A docking analysis using lysozyme was conducted to scrutinize the nature of the protein-polyphenol interactions. An in silico study unravelled the complexity of binding modes depending on the isoforms considered. Altogether, the presented results validate the antioxidant properties and reduced allergenicity of polyphenol-fortified proteins. Lastly, this study highlights the upgrading of vegetable wastes as a source of natural antioxidants, thus showing the benefits of a circular economy in agri-food science.
Collapse
Affiliation(s)
- María Victoria Gil
- Department of Organic and Inorganic Chemistry, IACYS-Green Chemistry and Sustainable Development Unit, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain; (N.F.-R.); (P.C.)
| | - Nuria Fernández-Rivera
- Department of Organic and Inorganic Chemistry, IACYS-Green Chemistry and Sustainable Development Unit, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain; (N.F.-R.); (P.C.)
| | - Gloria Gutiérrez-Díaz
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain; (G.G.-D.); (J.P.-B.); (C.P.-V.)
| | - Jorge Parrón-Ballesteros
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain; (G.G.-D.); (J.P.-B.); (C.P.-V.)
| | - Carlos Pastor-Vargas
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain; (G.G.-D.); (J.P.-B.); (C.P.-V.)
| | - Diana Betancor
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Carlos Nieto
- Department of Organic Chemistry, Faculty of Chemical Sciences, University of Salamanca, Pl. Caídos s/n, 37008 Salamanca, Spain;
| | - Pedro Cintas
- Department of Organic and Inorganic Chemistry, IACYS-Green Chemistry and Sustainable Development Unit, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain; (N.F.-R.); (P.C.)
| |
Collapse
|
6
|
Li J, Zhang Y, Dong J, Li D, Ba X, Wang S. Dissimilar effects of the hydrophilic carbon dots on the amyloid aggregation of two model proteins and the mechanism discussion. J Mol Recognit 2024; 37:e3085. [PMID: 38599335 DOI: 10.1002/jmr.3085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Many proteins could aggregate into amyloid fibrils under certain conditions. However, the aggregation process and morphology of the fibrils may be significantly different because of the distinct protein structure. In this article, the hydrophilic carbon dots (Lys-CA-CDs) were prepared using lysine (Lys) and citric acid (CA) as reactant under the assistance of a microwave. The dissimilar modulation effect of Lys-CA-CDs on the aggregation process of distinct structure protein was further investigated, where bovine serum albumin (BSA) and hen egg white lysozyme (HEWL) were chosen as model proteins. All results showed that Lys-CA-CDs displayed the contrary influence on the aggregation process of BSA and HEWL. Lys-CA-CDs could induce BSA to aggregate into more wormlike fibrils and inhibit the aggregation of HEWL into hair-like fibrils. The influence on the aggregation process of BSA may be assigned to the increased concentration of BSA around the Lys-CA-CDs caused by their interaction. However, inserting of Lys-CA-CDs into the inner structure of HEWL led to the change of protein secondary structure. The change of secondary structure further made it difficult for HEWL to aggregate into fibrils and Lys-CA-CDs showed the inhibition effect on HEWL aggregation.
Collapse
Affiliation(s)
- Jie Li
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Yuangong Zhang
- School of Basic Medical Sciences, Hebei University, Baoding, P. R. China
| | - Jiawei Dong
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Dexin Li
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Xinwu Ba
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
| | - Sujuan Wang
- College of Chemistry and Materials Science, Hebei University, Baoding, P. R. China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, P. R. China
| |
Collapse
|
7
|
Mîrza CM, Mîrza TV, Odagiu ACM, Uifălean A, But AE, Pârvu AE, Bulboacă AE. Phytochemical Analysis and Antioxidant Effects of Prunella vulgaris in Experimental Acute Inflammation. Int J Mol Sci 2024; 25:4843. [PMID: 38732062 PMCID: PMC11084636 DOI: 10.3390/ijms25094843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Prunella vulgaris (PV) is one of the most commonly used nutraceuticals as it has been proven to have anti-inflammatory and antioxidant properties. The aim of this study was to evaluate the phytochemical composition of PV and its in vivo antioxidant properties. A phytochemical analysis measuring the total phenolic content (TPC), the identification of phenolic compounds by HPLC-DAD-ESI, and the evaluation of the in vitro antioxidant activity by the DPPH assay of the extract were performed. The antioxidant effects on inflammation induced by turpentine oil were experimentally tested in rats. Seven groups with six animals each were used: a control group, the experimental inflammation treatment group, the experimental inflammation and diclofenac sodium (DS) treatment group, and four groups with their inflammation treated using different dilutions of the extract. Serum redox balance was assessed based on total oxidative status (TOS), nitric oxide (NO), malondialdehyde (MDA), total antioxidant capacity (TAC), total thiols, and an oxidative stress index (OSI) contents. The TPC was 0.28 mg gallic acid equivalents (GAE)/mL extract, while specific representatives were represented by caffeic acid, p-coumaric acid, dihydroxybenzoic acid, gentisic acid, protocatechuic acid, rosmarinic acid, vanillic acid, apigenin-glucuronide, hesperidin, kaempferol-glucuronide. The highest amount (370.45 μg/mL) was reported for hesperidin, which is a phenolic compound belonging to the flavanone subclass. The antioxidant activity of the extracts, determined using the DPPH assay, was 27.52 mmol Trolox/mL extract. The PV treatment reduced the oxidative stress by lowering the TOS, OSI, NO, and MDA and by increasing the TAC and thiols. In acute inflammation, treatment with the PV extract reduced oxidative stress, with lower concentrations being more efficient and having a better effect than DS.
Collapse
Affiliation(s)
- Camelia-Manuela Mîrza
- Department of Morpho-Functional Sciences, Discipline of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-M.M.); (A.U.); (A.E.B.); (A.E.P.); (A.-E.B.)
| | - Tudor-Valentin Mîrza
- Department of Epidemiology of Communicable Diseases, National Institute of Public Health—Regional Centre of Public Health, 400376 Cluj-Napoca, Romania
| | - Antonia Cristina Maria Odagiu
- Department of Environmental Engineering and Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Ana Uifălean
- Department of Morpho-Functional Sciences, Discipline of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-M.M.); (A.U.); (A.E.B.); (A.E.P.); (A.-E.B.)
| | - Anca Elena But
- Department of Morpho-Functional Sciences, Discipline of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-M.M.); (A.U.); (A.E.B.); (A.E.P.); (A.-E.B.)
| | - Alina Elena Pârvu
- Department of Morpho-Functional Sciences, Discipline of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-M.M.); (A.U.); (A.E.B.); (A.E.P.); (A.-E.B.)
| | - Adriana-Elena Bulboacă
- Department of Morpho-Functional Sciences, Discipline of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.-M.M.); (A.U.); (A.E.B.); (A.E.P.); (A.-E.B.)
| |
Collapse
|
8
|
Dahdah A, de Silva NH, Maniam S, Blanch EW. Characterizing fibril morphological changes by spirooxindoles for neurodegenerative disease application. Analyst 2024; 149:1229-1237. [PMID: 38224234 DOI: 10.1039/d3an01773g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Fibrillation of proteins and polypeptides, which leads to the deposition of plaques in cells and tissues has been widely associated with many neuropathological diseases. Inhibition of protein misfolding and aggregation is crucial for the prevention and treatment of these conditions. The growing interest in identifying inhibitor molecules to prevent the formation of fibrils in vivo has led to the results highlighted in this study. Due to their hydrophobic structure and potential to readily cross the blood brain barrier, a library of spirooxindole compounds were synthesized with those labelled Hd-63, Hd-66 and Hd-74 proving to be the most potent against fibril formation. Our spectroscopic analysis provides detailed insight, that the introduction of these spirooxindole compounds leads to morphological changes in the mechanism of fibril formation which prevent the formation of highly ordered fibrils, instead results in the formation of disordered aggregates which are not fibrillar in nature.
Collapse
Affiliation(s)
- Anthony Dahdah
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia.
| | - Nilamuni H de Silva
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia.
| | - Subashani Maniam
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia.
| | - Ewan W Blanch
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia.
| |
Collapse
|
9
|
Alafaleq NO, Alruwaished GI, Khan MS, Al-Shouli ST, Mujamammi AH, Sabi EM, Sumaily KM, Almansour M, Alokail MS. Non-enzymatic glycation and aggregation of camel immunoglobulins induce breast cancer cell proliferation. J Mol Recognit 2023; 36:e3062. [PMID: 37849017 DOI: 10.1002/jmr.3062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023]
Abstract
Glycation of biomolecules results in the formation of advanced glycation end products (AGEs). Immunoglobulin G (IgG) has been implicated in the progression of various diseases, including diabetes and cancer. This study purified three IgG subclasses (IgG1, IgG2, and IgG3) from Camelus dromedarius colostrum using ammonium sulfate fractionation and chromatographic procedures. SDS-PAGE was performed to confirm the purity and molecular weight of the IgG subclasses. Several biochemical and biophysical techniques were employed to study the effect of glycation on camel IgG using methylglyoxal (MGO), a dicarbonyl sugar. Early glycation measurement showed an increase in the fructosamine content by ~four-fold in IgG2, ~two-fold in IgG3, and a slight rise in IgG1. AGEs were observed in all classes of IgGs with maximum hyperchromicity (96.6%) in IgG2. Furthermore, glycation-induced oxidation of IgGs led to an increase in carbonyl content and loss of -SH groups. Among subclass, IgG2 showed the highest (39.7%) increase in carbonyl content accompanied by 82.5% decrease in -SH groups. Far UV-CD analysis illustrated perturbation of β-sheet structure during glycation reaction with MGO. Moreover, glycation of IgG proceeds to various conformational states like aggregation and increased hydrophobicity. In addition, the cytotoxicity assay (MTT) illustrated the proliferation of breast cancer cells (MCF-7) with IgG2 treatment.
Collapse
Affiliation(s)
- Nouf O Alafaleq
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ghaida I Alruwaished
- National Drug and Cosmetic Control Laboratory, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Samia T Al-Shouli
- Immunology Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed H Mujamammi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Essa M Sabi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Khalid M Sumaily
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Almansour
- Medical Education Department, College of Medicine & KSUMC, King Saud University, Riyadh, Saudi Arabia
| | - Majed S Alokail
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Maity D. Recent advances in the modulation of amyloid protein aggregation using the supramolecular host-guest approaches. Biophys Chem 2023; 297:107022. [PMID: 37058879 DOI: 10.1016/j.bpc.2023.107022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Misfolding of proteins is associated with many incurable diseases in human beings. Understanding the process of aggregation from monomers to fibrils, the characterization of all intermediate species, and the origin of toxicity is very challenging. Extensive research including computational and experimental shed some light on these tricky phenomena. Non-covalent interactions between amyloidogenic domains of proteins play a major role in their self-assembly which can be disrupted by designed chemical tools. This will lead to the development of inhibitors of detrimental amyloid formations. In supramolecular host-guest chemistry approaches, different macrocycles function as hosts for encapsulating hydrophobic guests, i.e. phenylalanine residues of proteins, in their hydrophobic cavities via non-covalent interactions. In this way, they can disrupt the interactions between adjacent amyloidogenic proteins and prevent their self-aggregation. This supramolecular approach has also emerged as a prospective tool to modify the aggregation of several amyloidogenic proteins. In this review, we discussed recent supramolecular host-guest chemistry-based strategies for the inhibition of amyloid protein aggregation.
Collapse
Affiliation(s)
- Debabrata Maity
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, Chirumbolo S, Pascale A. Non-Enzymatic Antioxidants against Alzheimer's Disease: Prevention, Diagnosis and Therapy. Antioxidants (Basel) 2023; 12:180. [PMID: 36671042 PMCID: PMC9855271 DOI: 10.3390/antiox12010180] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although substantial research has been conducted to elucidate the complex pathophysiology of AD, the therapeutic approach still has limited efficacy in clinical practice. Oxidative stress (OS) has been established as an early driver of several age-related diseases, including neurodegeneration. In AD, increased levels of reactive oxygen species mediate neuronal lipid, protein, and nucleic acid peroxidation, mitochondrial dysfunction, synaptic damage, and inflammation. Thus, the identification of novel antioxidant molecules capable of detecting, preventing, and counteracting AD onset and progression is of the utmost importance. However, although several studies have been published, comprehensive and up-to-date overviews of the principal anti-AD agents harboring antioxidant properties remain scarce. In this narrative review, we summarize the role of vitamins, minerals, flavonoids, non-flavonoids, mitochondria-targeting molecules, organosulfur compounds, and carotenoids as non-enzymatic antioxidants with AD diagnostic, preventative, and therapeutic potential, thereby offering insights into the relationship between OS and neurodegeneration.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Pola
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elena Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
12
|
Dolrahman N, Mukkhaphrom W, Sutirek J, Thong-Asa W. Benefits of p-coumaric acid in mice with rotenone-induced neurodegeneration. Metab Brain Dis 2023; 38:373-382. [PMID: 36308586 DOI: 10.1007/s11011-022-01113-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/17/2022] [Indexed: 02/03/2023]
Abstract
The paper examines the use of natural antioxidant and anti-inflammation substances as therapeutic candidates for brain disease. Para-coumaric acid (pCA), a phenolic compound with a variety of medicinal properties, was used against deterioration caused by various diseases. Recently, pCA has gained attention for use against cardiovascular disease but less so for neurodegenerative disease (i.e., Parkinson's disease). Therefore, the present study intended to investigate the effect of pCA against rotenone-induced Parkinson's disease-like pathology in mice. Thirty male institute of cancer research (ICR) mice were randomly divided into three experimental groups: Sham-veh, Rot-veh, and Rot-pCA100. Rotenone (Rot) 2.5 mg/kg was subcutaneously injected every 48 h in the rotenone groups. Alternately, a 100 mg/kg pCA dose was given every 48 h via intragastric gavage to the Rot-pCA100 group for 6 weeks. Motor ability was assessed at the second, fourth, and sixth week before brain collection for biochemical and histological analyses. Results indicated significant motor deficits appeared from the second to sixth week after rotenone injection. Brain analysis detected a significant effect of rotenone in the increase of malondialdehyde and tumor necrosis factor-alpha (TNF-α). This result was observed in accordance with a reduction of tyrosine hydroxylase (TH) and an increase of neuronal degeneration in the substantia nigra par compacta (SNc) and striatum. However, pCA was able to reverse all of the deterioration (i.e., reduced malondialdehyde and TNF-α) rotenone had caused, and it protected against TH and neuronal loss in the SNc and striatum. Therefore, the present study has depicted the neuroprotective effect of pCA against rotenone-induced Parkinson's disease-like pathology in mice. Benefits of pCA include anti-lipid peroxidation and anti-inflammatory effects, inhibition of neurodegeneration, and a nurturing effect on the TH level in the SNc and striatum, leading to mitigation of motor deficits.
Collapse
Affiliation(s)
- Nurinee Dolrahman
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Jatuchak, Bangkok, 10900, Thailand
| | - Waritsara Mukkhaphrom
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Jatuchak, Bangkok, 10900, Thailand
| | - Jeanjira Sutirek
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Jatuchak, Bangkok, 10900, Thailand
| | - Wachiryah Thong-Asa
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Jatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|