1
|
Sermkaew N, Atipairin A, Boonruamkaew P, Krobthong S, Aonbangkhen C, Uchiyama J, Yingchutrakul Y, Songnaka N. Novel Anti-MRSA Peptide from Mangrove-Derived Virgibacillus chiguensis FN33 Supported by Genomics and Molecular Dynamics. Mar Drugs 2025; 23:209. [PMID: 40422799 DOI: 10.3390/md23050209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/03/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025] Open
Abstract
Antimicrobial resistance (AMR) is a global health threat, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the major resistant pathogens. This study reports the isolation of a novel mangrove-derived bacterium, Virgibacillus chiguensis FN33, as identified through genome analysis and the discovery of a new anionic antimicrobial peptide (AMP) exhibiting anti-MRSA activity. The AMP was composed of 23 amino acids, which were elucidated as NH3-Glu-Gly-Gly-Cys-Gly-Val-Asp-Thr-Trp-Gly-Cys-Leu-Thr-Pro-Cys-His-Cys-Asp-Leu-Phe-Cys-Thr-Thr-COOH. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for MRSA were 8 µg/mL and 16 µg/mL, respectively. FN33 AMP induced cell membrane permeabilization, suggesting a membrane-disrupting mechanism. The AMP remained stable at 30-40 °C but lost activity at higher temperatures and following exposure to proteases, surfactants, and extreme pH. All-atom molecular dynamics simulations showed that the AMP adopts a β-sheet structure upon membrane interaction. These findings suggest that Virgibacillus chiguensis FN33 is a promising source of novel antibacterial agents against MRSA, supporting alternative strategies for drug-resistant infections.
Collapse
Affiliation(s)
- Namfa Sermkaew
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Apichart Atipairin
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | | | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jumpei Uchiyama
- Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Nuttapon Songnaka
- School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
2
|
Makowski M, Franco OL, Santos NC, Melo MN. Lipid Shape as a Membrane Activity Modulator of a Fusogenic Antimicrobial Peptide. J Chem Inf Model 2025; 65:4554-4567. [PMID: 40110793 DOI: 10.1021/acs.jcim.4c02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
An intriguing feature of many bacterial membranes is their prevalence of non-bilayer-forming lipids, such as the cone-shaped phosphatidylethanolamines and cardiolipins. Many membrane-active antimicrobial peptides lower the bilayer-to-hexagonal phase transition energy barrier in membranes containing such types of cone-shaped lipids. Here, we systematically studied how the molecular shape of lipids affects the activity of antimicrobial peptide EcDBS1R4, which is known to be an efficient fusogenic peptide. Using coarse-grained molecular dynamics simulations, we show the ability of EcDBS1R4 to form "hourglass-shaped" pores, which is inhibited by cone-shaped lipids. The abundance of cone-shaped lipids further correlates with the propensity of this peptide to oligomerize preferentially in antiparallel dimers. We also observe that EcDBS1R4 promotes the segregation of the anionic lipids. When coupled to dimerization, this charge segregation leads to regions in the bilayer that are devoid of peptides and rich in zwitterionic lipids. Our results indicate a protective role of cone-shaped lipids in bacterial membranes against pore-mediated permeabilization by EcDBS1R4.
Collapse
Affiliation(s)
- Marcin Makowski
- GIMM - Gulbenkian Institute for Molecular Medicine, Av. Prof. Egas Moniz, Lisbon 1649-035, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon 1649-028, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
- Facultad de Ciencias Químicas, Departamento de Química Física, Universidad Complutense de Madrid, Avda. Complutense s/n, Madrid 28040, Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, Madrid 28041, Spain
- Instituto Pluridisciplinar, Paseo Juan XXIII 1, Madrid 28040, Spain
| | - Octávio L Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, Distrito Federal 70910900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Asa Norte, Brasília, Distrito Federal 70790160, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica, Dom Bosco Avenida Tamandaré 6000, Campo Grande, Mato Grosso do Sul 79117900, Brazil
| | - Nuno C Santos
- GIMM - Gulbenkian Institute for Molecular Medicine, Av. Prof. Egas Moniz, Lisbon 1649-035, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Lisbon 1649-028, Portugal
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| |
Collapse
|
3
|
Hu M, Chua SL. Antibiotic-Resistant Pseudomonas aeruginosa: Current Challenges and Emerging Alternative Therapies. Microorganisms 2025; 13:913. [PMID: 40284749 PMCID: PMC12029751 DOI: 10.3390/microorganisms13040913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Antibiotic-resistant Pseudomonas aeruginosa is a pathogen notorious for its resilience in clinical settings due to biofilm formation, efflux pumps, and the rapid acquisition of resistance genes. With traditional antibiotic therapy rendered ineffective against Pseudomonas aeruginosa infections, we explore alternative therapies that have shown promise, including antimicrobial peptides, nanoparticles and quorum sensing inhibitors. While these approaches offer potential, they each face challenges, such as specificity, stability, and delivery, which require careful consideration and further study. We also delve into emerging alternative strategies, such as bacteriophage therapy and CRISPR-Cas gene editing that could enhance targeted treatment for personalized medicine. As most of them are currently in experimental stages, we highlight the need for clinical trials and additional research to confirm their feasibility. Hence, we offer insights into new therapeutic avenues that could help address the pressing issue of antibiotic-resistant Pseudomonas aeruginosa, with an eye toward practical applications in future healthcare.
Collapse
Affiliation(s)
- Minqi Hu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Song Lin Chua
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Centre for Deep Space Explorations (RCDSE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Research Institute for Future Food (RiFood), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
4
|
Shi H, Shu P, Wang Z, Meng C, Yu R, Xu Y, Li C. Knowledge mapping and research trends of cathelicidin peptide LL-37 from 1995 to 2024: a bibliometric study. Comput Methods Biomech Biomed Engin 2025:1-14. [PMID: 40083141 DOI: 10.1080/10255842.2025.2477218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/19/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND To conduct a comprehensive bibliometric analysis of LL-37, summarize its development trends and patterns, and identify emerging research hotspots. METHODS Bibliometric and Knowledge Graph Analysis of Literature Data Related to LL-37 in the WOSCC Database Using Citespace and Vosviewer. RESULTS A total of 2,814 articles were analyzed, revealing a steady increase in recent publications. The USA and Sweden were the main contributors, with PLOS One publishing the most articles. Research on LL-37 in cancer and mast cells is emerging as a new focus. CONCLUSION The research status and development trends of LL-37 were quantitatively analyzed, providing new directions for future studies.
Collapse
Affiliation(s)
- Hongxin Shi
- Clinical Medical College of Dali University, Dali, China
| | - Peizhou Shu
- Clinical Medical College of Dali University, Dali, China
| | - Zhihao Wang
- Yunnan University of Chinese Medicine, Kunming, China
| | - Chen Meng
- Graduate School of Kunming Medical University, Kunming, China
| | - Rao Yu
- Graduate School of Kunming Medical University, Kunming, China
| | - YongQing Xu
- Department of Orthopedic, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming, China
| | - Chuan Li
- Department of Orthopedic, 920th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Kunming, China
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
5
|
Beck K, Nandy J, Hoernke M. Strong Membrane Permeabilization Activity Can Reduce Selectivity of Cyclic Antimicrobial Peptides. J Phys Chem B 2025; 129:2446-2460. [PMID: 39969852 PMCID: PMC11891913 DOI: 10.1021/acs.jpcb.4c05019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Selectivity is a key requirement for membrane-active antimicrobials to be viable in therapeutic contexts. Therefore, the rational design or suitable selection of new compounds requires adequate mechanistic understanding of peptide selectivity. In this study, we compare two similar cyclic peptides that differ only in the arrangement of their three hydrophobic tryptophan (W) and three positively charged arginine (R) residues, yet exhibit different selectivities. This family of peptides has previously been shown to target the cytoplasmic membrane of bacteria, but not to act directly by membrane permeabilization. We have systematically studied and compared the interactions of the two peptides with zwitterionic phosphatidylcholine (PC) and negatively charged phosphatidylglycerol/phosphatidylethanolamine (PG/PE) model membranes using various biophysical methods to elucidate the mechanism of the selectivity. Like many antimicrobial peptides, the cyclic, cationic hexapeptides investigated here bind more efficiently to negatively charged membranes than to zwitterionic ones. Consequently, the two peptides induce vesicle leakage, changes in lipid packing, vesicle aggregation, and vesicle fusion predominantly in binary, negatively charged PG/PE membranes. The peptide with the larger hydrophobic molecular surface (three adjacent W residues) causes all these investigated effects more efficiently. In particular, it induces leakage by asymmetry stress and/or leaky fusion in zwitterionic and charged membranes, which may contribute to high activity but reduces selectivity. The unselective type of leakage appears to be driven by the more pronounced insertion into the lipid layer, facilitated by the larger hydrophobic surface of the peptide. Therefore, avoiding local accumulation of hydrophobic residues might improve the selectivity of future membrane-active compounds.
Collapse
Affiliation(s)
- Katharina Beck
- Pharmaceutical
Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Physiology,
Institute of Theoretical Medicine, University
of Augsburg, 86159 Augsburg, Germany
- Experimental
Physics I, Institute of Physics, University
of Augsburg, 86159 Augsburg, Germany
| | - Janina Nandy
- Pharmaceutical
Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Maria Hoernke
- Pharmaceutical
Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Physical
Chemistry, Martin-Luther-Universität, 06120 Halle (S.), Germany
| |
Collapse
|
6
|
Catte A, Oganesyan VS. Predicting and interpreting EPR spectra of POPC lipid bilayers with transmembrane α-helical peptides from all-atom molecular dynamics simulations. Phys Chem Chem Phys 2025; 27:4775-4784. [PMID: 39950932 DOI: 10.1039/d4cp04802d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
This study reports a large-scale all-atom MD simulation of POPC lipid bilayers in the presence of different concentrations of the transmembrane peptide acetyl-K2(LA)12K2-amide ((LA)12) and doped with 5-PC paramagnetic spin probes used in EPR studies. We apply a combined MD-EPR simulation methodology for the prediction of EPR spectra directly and completely from MD trajectories. This approach serves three major purposes. Firstly, comparing predicted EPR spectra with experimental ones, which are highly sensitive to motions, provides an ultimate test bed for the force fields currently employed for modeling lipid bilayer systems with embedded proteins or peptides. Secondly, simulations of EPR spectra directly from the atomistic MD models simplify the interpretation of the EPR line shapes and their changes induced by the presence of peptides in the lipid bilayer. These changes are directly linked to the dynamics and order of spin probes and POPC host molecules. Lastly and importantly, we demonstrate how the MD-EPR methodology can be employed to test the validity and limitations of the widely used approach for the estimation of the order parameter of lipids directly from the EPR experimental line shapes.
Collapse
Affiliation(s)
- Andrea Catte
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Vasily S Oganesyan
- School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
7
|
de Souza KR, Nunes LO, Salnikov ES, Mundim HM, Munhoz VHO, Lião LM, Aisenbrey C, Resende JM, Bechinger B, Verly RM. Elucidating the conformational behavior and membrane-destabilizing capability of the antimicrobial peptide ecPis-4s. Biophys Chem 2025; 317:107353. [PMID: 39579655 DOI: 10.1016/j.bpc.2024.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
Here we present studies of the structure and membrane interactions of ecPis-4 s, a new antimicrobial peptide from the piscidin family, which shows a wide-range of potential biotechnological applications. In order to understand the mode of action ecPis-4 s, the peptide was chemically synthesized and structural investigations in the presence of anionic POPC:POPG (3:1, mol:mol) membrane and SDS micelles were performed. CD spectroscopy demonstrated that ecPis-4 s has a high content of helical structure in both membrane mimetic media, which is in line with solution NMR spectroscopy that revealed an amphipathic helical conformation throughout the entire peptide chain. Solid-state NMR experiments of ecPis-4 s selectively labeled with 15N/2H and reconstituted into uniaxially oriented POPC:POPG membranes revealed an ideal partition of hydrophilic and hydrophobic residues within the bilayer interface. The peptide aligns in parallel to the membrane surface, a topology stabilized by aromatic side-chain interactions of the Phe-1, Phe-2 and Trp-9 with the phospholipids. 2H NMR experiments using deuterated lipids revealed that anionic lipid accumulates in the vicinity of the cationic peptide upon peptide-membrane binding.
Collapse
Affiliation(s)
- K R de Souza
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, MG, Brazil; Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 67000 Strasbourg, France
| | - L O Nunes
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, MG, Brazil
| | - E S Salnikov
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 67000 Strasbourg, France
| | - H M Mundim
- Instituto de Química, Universidade Federal de Goiás, 74690-900 Goiânia, GO, Brazil
| | - V H O Munhoz
- Instituto de Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, MG, Brazil
| | - L M Lião
- Instituto de Química, Universidade Federal de Goiás, 74690-900 Goiânia, GO, Brazil
| | - C Aisenbrey
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 67000 Strasbourg, France
| | - J M Resende
- Departamento de Química, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, MG, Brazil
| | - B Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, 67000 Strasbourg, France; Institut Universitaire de France (IUF), France
| | - R M Verly
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000 Diamantina, MG, Brazil.
| |
Collapse
|
8
|
Gratino L, Gogliettino M, Balestrieri M, Porritiello A, Dardano P, Miranda B, Luisa Ambrosio R, Ambrosio M, Nicolais L, Palmieri G. Functional interplay between short antimicrobial peptides and model lipid membranes. Bioorg Chem 2024; 153:107939. [PMID: 39520786 DOI: 10.1016/j.bioorg.2024.107939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Antimicrobial peptides (AMPs) are considered an attractive generation of novel antibiotics due to their advantageous properties such as a broad spectrum of antimicrobial activity against pathogens, low cytotoxicity, and drug resistance. Although they have common structural features and it has been widely demonstrated that bacterial membranes represent the main target of the peptide activity, the exact mechanism underlying the membrane perturbation by AMPs is not fully understood. Nevertheless, all the proposed modes of action implicate the preliminary interaction of AMPs with the negatively charged lipids in bacterial membranes. Recently, the structural and functional characterization of two AMPs, RiLK1 and RiLK3, was reported. Specifically, both peptides were revealed to be multitalented compounds capable of binding Gram-positive and Gram-negative liposome models with high affinity, but their mechanism of action remains elusive. In this paper, the effects of RiLK1 and RiLK3 on vesicles mimicking prokaryotic and eukaryotic cell membranes were further examined by using different approaches. Fluorescence and quenching assays either by acrylamide or lipophilic probes suggested that the peptides were mainly located at the interface of the negatively charged membranes that mimicked those of Salmonella Typhimurium and Staphylococcus aureus, possibly oriented in a parallel manner. Furthermore, RiLK1 and RiLK3 caused a significant leakage of carboxyfluorescein from bacterial liposomes, demonstrating that they can permeabilize the target membranes at high doses. Conversely, both peptides appear to behave like cell penetrating peptides (CPPs) at concentrations near their MIC values evaluated against the bacterial targets. Moreover, Dynamic Light Scattering provided further insights on the mechanisms of antimicrobial peptide against the bacterial liposomes. Conclusively, in vitro experiments indicated that RiLK1 and RiLK3 displayed potent bacteriostatic efficacy at low micromolar concentrations against an antibiotic-resistant ESKAPE pathogen, making them a valuable tool in preventing and treating infections caused by such bacteria.
Collapse
Affiliation(s)
- Lorena Gratino
- Institute of Biosciences and Bio Resources - National Research Council (IBBR-CNR), 80131 Napoli, Italy
| | - Marta Gogliettino
- Institute of Biosciences and Bio Resources - National Research Council (IBBR-CNR), 80131 Napoli, Italy
| | - Marco Balestrieri
- Institute of Biosciences and Bio Resources - National Research Council (IBBR-CNR), 80131 Napoli, Italy.
| | - Alessandra Porritiello
- Institute of Biosciences and Bio Resources - National Research Council (IBBR-CNR), 80131 Napoli, Italy
| | - Principia Dardano
- Institute of Applied Sciences and Intelligent Systems - National Research Council (ISASI-CNR), 80131 Napoli, Italy
| | - Bruno Miranda
- Institute of Applied Sciences and Intelligent Systems - National Research Council (ISASI-CNR), 80131 Napoli, Italy
| | - Rosa Luisa Ambrosio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Monica Ambrosio
- Institute of Biosciences and Bio Resources - National Research Council (IBBR-CNR), 80131 Napoli, Italy
| | | | - Gianna Palmieri
- Institute of Biosciences and Bio Resources - National Research Council (IBBR-CNR), 80131 Napoli, Italy; Materias Srl, 80146 Naples, Italy.
| |
Collapse
|
9
|
Liao M, Gong H, Shen K, Wang Z, Li R, Campana M, Hu X, Lu JR. Unlocking roles of cationic and aromatic residues in peptide amphiphiles in treating drug-resistant gram-positive pathogens. J Colloid Interface Sci 2024; 672:209-223. [PMID: 38838629 DOI: 10.1016/j.jcis.2024.05.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Multidrug resistance (MDR) is a rising threat to global health because the number of essential antibiotics used for treating MDR infections is increasingly compromised. In this work we report a group of new amphiphilic peptides (AMPs) derived from the well-studied G3 (G(IIKK)3I-NH2) to fight infections from Gram-positive bacteria including susceptible Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA), focusing on membrane interactions. Time-dependent killing experiments revealed that substitutions of II by WW (GWK), II by FF (GFK) and KK by RR (GIR) resulted in improved bactericidal efficiencies compared to G3 (GIK) on both S. aureus and MRSA, with the order of GWK > GIR > GFK > GIK. Electronic microscopy imaging revealed structural disruptions of AMP binding to bacterial cell walls. Fluorescence assays including AMP binding to anionic lipoteichoic acids (LTA) in cell-free and cell systems indicated concentration and time-dependent membrane destabilization associated with bacterial killing. Furthermore, AMP's binding to anionic plasma membrane via similar fluorescence assays revealed a different extent of membrane depolarization and leakage. These observations were supported by the penetration of AMPs into the LTA barrier and the subsequent structural compromise to the cytoplasmic membrane as revealed from SANS (small angle neutron scattering). Both experiments and molecular dynamics (MD) simulations revealed that GWK and GIR could make the membrane more rigid but less effective in diffusive efficiency than GIK and GFK through forming intramembrane peptide nanoaggregates associated with hydrophobic mismatch and formation of fluidic and rigid patches. The reported peptide-aggregate-induced phase-separation emerged as a crucial factor in accelerated membrane disintegration and fast bacterial killing. This work has demonstrated the importance of membrane interactions to the development of more effective AMPs and the relevance of the approaches as reported in assisting this area of research.
Collapse
Affiliation(s)
- Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Kangcheng Shen
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ziwei Wang
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Renzhi Li
- Department of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Mario Campana
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Xuzhi Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Jian R Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, School of Natural Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
10
|
Fong-Coronado PA, Ramirez V, Quintero-Hernández V, Balleza D. A Critical Review of Short Antimicrobial Peptides from Scorpion Venoms, Their Physicochemical Attributes, and Potential for the Development of New Drugs. J Membr Biol 2024; 257:165-205. [PMID: 38990274 PMCID: PMC11289363 DOI: 10.1007/s00232-024-00315-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024]
Abstract
Scorpion venoms have proven to be excellent sources of antimicrobial agents. However, although many of them have been functionally characterized, they remain underutilized as pharmacological agents, despite their evident therapeutic potential. In this review, we discuss the physicochemical properties of short scorpion venom antimicrobial peptides (ssAMPs). Being generally short (13-25 aa) and amidated, their proven antimicrobial activity is generally explained by parameters such as their net charge, the hydrophobic moment, or the degree of helicity. However, for a complete understanding of their biological activities, also considering the properties of the target membranes is of great relevance. Here, with an extensive analysis of the physicochemical, structural, and thermodynamic parameters associated with these biomolecules, we propose a theoretical framework for the rational design of new antimicrobial drugs. Through a comparison of these physicochemical properties with the bioactivity of ssAMPs in pathogenic bacteria such as Staphylococcus aureus or Acinetobacter baumannii, it is evident that in addition to the net charge, the hydrophobic moment, electrostatic energy, or intrinsic flexibility are determining parameters to understand their performance. Although the correlation between these parameters is very complex, the consensus of our analysis suggests that there is a delicate balance between them and that modifying one affects the rest. Understanding the contribution of lipid composition to their bioactivities is also underestimated, which suggests that for each peptide, there is a physiological context to consider for the rational design of new drugs.
Collapse
Affiliation(s)
- Pedro Alejandro Fong-Coronado
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| | - Verónica Ramirez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (FCQ-BUAP), Ciudad Universitaria, Puebla, México
| | | | - Daniel Balleza
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz, México.
| |
Collapse
|
11
|
Sadek KM, Shib NA, Taher ES, Rashed F, Shukry M, Atia GA, Taymour N, El-Nablaway M, Ibrahim AM, Ramadan MM, Abdelkader A, Abdo M, Imbrea I, Pet E, Ali LS, Abdeen A. Harnessing the power of bee venom for therapeutic and regenerative medical applications: an updated review. Front Pharmacol 2024; 15:1412245. [PMID: 39092234 PMCID: PMC11291246 DOI: 10.3389/fphar.2024.1412245] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Honeybees have been helpful insects since ancient centuries, and this benefit is not limited to being a honey producer only. After the bee stings a person, pain, and swelling occur in this place, due to the effects of bee venom (BV). This is not a poison in the total sense of the word because it has many benefits, and this is due to its composition being rich in proteins, peptides, enzymes, and other types of molecules in low concentrations that show promise in the treatment of numerous diseases and conditions. BV has also demonstrated positive effects against various cancers, antimicrobial activity, and wound healing versus the human immunodeficiency virus (HIV). Even though topical BV therapy is used to varying degrees among countries, localized swelling or itching are common side effects that may occur in some patients. This review provides an in-depth analysis of the complex chemical composition of BV, highlighting the diverse range of bioactive compounds and their therapeutic applications, which extend beyond the well-known anti-inflammatory and pain-relieving effects, showcasing the versatility of BV in modern medicine. A specific search strategy was followed across various databases; Web of sciences, Scopus, Medline, and Google Scholar including in vitro and in vivo clinical studies.to outline an overview of BV composition, methods to use, preparation requirements, and Individual consumption contraindications. Furthermore, this review addresses safety concerns and emerging approaches, such as the use of nanoparticles, to mitigate adverse effects, demonstrating a balanced and holistic perspective. Importantly, the review also incorporates historical context and traditional uses, as well as a unique focus on veterinary applications, setting it apart from previous works and providing a valuable resource for researchers and practitioners in the field.
Collapse
Affiliation(s)
- Kadry M. Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Naira A. Shib
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ateya M. Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port Said University, Port Said, Egypt
| | - Mahmoud M. Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ilinca Imbrea
- Department of Forestry, Faculty of Engineering and Applied Technologies, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Elena Pet
- Department of Management and Rural Development, Faculty of Management and Rural Tourism, University of Life Sciences “King Mihai I” from Timisoara, Timisoara, Romania
| | - Lashin S. Ali
- Department of Basic Medical Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
12
|
Bhattacharjya S, Zhang Z, Ramamoorthy A. LL-37: Structures, Antimicrobial Activity, and Influence on Amyloid-Related Diseases. Biomolecules 2024; 14:320. [PMID: 38540740 PMCID: PMC10968335 DOI: 10.3390/biom14030320] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 11/11/2024] Open
Abstract
Antimicrobial peptides (AMPs), as well as host defense peptides (HDPs), constitute the first line of defense as part of the innate immune system. Humans are known to express antimicrobial precursor proteins, which are further processed to generate AMPs, including several types of α/β defensins, histatins, and cathelicidin-derived AMPs like LL37. The broad-spectrum activity of AMPs is crucial to defend against infections caused by pathogenic bacteria, viruses, fungi, and parasites. The emergence of multi-drug resistant pathogenic bacteria is of global concern for public health. The prospects of targeting antibiotic-resistant strains of bacteria with AMPs are of high significance for developing new generations of antimicrobial agents. The 37-residue long LL37, the only cathelicidin family of AMP in humans, has been the major focus for the past few decades of research. The host defense activity of LL37 is likely underscored by its expression throughout the body, spanning from the epithelial cells of various organs-testis, skin, respiratory tract, and gastrointestinal tract-to immune cells. Remarkably, apart from canonical direct killing of pathogenic organisms, LL37 exerts several other host defense activities, including inflammatory response modulation, chemo-attraction, and wound healing and closure at the infected sites. In addition, LL37 and its derived peptides are bestowed with anti-cancer and anti-amyloidogenic properties. In this review article, we aim to develop integrative, mechanistic insight into LL37 and its derived peptides, based on the known biophysical, structural, and functional studies in recent years. We believe that this review will pave the way for future research on the structures, biochemical and biophysical properties, and design of novel LL37-based molecules.
Collapse
Affiliation(s)
- Surajit Bhattacharjya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Zhizhuo Zhang
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109, USA;
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109, USA;
- National High Magnetic Field Laboratory, Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
13
|
Lee TH, Charchar P, Separovic F, Reid GE, Yarovsky I, Aguilar MI. The intricate link between membrane lipid structure and composition and membrane structural properties in bacterial membranes. Chem Sci 2024; 15:3408-3427. [PMID: 38455013 PMCID: PMC10915831 DOI: 10.1039/d3sc04523d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024] Open
Abstract
It is now evident that the cell manipulates lipid composition to regulate different processes such as membrane protein insertion, assembly and function. Moreover, changes in membrane structure and properties, lipid homeostasis during growth and differentiation with associated changes in cell size and shape, and responses to external stress have been related to drug resistance across mammalian species and a range of microorganisms. While it is well known that the biomembrane is a fluid self-assembled nanostructure, the link between the lipid components and the structural properties of the lipid bilayer are not well understood. This perspective aims to address this topic with a view to a more detailed understanding of the factors that regulate bilayer structure and flexibility. We describe a selection of recent studies that address the dynamic nature of bacterial lipid diversity and membrane properties in response to stress conditions. This emerging area has important implications for a broad range of cellular processes and may open new avenues of drug design for selective cell targeting.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University Clayton VIC 3800 Australia
| | - Patrick Charchar
- School of Engineering, RMIT University Melbourne Victoria 3001 Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne VIC 3010 Australia
| | - Gavin E Reid
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne VIC 3010 Australia
- Department of Biochemistry and Pharmacology, University of Melbourne Parkville VIC 3010 Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University Melbourne Victoria 3001 Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
14
|
Andrä J, Aisenbrey C, Sudheendra US, Prudhon M, Brezesinski G, Zschech C, Willumeit-Römer R, Leippe M, Gutsmann T, Bechinger B. Structural analysis of the NK-lysin-derived peptide NK-2 upon interaction with bacterial membrane mimetics consisting of phosphatidylethanolamine and phosphatidylglycerol. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184267. [PMID: 38159877 DOI: 10.1016/j.bbamem.2023.184267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
NK-2 is an antimicrobial peptide derived from helices 3 and 4 of the pore-forming protein of natural killer cells, NK-lysin. It has potent activities against Gram-negative and Gram-positive bacteria, fungi and protozoan parasites without being toxic to healthy human cells. In biophysical assays its membrane activities were found to require phosphatidylglycerol (PG) and phosphatidylethanolamine (PE), lipids which dominate the composition of bacterial membranes. Here the structure and activities of NK-2 in binary mixtures of different PE/PG composition were investigated. CD spectroscopy reveals that a threshold concentration of 50 % PG is needed for efficient membrane association of NK-2 concomitant with a random coil - helix transition. Association with PE occurs but is qualitatively different when compared to PG membranes. Oriented solid-state NMR spectroscopy of NK-2 specifically labelled with 15N indicates that the NK-2 helices are oriented parallel to the PG bilayer surface. Upon reduction of the PG content to 20 mol% interactions are weaker and/or an in average more tilted orientation is observed. Fluorescence spectroscopy of differently labelled lipids is in agreement of an interfacial localisation of both helices where the C-terminal end is in a less hydrophobic environment. By inserting into the membrane interface and interacting differently with PE and PG the peptides probably induce high curvature strain which result in membrane openings and rupture.
Collapse
Affiliation(s)
- Jörg Andrä
- Department of Biotechnology, Faculty of Life Sciences, Hamburg University of Applied Sciences, Hamburg, Germany.
| | | | - U S Sudheendra
- University of Strasbourg / CNRS, UMR7177, Chemistry Institute, Strasbourg, France
| | - Marc Prudhon
- University of Strasbourg / CNRS, UMR7177, Chemistry Institute, Strasbourg, France
| | - Gerald Brezesinski
- Department of Physics, TU Darmstadt, Darmstadt, Germany; Department of Interfaces, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Claudia Zschech
- Department of Interfaces, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | | - Matthias Leippe
- Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Thomas Gutsmann
- Research Center Borstel, Leibniz Lung Center, Borstel, Germany; Centre for Structural Systems Biology, Hamburg, Germany
| | - Burkhard Bechinger
- University of Strasbourg / CNRS, UMR7177, Chemistry Institute, Strasbourg, France; Institut Universitaire de France, 75005 Paris, France.
| |
Collapse
|
15
|
Bjørk PK, Johansen NT, Havshøi NW, Rasmussen SA, Ipsen JØ, Isbrandt T, Larsen TO, Fuglsang AT. Trichoderma harzianum Peptaibols Stimulate Plant Plasma Membrane H +-ATPase Activity. ACS OMEGA 2023; 8:34928-34937. [PMID: 37779967 PMCID: PMC10536087 DOI: 10.1021/acsomega.3c04299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023]
Abstract
Because of their ability to promote growth, act as biopesticides, and improve abiotic stress tolerance, Trichoderma spp. have been used for plant seed coating. However, the mechanism for the promotion of plant growth remains unknown. In this study, we investigate the effect of fungal extracts on the plant plasma membrane (PM) H+-ATPase, which is essential for plant growth and often a target of plant-associated microbes. We show that Trichoderma harzianum extract increases H+-ATPase activity, and by fractionation and high-resolution mass spectrometry (MS), we identify the activating components trichorzin PA (tPA) II and tPA VI that belong to the class of peptaibols. Peptaibols are nonribosomal peptides that can integrate into membranes and form indiscriminate ion channels, which causes pesticidal activity. To further investigate peptaibol-mediated H+-ATPase activation, we compare the effect of tPA II and VI to that of the model peptaibol alamethicin (AlaM). We show that AlaM increases H+-ATPase turnover rates in a concentration-dependent manner, with a peak in activity measured at 31.25 μM, above which activity decreases. Using fluorescent probes and light scattering, we find that the AlaM-mediated increase in activity is not correlated to increased membrane fluidity or vesicle integrity, whereas the activity decrease at high AlaM concentrations is likely due to PM overloading of AlaM pores. Overall, our results suggest that the symbiosis of fungi and plants, specifically related to peptaibols, is a concentration-dependent balance, where peptaibols do not act only as biocontrol agents but also as plant growth stimulants.
Collapse
Affiliation(s)
- Peter Klemmed Bjørk
- Department
of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Nicolai Tidemand Johansen
- Department
of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Nanna Weise Havshøi
- Department
of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Silas Anselm Rasmussen
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Johan Ørskov Ipsen
- Department
of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Thomas Isbrandt
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Thomas Ostenfeld Larsen
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Anja Thoe Fuglsang
- Department
of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 1871 Frederiksberg, Denmark
| |
Collapse
|