1
|
Heyn JCJ, Rädler JO, Falcke M. Mesenchymal cell migration on one-dimensional micropatterns. Front Cell Dev Biol 2024; 12:1352279. [PMID: 38694822 PMCID: PMC11062138 DOI: 10.3389/fcell.2024.1352279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/29/2024] [Indexed: 05/04/2024] Open
Abstract
Quantitative studies of mesenchymal cell motion are important to elucidate cytoskeleton function and mechanisms of cell migration. To this end, confinement of cell motion to one dimension (1D) significantly simplifies the problem of cell shape in experimental and theoretical investigations. Here we review 1D migration assays employing micro-fabricated lanes and reflect on the advantages of such platforms. Data are analyzed using biophysical models of cell migration that reproduce the rich scenario of morphodynamic behavior found in 1D. We describe basic model assumptions and model behavior. It appears that mechanical models explain the occurrence of universal relations conserved across different cell lines such as the adhesion-velocity relation and the universal correlation between speed and persistence (UCSP). We highlight the unique opportunity of reproducible and standardized 1D assays to validate theory based on statistical measures from large data of trajectories and discuss the potential of experimental settings embedding controlled perturbations to probe response in migratory behavior.
Collapse
Affiliation(s)
- Johannes C. J. Heyn
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Joachim O. Rädler
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Physics, Humboldt University, Berlin, Germany
| |
Collapse
|
2
|
Beta C, Edelstein-Keshet L, Gov N, Yochelis A. From actin waves to mechanism and back: How theory aids biological understanding. eLife 2023; 12:e87181. [PMID: 37428017 DOI: 10.7554/elife.87181] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Actin dynamics in cell motility, division, and phagocytosis is regulated by complex factors with multiple feedback loops, often leading to emergent dynamic patterns in the form of propagating waves of actin polymerization activity that are poorly understood. Many in the actin wave community have attempted to discern the underlying mechanisms using experiments and/or mathematical models and theory. Here, we survey methods and hypotheses for actin waves based on signaling networks, mechano-chemical effects, and transport characteristics, with examples drawn from Dictyostelium discoideum, human neutrophils, Caenorhabditis elegans, and Xenopus laevis oocytes. While experimentalists focus on the details of molecular components, theorists pose a central question of universality: Are there generic, model-independent, underlying principles, or just boundless cell-specific details? We argue that mathematical methods are equally important for understanding the emergence, evolution, and persistence of actin waves and conclude with a few challenges for future studies.
Collapse
Affiliation(s)
- Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | | | - Nir Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Arik Yochelis
- Swiss Institute for Dryland Environmental and Energy Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
3
|
Amiri B, Heyn JCJ, Schreiber C, Rädler JO, Falcke M. On multistability and constitutive relations of cell motion on fibronectin lanes. Biophys J 2023; 122:753-766. [PMID: 36739476 PMCID: PMC10027452 DOI: 10.1016/j.bpj.2023.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Cell motility on flat substrates exhibits coexisting steady and oscillatory morphodynamics, the biphasic adhesion-velocity relation, and the universal correlation between speed and persistence (UCSP) as simultaneous observations common to many cell types. Their universality and concurrency suggest a unifying mechanism causing all three of them. Stick-slip models for cells on one-dimensional lanes suggest multistability to arise from the nonlinear friction of retrograde flow. This study suggests a mechanical mechanism controlled by integrin signaling on the basis of a biophysical model and analysis of trajectories of MDA-MB-231 cells on fibronectin lanes, which additionally explains the constitutive relations. The experiments exhibit cells with steady or oscillatory morphodynamics and either spread or moving with spontaneous transitions between the dynamic regimes, spread and moving, and spontaneous direction reversals. Our biophysical model is based on the force balance at the protrusion edge, the noisy clutch of retrograde flow, and a response function of friction and membrane drag to integrin signaling. The theory reproduces the experimentally observed cell states, characteristics of oscillations, and state probabilities. Analysis of experiments with the biophysical model establishes a stick-slip oscillation mechanism, and explains multistability of cell states and the statistics of state transitions. It suggests protrusion competition to cause direction reversal events, the statistics of which explain the UCSP. The effect of integrin signaling on drag and friction explains the adhesion-velocity relation and cell behavior at fibronectin density steps. The dynamics of our mechanism are nonlinear flow mechanics driven by F-actin polymerization and shaped by the noisy clutch of retrograde flow friction, protrusion competition via membrane tension, and drag forces. Integrin signaling controls the parameters of the mechanical system.
Collapse
Affiliation(s)
- Behnam Amiri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Johannes C J Heyn
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Christoph Schreiber
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Joachim O Rädler
- Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU), Munich, Germany.
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Department of Physics, Humboldt University, Berlin, Germany.
| |
Collapse
|
4
|
Fauser J, Brennan M, Tsygankov D, Karginov AV. Methods for assessment of membrane protrusion dynamics. CURRENT TOPICS IN MEMBRANES 2021; 88:205-234. [PMID: 34862027 DOI: 10.1016/bs.ctm.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Membrane protrusions are a critical facet of cell function. Mediating fundamental processes such as cell migration, cell-cell interactions, phagocytosis, as well as assessment and remodeling of the cell environment. Different protrusion types and morphologies can promote different cellular functions and occur downstream of distinct signaling pathways. As such, techniques to quantify and understand the inner workings of protrusion dynamics are critical for a comprehensive understanding of cell biology. In this chapter, we describe approaches to analyze cellular protrusions and correlate physical changes in cell morphology with biochemical signaling processes. We address methods to quantify and characterize protrusion types and velocity, mathematical approaches to predictive models of cytoskeletal changes, and implementation of protein engineering and biosensor design to dissect cell signaling driving protrusive activity. Combining these approaches allows cell biologists to develop a comprehensive understanding of the dynamics of membrane protrusions.
Collapse
Affiliation(s)
- Jordan Fauser
- University of Illinois at Chicago, Department of Cellular and Molecular Pharmacology and Regenerative Medicine, Chicago, IL, United States
| | - Martin Brennan
- University of Illinois at Chicago, Department of Cellular and Molecular Pharmacology and Regenerative Medicine, Chicago, IL, United States
| | - Denis Tsygankov
- Georgia Institute of Technology, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, United States
| | - Andrei V Karginov
- University of Illinois at Chicago, Department of Cellular and Molecular Pharmacology and Regenerative Medicine, Chicago, IL, United States.
| |
Collapse
|
5
|
Rutkowski DM, Vavylonis D. Discrete mechanical model of lamellipodial actin network implements molecular clutch mechanism and generates arcs and microspikes. PLoS Comput Biol 2021; 17:e1009506. [PMID: 34662335 PMCID: PMC8553091 DOI: 10.1371/journal.pcbi.1009506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/28/2021] [Accepted: 09/30/2021] [Indexed: 01/03/2023] Open
Abstract
Mechanical forces, actin filament turnover, and adhesion to the extracellular environment regulate lamellipodial protrusions. Computational and mathematical models at the continuum level have been used to investigate the molecular clutch mechanism, calculating the stress profile through the lamellipodium and around focal adhesions. However, the forces and deformations of individual actin filaments have not been considered while interactions between actin networks and actin bundles is not easily accounted with such methods. We develop a filament-level model of a lamellipodial actin network undergoing retrograde flow using 3D Brownian dynamics. Retrograde flow is promoted in simulations by pushing forces from the leading edge (due to actin polymerization), pulling forces (due to molecular motors), and opposed by viscous drag in cytoplasm and focal adhesions. Simulated networks have densities similar to measurements in prior electron micrographs. Connectivity between individual actin segments is maintained by permanent and dynamic crosslinkers. Remodeling of the network occurs via the addition of single actin filaments near the leading edge and via filament bond severing. We investigated how several parameters affect the stress distribution, network deformation and retrograde flow speed. The model captures the decrease in retrograde flow upon increase of focal adhesion strength. The stress profile changes from compression to extension across the leading edge, with regions of filament bending around focal adhesions. The model reproduces the observed reduction in retrograde flow speed upon exposure to cytochalasin D, which halts actin polymerization. Changes in crosslinker concentration and dynamics, as well as in the orientation pattern of newly added filaments demonstrate the model's ability to generate bundles of filaments perpendicular (actin arcs) or parallel (microspikes) to the protruding direction.
Collapse
|
6
|
Johnson ME, Chen A, Faeder JR, Henning P, Moraru II, Meier-Schellersheim M, Murphy RF, Prüstel T, Theriot JA, Uhrmacher AM. Quantifying the roles of space and stochasticity in computer simulations for cell biology and cellular biochemistry. Mol Biol Cell 2021; 32:186-210. [PMID: 33237849 PMCID: PMC8120688 DOI: 10.1091/mbc.e20-08-0530] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/13/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022] Open
Abstract
Most of the fascinating phenomena studied in cell biology emerge from interactions among highly organized multimolecular structures embedded into complex and frequently dynamic cellular morphologies. For the exploration of such systems, computer simulation has proved to be an invaluable tool, and many researchers in this field have developed sophisticated computational models for application to specific cell biological questions. However, it is often difficult to reconcile conflicting computational results that use different approaches to describe the same phenomenon. To address this issue systematically, we have defined a series of computational test cases ranging from very simple to moderately complex, varying key features of dimensionality, reaction type, reaction speed, crowding, and cell size. We then quantified how explicit spatial and/or stochastic implementations alter outcomes, even when all methods use the same reaction network, rates, and concentrations. For simple cases, we generally find minor differences in solutions of the same problem. However, we observe increasing discordance as the effects of localization, dimensionality reduction, and irreversible enzymatic reactions are combined. We discuss the strengths and limitations of commonly used computational approaches for exploring cell biological questions and provide a framework for decision making by researchers developing new models. As computational power and speed continue to increase at a remarkable rate, the dream of a fully comprehensive computational model of a living cell may be drawing closer to reality, but our analysis demonstrates that it will be crucial to evaluate the accuracy of such models critically and systematically.
Collapse
Affiliation(s)
- M. E. Johnson
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218
| | - A. Chen
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218
| | - J. R. Faeder
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260
| | - P. Henning
- Institute for Visual and Analytic Computing, University of Rostock, 18055 Rostock, Germany
| | - I. I. Moraru
- Department of Cell Biology, Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
| | - M. Meier-Schellersheim
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - R. F. Murphy
- Computational Biology Department, Department of Biological Sciences, Department of Biomedical Engineering, Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15289
| | - T. Prüstel
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - J. A. Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| | - A. M. Uhrmacher
- Institute for Visual and Analytic Computing, University of Rostock, 18055 Rostock, Germany
| |
Collapse
|
7
|
Dimchev G, Amiri B, Humphries AC, Schaks M, Dimchev V, Stradal TEB, Faix J, Krause M, Way M, Falcke M, Rottner K. Lamellipodin tunes cell migration by stabilizing protrusions and promoting adhesion formation. J Cell Sci 2020; 133:jcs239020. [PMID: 32094266 PMCID: PMC7157940 DOI: 10.1242/jcs.239020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 02/19/2020] [Indexed: 01/01/2023] Open
Abstract
Efficient migration on adhesive surfaces involves the protrusion of lamellipodial actin networks and their subsequent stabilization by nascent adhesions. The actin-binding protein lamellipodin (Lpd) is thought to play a critical role in lamellipodium protrusion, by delivering Ena/VASP proteins onto the growing plus ends of actin filaments and by interacting with the WAVE regulatory complex, an activator of the Arp2/3 complex, at the leading edge. Using B16-F1 melanoma cell lines, we demonstrate that genetic ablation of Lpd compromises protrusion efficiency and coincident cell migration without altering essential parameters of lamellipodia, including their maximal rate of forward advancement and actin polymerization. We also confirmed lamellipodia and migration phenotypes with CRISPR/Cas9-mediated Lpd knockout Rat2 fibroblasts, excluding cell type-specific effects. Moreover, computer-aided analysis of cell-edge morphodynamics on B16-F1 cell lamellipodia revealed that loss of Lpd correlates with reduced temporal protrusion maintenance as a prerequisite of nascent adhesion formation. We conclude that Lpd optimizes protrusion and nascent adhesion formation by counteracting frequent, chaotic retraction and membrane ruffling.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Georgi Dimchev
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffen Strasse 7, 38124 Braunschweig, Germany
| | - Behnam Amiri
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Ashley C Humphries
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffen Strasse 7, 38124 Braunschweig, Germany
| | - Vanessa Dimchev
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffen Strasse 7, 38124 Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffen Strasse 7, 38124 Braunschweig, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Matthias Krause
- Randall Centre of Cell & Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Department of Infectious Disease, Imperial College, London W2 1PG, UK
| | - Martin Falcke
- Max Delbrück Center for Molecular Medicine, Robert Rössle Strasse 10, 13125 Berlin, Germany
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffen Strasse 7, 38124 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), 38106 Braunschweig, Germany
| |
Collapse
|
8
|
Influence of cross-linking and retrograde flow on formation and dynamics of lamellipodium. PLoS One 2019; 14:e0213810. [PMID: 30897104 PMCID: PMC6428246 DOI: 10.1371/journal.pone.0213810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/01/2019] [Indexed: 11/19/2022] Open
Abstract
The forces that arise from the actin cortex play a crucial role in determining the membrane deformation. These include protrusive forces due to actin polymerization, pulling forces due to transient attachment of actin filaments to the membrane, retrograde flow powered by contraction of actomyosin network, and adhesion to the extracellular matrix. Here we present a theoretical model for membrane deformation resulting from the feedback between the membrane shape and the forces acting on the membrane. We model the membrane as a series of beads connected by springs and determine the final steady-state shape of the membrane arising from the interplay between pushing/pulling forces of the actin network and the resisting membrane tension. We specifically investigate the effect of the gel dynamics on the spatio-temporal deformation of the membrane until a stable lamellipodium is formed. We show that the retrograde flow and the cross-linking velocity play an essential role in the final elongation of the membrane. Interestingly, in the simulations where motor-induced contractility is switched off, reduced retrograde flow results in an increase in the rate and amplitude of membrane protrusion. These simulations are consistent with experimental observations that report an enhancement in protrusion efficiency as myosin II molecular motors are inhibited.
Collapse
|
9
|
Gov NS. Guided by curvature: shaping cells by coupling curved membrane proteins and cytoskeletal forces. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0115. [PMID: 29632267 DOI: 10.1098/rstb.2017.0115] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2017] [Indexed: 01/11/2023] Open
Abstract
Eukaryote cells have flexible membranes that allow them to have a variety of dynamical shapes. The shapes of the cells serve important biological functions, both for cells within an intact tissue, and during embryogenesis and cellular motility. How cells control their shapes and the structures that they form on their surface has been a subject of intensive biological research, exposing the building blocks that cells use to deform their membranes. These processes have also drawn the interest of theoretical physicists, aiming to develop models based on physics, chemistry and nonlinear dynamics. Such models explore quantitatively different possible mechanisms that the cells can employ to initiate the spontaneous formation of shapes and patterns on their membranes. We review here theoretical work where one such class of mechanisms was investigated: the coupling between curved membrane proteins, and the cytoskeletal forces that they recruit. Theory indicates that this coupling gives rise to a rich variety of membrane shapes and dynamics, while experiments indicate that this mechanism appears to drive many cellular shape changes.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- N S Gov
- Department of Chemical Physics, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| |
Collapse
|
10
|
Holz D, Vavylonis D. Building a dendritic actin filament network branch by branch: models of filament orientation pattern and force generation in lamellipodia. Biophys Rev 2018; 10:1577-1585. [PMID: 30421277 DOI: 10.1007/s12551-018-0475-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 10/21/2018] [Indexed: 01/02/2023] Open
Abstract
We review mathematical and computational models of the structure, dynamics, and force generation properties of dendritic actin networks. These models have been motivated by the dendritic nucleation model, which provided a mechanistic picture of how the actin cytoskeleton system powers cell motility. We describe how they aimed to explain the self-organization of the branched network into a bimodal distribution of filament orientations peaked at 35° and - 35° with respect to the direction of membrane protrusion, as well as other patterns. Concave and convex force-velocity relationships were derived, depending on network organization, filament, and membrane elasticity and accounting for actin polymerization at the barbed end as a Brownian ratchet. This review also describes models that considered the kinetics and transport of actin and diffuse regulators and mechanical coupling to a substrate, together with explicit modeling of dendritic networks.
Collapse
Affiliation(s)
- Danielle Holz
- Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA, 18105, USA
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA, 18105, USA.
| |
Collapse
|
11
|
Profiling cellular morphodynamics by spatiotemporal spectrum decomposition. PLoS Comput Biol 2018; 14:e1006321. [PMID: 30071020 PMCID: PMC6091976 DOI: 10.1371/journal.pcbi.1006321] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 08/14/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022] Open
Abstract
Cellular morphology and associated morphodynamics are widely used for qualitative and quantitative assessments of cell state. Here we implement a framework to profile cellular morphodynamics based on an adaptive decomposition of local cell boundary motion into instantaneous frequency spectra defined by the Hilbert-Huang transform (HHT). Our approach revealed that spontaneously migrating cells with approximately homogeneous molecular makeup show remarkably consistent instantaneous frequency distributions, though they have markedly heterogeneous mobility. Distinctions in cell edge motion between these cells are captured predominantly by differences in the magnitude of the frequencies. We found that acute photo-inhibition of Vav2 guanine exchange factor, an activator of the Rho family of signaling proteins coordinating cell motility, produces significant shifts in the frequency distribution, but does not affect frequency magnitude. We therefore concluded that the frequency spectrum encodes the wiring of the molecular circuitry that regulates cell boundary movements, whereas the magnitude captures the activation level of the circuitry. We also used HHT spectra as multi-scale spatiotemporal features in statistical region merging to identify subcellular regions of distinct motion behavior. In line with our conclusion that different HHT spectra relate to different signaling regimes, we found that subcellular regions with different morphodynamics indeed exhibit distinct Rac1 activities. This algorithm thus can serve as an accurate and sensitive classifier of cellular morphodynamics to pinpoint spatial and temporal boundaries between signaling regimes. Many studies in cell biology employ global shape descriptors to probe mechanisms of cell morphogenesis. Here, we implement a framework in this paper to profile cellular morphodynamics very locally. We employ the Hilbert-Huang transform (HHT) to extract along the entire cell edge spectra of instantaneous edge motion frequency and magnitude and use them to classify overall cell behavior as well as subcellular edge sectors of distinct dynamics. We find in fibroblast-like COS7 cells that the marked heterogeneity in mobility of an unstimulated population is fully captured by differences in the magnitude spectra, while the frequency spectra are conserved between cells. Using optogenetics to acutely inhibit morphogenetic signaling pathways we find that these molecular shifts are reflected by changes in the frequency spectra but not in the magnitude spectra. After clustering cell edge sectors with distinct morphodynamics we observe in cells expressing a Rac1 activity biosensor that the sectors with different frequency spectra associate with different signaling intensity and dynamics. Together, these observations let us conclude that the frequency spectrum encodes the wiring of the molecular circuitry that regulates edge movements, whereas the magnitude captures the activation level of the circuitry.
Collapse
|
12
|
Othmer HG. Eukaryotic Cell Dynamics from Crawlers to Swimmers. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018; 9. [PMID: 30854030 DOI: 10.1002/wcms.1376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Movement requires force transmission to the environment, and motile cells are robustly, though not elegantly, designed nanomachines that often can cope with a variety of environmental conditions by altering the mode of force transmission used. As with humans, the available modes range from momentary attachment to a substrate when crawling, to shape deformations when swimming, and at the cellular level this involves sensing the mechanical properties of the environment and altering the mode appropriately. While many types of cells can adapt their mode of movement to their microenvironment (ME), our understanding of how they detect, transduce and process information from the ME to determine the optimal mode is still rudimentary. The shape and integrity of a cell is determined by its cytoskeleton (CSK), and thus the shape changes that may be required to move involve controlled remodeling of the CSK. Motion in vivo is often in response to extracellular signals, which requires the ability to detect such signals and transduce them into the shape changes and force generation needed for movement. Thus the nanomachine is complex, and while much is known about individual components involved in movement, an integrated understanding of motility in even simple cells such as bacteria is not at hand. In this review we discuss recent advances in our understanding of cell motility and some of the problems remaining to be solved.
Collapse
Affiliation(s)
- H G Othmer
- School of Mathematics, University of Minnesota
| |
Collapse
|
13
|
Ryan GL, Holz D, Yamashiro S, Taniguchi D, Watanabe N, Vavylonis D. Cell protrusion and retraction driven by fluctuations in actin polymerization: A two-dimensional model. Cytoskeleton (Hoboken) 2017; 74:490-503. [PMID: 28752950 PMCID: PMC5725282 DOI: 10.1002/cm.21389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
Animal cells that spread onto a surface often rely on actin-rich lamellipodial extensions to execute protrusion. Many cell types recently adhered on a two-dimensional substrate exhibit protrusion and retraction of their lamellipodia, even though the cell is not translating. Travelling waves of protrusion have also been observed, similar to those observed in crawling cells. These regular patterns of protrusion and retraction allow quantitative analysis for comparison to mathematical models. The periodic fluctuations in leading edge position of XTC cells have been linked to excitable actin dynamics using a one-dimensional model of actin dynamics, as a function of arc-length along the cell. In this work we extend this earlier model of actin dynamics into two dimensions (along the arc-length and radial directions of the cell) and include a model membrane that protrudes and retracts in response to the changing number of free barbed ends of actin filaments near the membrane. We show that if the polymerization rate at the barbed ends changes in response to changes in their local concentration at the leading edge and/or the opposing force from the cell membrane, the model can reproduce the patterns of membrane protrusion and retraction seen in experiment. We investigate both Brownian ratchet and switch-like force-velocity relationships between the membrane load forces and actin polymerization rate. The switch-like polymerization dynamics recover the observed patterns of protrusion and retraction as well as the fluctuations in F-actin concentration profiles. The model generates predictions for the behavior of cells after local membrane tension perturbations.
Collapse
Affiliation(s)
- Gillian L. Ryan
- Department of Physics, Kettering University, 1700 University Avenue, Flint MI 48504, United States
- Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem PA 18105, United States
| | - Danielle Holz
- Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem PA 18105, United States
| | - Sawako Yamashiro
- Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Daisuke Taniguchi
- Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Naoki Watanabe
- Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem PA 18105, United States
| |
Collapse
|
14
|
Bernitt E, Döbereiner HG. Spatiotemporal Patterns of Noise-Driven Confined Actin Waves in Living Cells. PHYSICAL REVIEW LETTERS 2017; 118:048102. [PMID: 28186815 DOI: 10.1103/physrevlett.118.048102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Indexed: 06/06/2023]
Abstract
Cells utilize waves of polymerizing actin to reshape their morphologies, which is central to physiological and pathological processes alike. Here, we force dorsal actin waves to propagate on one-dimensional domains with periodic boundary conditions, which results in striking spatiotemporal patterns with a clear signature of noise-driven dynamics. We show that these patterns can be very closely reproduced with a noise-driven active medium at coherence resonance.
Collapse
Affiliation(s)
- Erik Bernitt
- Institut für Biophysik, Universität Bremen, 28359 Bremen, Germany
| | | |
Collapse
|
15
|
Barnhart EL, Allard J, Lou SS, Theriot JA, Mogilner A. Adhesion-Dependent Wave Generation in Crawling Cells. Curr Biol 2016; 27:27-38. [PMID: 27939309 DOI: 10.1016/j.cub.2016.11.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/26/2016] [Accepted: 11/03/2016] [Indexed: 11/27/2022]
Abstract
Dynamic actin networks are excitable. In migrating cells, feedback loops can amplify stochastic fluctuations in actin dynamics, often resulting in traveling waves of protrusion. The precise contributions of various molecular and mechanical interactions to wave generation have been difficult to disentangle, in part due to complex cellular morphodynamics. Here we used a relatively simple cell type-the fish epithelial keratocyte-to define a set of mechanochemical feedback loops underlying actin network excitability and wave generation. Although keratocytes are normally characterized by the persistent protrusion of a broad leading edge, increasing cell-substrate adhesion strength results in waving protrusion of a short leading edge. We show that protrusion waves are due to fluctuations in actin polymerization rates and that overexpression of VASP, an actin anti-capping protein that promotes actin polymerization, switches highly adherent keratocytes from waving to persistent protrusion. Moreover, VASP localizes both to adhesion complexes and to the leading edge. Based on these results, we developed a mathematical model for protrusion waves in which local depletion of VASP from the leading edge by adhesions-along with lateral propagation of protrusion due to the branched architecture of the actin network and negative mechanical feedback from the cell membrane-results in regular protrusion waves. Consistent with our model simulations, we show that VASP localization at the leading edge oscillates, with VASP leading-edge enrichment greatest just prior to protrusion initiation. We propose that the mechanochemical feedbacks underlying wave generation in keratocytes may constitute a general module for establishing excitable actin dynamics in other cellular contexts.
Collapse
Affiliation(s)
- Erin L Barnhart
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jun Allard
- Department of Mathematics and Department of Physics, University of California, Irvine, Irvine, CA 92697, USA
| | - Sunny S Lou
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Julie A Theriot
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA.
| | - Alex Mogilner
- Courant Institute and Department of Biology, New York University, New York, NY 10012, USA.
| |
Collapse
|
16
|
Bretschneider T, Othmer HG, Weijer CJ. Progress and perspectives in signal transduction, actin dynamics, and movement at the cell and tissue level: lessons from Dictyostelium. Interface Focus 2016; 6:20160047. [PMID: 27708767 DOI: 10.1098/rsfs.2016.0047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Movement of cells and tissues is a basic biological process that is used in development, wound repair, the immune response to bacterial invasion, tumour formation and metastasis, and the search for food and mates. While some cell movement is random, directed movement stimulated by extracellular signals is our focus here. This involves a sequence of steps in which cells first detect extracellular chemical and/or mechanical signals via membrane receptors that activate signal transduction cascades and produce intracellular signals. These intracellular signals control the motile machinery of the cell and thereby determine the spatial localization of the sites of force generation needed to produce directed motion. Understanding how force generation within cells and mechanical interactions with their surroundings, including other cells, are controlled in space and time to produce cell-level movement is a major challenge, and involves many issues that are amenable to mathematical modelling.
Collapse
Affiliation(s)
- Till Bretschneider
- Warwick Systems Biology Centre , University of Warwick , Coventry CV4 7AL , UK
| | - Hans G Othmer
- School of Mathematics , University of Minnesota , Minneapolis, MN 55455 , USA
| | | |
Collapse
|
17
|
Verkhovsky AB. The mechanisms of spatial and temporal patterning of cell-edge dynamics. Curr Opin Cell Biol 2015; 36:113-21. [PMID: 26432504 DOI: 10.1016/j.ceb.2015.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/11/2015] [Accepted: 09/11/2015] [Indexed: 01/14/2023]
Abstract
Adherent cells migrate and change their shape by means of protrusion and retraction at their edges. When and where these activities occur defines the shape of the cell and the way it moves. Despite a great deal of knowledge about the structural organization, components, and biochemical reactions involved in protrusion and retraction, the origins of their spatial and temporal patterns are still poorly understood. Chemical signaling circuitry is believed to be an important source of patterning, but recent studies highlighted mechanisms based on physical forces, motion, and mechanical feedback.
Collapse
Affiliation(s)
- Alexander B Verkhovsky
- Laboratory of Physics of Living Matter, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
18
|
Razbin M, Falcke M, Benetatos P, Zippelius A. Mechanical properties of branched actin filaments. Phys Biol 2015; 12:046007. [PMID: 26040560 DOI: 10.1088/1478-3975/12/4/046007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leading edge cell membrane. Single filaments are modeled as worm-like chains, whose thermal bending fluctuations are restricted by the leading edge cell membrane, resulting in an effective force. Branching can increase the stiffness considerably; however the effect depends on branch point position and filament orientation, being most pronounced for intermediate tilt angles and intermediate branch point positions. We describe filament networks without cross-linkers to focus on the effect of branching. We use randomly positioned branch points, as generated in the process of treadmilling, and orientation distributions as measured in lamellipodia. These networks reproduce both the weak and strong force response of lamellipodia as measured in force-velocity experiments. We compare properties of branched and unbranched networks. The ratio of the network average of the force per branched filament to the average force per unbranched filament depends on the orientation distribution of the filaments. The ratio exhibits compression dependence and may go up to about 4.5 in networks with a narrow orientation distribution. With orientation distributions measured in lamellipodia, it is about two and essentially independent from network compression, graft elasticity and filament persistence length.
Collapse
Affiliation(s)
- Mohammadhosein Razbin
- Max Planck Institute for Dynamics and Selforganization, Am Fassberg 17 and Institute for Theoretical Physics, Georg August University, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
19
|
Schmeiser C, Winkler C. The flatness of Lamellipodia explained by the interaction between actin dynamics and membrane deformation. J Theor Biol 2015; 380:144-55. [PMID: 26002996 DOI: 10.1016/j.jtbi.2015.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 11/28/2022]
Abstract
The crawling motility of many cell types relies on lamellipodia, flat protrusions spreading on flat substrates but (on cells in suspension) also growing into three-dimensional space. Lamellipodia consist of a plasma membrane wrapped around an oriented actin filament meshwork. It is well known that the actin density is controlled by coordinated polymerization, branching, and capping processes, but the mechanisms producing the small aspect ratios of lamellipodia (hundreds of nm thickness vs. several μm lateral and inward extension) remain unclear. The main hypothesis of this work is a strong influence of the local geometry of the plasma membrane on the actin dynamics. This is motivated by observations of co-localization of proteins with I-BAR domains (like IRSp53) with polymerization and branching agents along the membrane. The I-BAR domains are known to bind to the membrane and to prefer and promote membrane curvature. This hypothesis is translated into a stochastic mathematical model where branching and capping rates, and polymerization speeds depend on the local membrane geometry and branching directions are influenced by the principal curvature directions. This requires the knowledge of the deformation of the membrane, being described in a quasi-stationary approximation by minimization of a modified Helfrich energy, subject to the actin filaments acting as obstacles. Simulations with this model predict pieces of flat lamellipodia without any prescribed geometric restrictions.
Collapse
Affiliation(s)
- Christian Schmeiser
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria; Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenberger Straße 69, 4040 Linz, Austria
| | - Christoph Winkler
- Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenberger Straße 69, 4040 Linz, Austria.
| |
Collapse
|
20
|
Holmes WR, Mata MA, Edelstein-Keshet L. Local perturbation analysis: a computational tool for biophysical reaction-diffusion models. Biophys J 2015; 108:230-6. [PMID: 25606671 PMCID: PMC4302203 DOI: 10.1016/j.bpj.2014.11.3457] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/21/2014] [Accepted: 11/06/2014] [Indexed: 12/27/2022] Open
Abstract
Diffusion and interaction of molecular regulators in cells is often modeled using reaction-diffusion partial differential equations. Analysis of such models and exploration of their parameter space is challenging, particularly for systems of high dimensionality. Here, we present a relatively simple and straightforward analysis, the local perturbation analysis, that reveals how parameter variations affect model behavior. This computational tool, which greatly aids exploration of the behavior of a model, exploits a structural feature common to many cellular regulatory systems: regulators are typically either bound to a membrane or freely diffusing in the interior of the cell. Using well-documented, readily available bifurcation software, the local perturbation analysis tracks the approximate early evolution of an arbitrarily large perturbation of a homogeneous steady state. In doing so, it provides a bifurcation diagram that concisely describes various regimes of the model's behavior, reducing the need for exhaustive simulations to explore parameter space. We explain the method and provide detailed step-by-step guides to its use and application.
Collapse
Affiliation(s)
- William R Holmes
- Department of Mathematics, University of Melbourne, Parkville, Australia; Center for Mathematical and Computational Biology, Center for Complex Biological Systems, Department of Mathematics, University of California Irvine, Irvine, California.
| | - May Anne Mata
- I. K. Barber School of Arts and Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; Department of Math, Physics, and Computer Science, University of the Philippines Mindanao, Davao City, Philippines
| | - Leah Edelstein-Keshet
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Jones CAR, Liang L, Lin D, Jiao Y, Sun B. The spatial-temporal characteristics of type I collagen-based extracellular matrix. SOFT MATTER 2014; 10:8855-8863. [PMID: 25287650 DOI: 10.1039/c4sm01772b] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Type I collagen abounds in mammalian extracellular matrix (ECM) and is crucial to many biophysical processes. While previous studies have mostly focused on bulk averaged properties, here we provide a comprehensive and quantitative spatial-temporal characterization of the microstructure of type I collagen-based ECM as the gelation temperature varies. The structural characteristics including the density and nematic correlation functions are obtained by analyzing confocal images of collagen gels prepared at a wide range of gelation temperatures (from 16 °C to 36 °C). As temperature increases, the gel microstructure varies from a "bundled" network with strong orientational correlation between the fibers to an isotropic homogeneous network with no significant orientational correlation, as manifested by the decaying of length scales in the correlation functions. We develop a kinetic Monte-Carlo collagen growth model to better understand how ECM microstructure depends on various environmental or kinetic factors. We show that the nucleation rate, growth rate, and an effective hydrodynamic alignment of collagen fibers fully determines the spatiotemporal fluctuations of the density and orientational order of collagen gel microstructure. Also the temperature dependence of the growth rate and nucleation rate follow the prediction of classical nucleation theory.
Collapse
|
22
|
Abstract
Cell motility driven by actin polymerization is pivotal to the development and survival of organisms and individual cells. Motile cells plated on flat substrates form membrane protrusions called lamellipodia. The protrusions repeatedly appear and retract in all directions. If a lamellipodium is stabilized and lasts for some time, it can take over the lead and determine the direction of cell motion. Protrusions traveling along the cell perimeter have also been observed. Their initiation is in some situations the effect of the dynamics of the pathway linking plasma membrane receptors to actin filament nucleation, e.g. in chemotaxis. However, lamellipodia are also formed in many cells incessantly during motion with a constant state of the signaling pathways upstream from nucleation promoting factors (NPFs), or spontaneously in resting cells. These observations strongly suggest protrusion formation can also be a consequence of the dynamics downstream from NPFs, with signaling setting the dynamic regime but not initiating the formation of individual protrusions. A quantitative mechanism for this kind of lamellipodium dynamics has not been suggested yet. Here, we present a model exhibiting excitable actin network dynamics. Individual lamellipodia form due to random supercritical filament nucleation events amplified by autocatalytic branching. They last for about 30 seconds to many minutes and are terminated by filament bundling, severing and capping. We show the relevance of the model mechanism for experimentally observed protrusion dynamics by reproducing in very good approximation the repetitive protrusion formation measured by Burnette et al. with respect to the velocities of leading edge protrusion and retrograde flow, oscillation amplitudes, periods and shape, as well as the phase relation between protrusion and retrograde flow. Our modeling results agree with the mechanism of actin bundle formation during lamellipodium retraction suggested by Burnette et al. and Koestler et al.
Collapse
|
23
|
Welf ES, Johnson HE, Haugh JM. Bidirectional coupling between integrin-mediated signaling and actomyosin mechanics explains matrix-dependent intermittency of leading-edge motility. Mol Biol Cell 2013; 24:3945-55. [PMID: 24152734 PMCID: PMC3861089 DOI: 10.1091/mbc.e13-06-0311] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A physicochemical model is used to describe the coupling of adhesion, cytoskeletal, and signaling dynamics during cell migration. Analysis of stochastic simulations predicts relationships between measurable quantities that reflect partitioning of stress between F-actin–bound adhesions, which act as a molecular clutch, and retrograde F-actin flow. Animal cell migration is a complex process characterized by the coupling of adhesion, cytoskeletal, and signaling dynamics. Here we model local protrusion of the cell edge as a function of the load-bearing properties of integrin-based adhesions, actin polymerization fostered by adhesion-mediated signaling, and mechanosensitive activation of RhoA that promotes myosin II–generated stress on the lamellipodial F-actin network. Analysis of stochastic model simulations illustrates how these pleiotropic functions of nascent adhesions may be integrated to govern temporal persistence and frequency of protrusions. The simulations give mechanistic insight into the documented effects of extracellular matrix density and myosin abundance, and they show characteristic, nonnormal distributions of protrusion duration times that are similar to those extracted from live-cell imaging experiments. Analysis of the model further predicts relationships between measurable quantities that reflect the partitioning of stress between tension on F-actin–bound adhesions, which act as a molecular clutch, and dissipation by retrograde F-actin flow.
Collapse
Affiliation(s)
- Erik S Welf
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | | | | |
Collapse
|
24
|
Bangasser BL, Odde DJ. Master equation-based analysis of a motor-clutch model for cell traction force. Cell Mol Bioeng 2013; 6:449-459. [PMID: 24465279 DOI: 10.1007/s12195-013-0296-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Microenvironmental mechanics play an important role in determining the morphology, traction, migration, proliferation, and differentiation of cells. A stochastic motor-clutch model has been proposed to describe this stiffness sensitivity. In this work, we present a master equation-based ordinary differential equation (ODE) description of the motor-clutch model, from which we derive an analytical expression to for a cell's optimum stiffness (i.e. the stiffness at which the traction force is maximal). This analytical expression provides insight into the requirements for stiffness sensing by establishing fundamental relationships between the key controlling cell-specific parameters. We find that the fundamental controlling parameters are the numbers of motors and clutches (constrained to be nearly equal), and the time scale of the on-off kinetics of the clutches (constrained to favor clutch binding over clutch unbinding). Both the ODE solution and the analytical expression show good agreement with Monte Carlo motor-clutch output, and reduce computation time by several orders of magnitude, which potentially enables long time scale behaviors (hours-days) to be studied computationally in an efficient manner. The ODE solution and the analytical expression may be incorporated into larger scale models of cellular behavior to bridge the gap from molecular time scales to cellular and tissue time scales.
Collapse
Affiliation(s)
- Benjamin L Bangasser
- Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church St. SE, Minneapolis, MN 55455
| | - David J Odde
- Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church St. SE, Minneapolis, MN 55455
| |
Collapse
|
25
|
Signaling networks and cell motility: a computational approach using a phase field description. J Math Biol 2013; 69:91-112. [PMID: 23835784 DOI: 10.1007/s00285-013-0704-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 05/27/2013] [Indexed: 10/26/2022]
Abstract
The processes of protrusion and retraction during cell movement are driven by the turnover and reorganization of the actin cytoskeleton. Within a reaction-diffusion model which combines processes along the cell membrane with processes within the cytoplasm a Turing type instability is used to form the necessary polarity to distinguish between cell front and rear and to initiate the formation of different organizational arrays within the cytoplasm leading to protrusion and retraction. A simplified biochemical network model for the activation of GTPase which accounts for the different dimensionality of the cell membrane and the cytoplasm is used for this purpose and combined with a classical Helfrich type model to account for bending and stiffness effects of the cell membrane. In addition streaming within the cytoplasm and the extracellular matrix is taken into account. Combining these phenomena allows to simulate the dynamics of cells and to reproduce the primary phenomenology of cell motility. The coupled model is formulated within a phase field approach and solved using adaptive finite elements.
Collapse
|
26
|
Singh AV, Patil R, Thombre DK, Gade WN. Micro-nanopatterning as tool to study the role of physicochemical properties on cell-surface interactions. J Biomed Mater Res A 2013; 101:3019-32. [PMID: 23559501 DOI: 10.1002/jbm.a.34586] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/27/2012] [Accepted: 12/31/2012] [Indexed: 11/09/2022]
Abstract
The current nano-biotechnologies interfacing synthetic materials and cell biology requires a better understanding of cell-surface interactions on the micro-to-nanometer scale. Cell-substrate interactions are mediated by the presence of proteins adsorbed from biological fluids to the substrate. The effect of nanotopography and surface chemistry on protein adsorption as well as the mediation effect on subsequent cellular communication with substratum is not well documented. This review discusses the role of physicochemical properties of cell-surface interactions and state-of-the-art methods currently available for micro-nanoscale surface fabrication and patterning. We also briefly discuss the current surface patterning techniques that allow the combination of a fine and independent control on nanotopography and chemistry to understand the effect of surface nanoscale substrate morphology on cell-surface interactions which has never been realized in previous reports. In addition, we discuss the influence of various chemical patterning and modulation of the nano-topography of surfaces on cell functionality and phenotype.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3590; Center for Biotechnology and Interdisciplinary Studies, Room 2145, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180
| | | | | | | |
Collapse
|
27
|
Effects of plasma membrane cholesterol level and cytoskeleton F-actin on cell protrusion mechanics. PLoS One 2013; 8:e57147. [PMID: 23451167 PMCID: PMC3579816 DOI: 10.1371/journal.pone.0057147] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 01/17/2013] [Indexed: 12/12/2022] Open
Abstract
Protrusions are deformations that form at the surface of living cells during biological activities such as cell migration. Using combined optical tweezers and fluorescent microscopy, we quantified the mechanical properties of protrusions in adherent human embryonic kidney cells in response to application of an external force at the cell surface. The mechanical properties of protrusions were analyzed by obtaining the associated force-length plots during protrusion formation, and force relaxation at constant length. Protrusion mechanics were interpretable by a standard linear solid (Kelvin) model, consisting of two stiffness parameters, k0 and k1 (with k0>k1), and a viscous coefficient. While both stiffness parameters contribute to the time-dependant mechanical behavior of the protrusions, k0 and k1 in particular dominated the early and late stages of the protrusion formation and elongation process, respectively. Lowering the membrane cholesterol content by 25% increased the k0 stiffness by 74%, and shortened the protrusion length by almost half. Enhancement of membrane cholesterol content by nearly two-fold increased the protrusion length by 30%, and decreased the k0 stiffness by nearly two-and-half-fold as compared with control cells. Cytoskeleton integrity was found to make a major contribution to protrusion mechanics as evidenced by the effects of F-actin disruption on the resulting mechanical parameters. Viscoelastic behavior of protrusions was further characterized by hysteresis and force relaxation after formation. The results of this study elucidate the coordination of plasma membrane composition and cytoskeleton during protrusion formation.
Collapse
|
28
|
Abstract
Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this ‘in silico’ actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation. There are two major ideas about how actin networks generate force against an obstacle: one is that the force comes directly from the elongation and bending of individual actin filaments against the surface of the obstacle; the other is that a growing actin gel can build up stress around the obstacle to squeeze it forward. Neither of the two models can explain why actin-propelled ellipsoidal beads move with equal bias toward long- and short-axes. We propose a hybrid model by combining those two ideas so that individual actin filaments are embedded into the boundary of a deformable actin gel. Simulations of this model show that the combined effects of pushing from individual filaments and squeezing from the actin network explain the observed bi-orientation of ellipsoidal beads as well as the curvature of trajectories of spherical beads and the force-velocity relation of actin networks.
Collapse
Affiliation(s)
| | - Alex Mogilner
- Department of Neurobiology, Physiology and Behavior and Department of Mathematics, University of California, Davis, Davis, California United States of America
- * E-mail:
| |
Collapse
|
29
|
Allard J, Mogilner A. Traveling waves in actin dynamics and cell motility. Curr Opin Cell Biol 2012; 25:107-15. [PMID: 22985541 DOI: 10.1016/j.ceb.2012.08.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 11/26/2022]
Abstract
Much of current understanding of cell motility arose from studying steady treadmilling of actin arrays. Recently, there have been a growing number of observations of a more complex, non-steady, actin behavior, including self-organized waves. It is becoming clear that these waves result from activation and inhibition feedbacks in actin dynamics acting on different scales, but the exact molecular nature of these feedbacks and the respective roles of biomechanics and biochemistry are still unclear. Here, we review recent advances achieved in experimental and theoretical studies of actin waves and discuss mechanisms and physiological significance of wavy protrusions.
Collapse
Affiliation(s)
- Jun Allard
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
30
|
Holmes WR, Carlsson AE, Edelstein-Keshet L. Regimes of wave type patterning driven by refractory actin feedback: transition from static polarization to dynamic wave behaviour. Phys Biol 2012; 9:046005. [PMID: 22785332 DOI: 10.1088/1478-3975/9/4/046005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Patterns of waves, patches, and peaks of actin are observed experimentally in many living cells. Models of this phenomenon have been based on the interplay between filamentous actin (F-actin) and its nucleation promoting factors (NPFs) that activate the Arp2/3 complex. Here we present an alternative biologically-motivated model for F-actin-NPF interaction based on properties of GTPases acting as NPFs. GTPases (such as Cdc42, Rac) are known to promote actin nucleation, and to have active membrane-bound and inactive cytosolic forms. The model is a natural extension of a previous mathematical mini-model of small GTPases that generates static cell polarization. Like other modellers, we assume that F-actin negative feedback shapes the observed patterns by suppressing the trailing edge of NPF-generated wave-fronts, hence localizing the activity spatially. We find that our NPF-actin model generates a rich set of behaviours, spanning a transition from static polarization to single pulses, reflecting waves, wave trains, and oscillations localized at the cell edge. The model is developed with simplicity in mind to investigate the interaction between nucleation promoting factor kinetics and negative feedback. It explains distinct types of pattern initiation mechanisms, and identifies parameter regimes corresponding to distinct behaviours. We show that weak actin feedback yields static patterning, moderate feedback yields dynamical behaviour such as travelling waves, and strong feedback can lead to wave trains or total suppression of patterning. We use a recently introduced nonlinear bifurcation analysis to explore the parameter space of this model and predict its behaviour with simulations validating those results.
Collapse
Affiliation(s)
- W R Holmes
- Department of Mathematics, The University of British Columbia, Vancouver, BC V6T 1Z2, Canada.
| | | | | |
Collapse
|
31
|
Zimmermann J, Brunner C, Enculescu M, Goegler M, Ehrlicher A, Käs J, Falcke M. Actin filament elasticity and retrograde flow shape the force-velocity relation of motile cells. Biophys J 2012; 102:287-95. [PMID: 22339865 DOI: 10.1016/j.bpj.2011.12.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 11/24/2022] Open
Abstract
Cells migrate through a crowded environment during processes such as metastasis or wound healing, and must generate and withstand substantial forces. The cellular motility responses to environmental forces are represented by their force-velocity relation, which has been measured for fish keratocytes but remains unexplained. Even pN opposing forces slow down lamellipodium motion by three orders of magnitude. At larger opposing forces, the retrograde flow of the actin network accelerates until it compensates for polymerization, and cell motion stalls. Subsequently, the lamellipodium adapts to the stalled state. We present a mechanism quantitatively explaining the cell's force-velocity relation and its changes upon application of drugs that hinder actin polymerization or actomyosin-based contractility. Elastic properties of filaments, close to the lamellipodium leading edge, and retrograde flow shape the force-velocity relation. To our knowledge, our results shed new light on how these migratory responses are regulated, and on the mechanics and structure of the lamellipodium.
Collapse
Affiliation(s)
- Juliane Zimmermann
- Mathematical Cell Physiology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
32
|
Hou Y, Hedberg S, Schneider IC. Differences in adhesion and protrusion properties correlate with differences in migration speed under EGF stimulation. BMC BIOPHYSICS 2012; 5:8. [PMID: 22577847 PMCID: PMC3414788 DOI: 10.1186/2046-1682-5-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/11/2012] [Indexed: 01/09/2023]
Abstract
Background Cell migration plays an essential role in many biological processes, such as cancer metastasis, wound healing and immune response. Cell migration is mediated through protrusion and focal adhesion (FA) assembly, maturation and disassembly. Epidermal growth factor (EGF) is known to enhance migration rate in many cell types; however it is not known how FA maturation, FA dynamics and protrusion dynamics are regulated during EGF-induced migration. Here we use total internal reflection fluorescence (TIRF) microscopy and image analysis to quantify FA properties and protrusion dynamics under different doses of EGF stimulation. Results EGF was found to broaden the distribution of cell migration rates, generating more fast and slow cells. Furthermore, groups based on EGF stimulation condition or cell migration speed were marked by characteristic signatures. When data was binned based on EGF stimulation conditions, FA intensity and FA number per cell showed the largest difference among stimulation groups. FA intensity decreased with increasing EGF concentration and FA number per cell was highest under intermediate stimulation conditions. No difference in protrusion behavior was observed. However, when data was binned based on cell migration speed, FA intensity and not FA number per cell showed the largest difference among groups. FA intensity was lower for fast migrating cells. Additionally, waves of protrusion tended to correlate with fast migrating cells. Conclusions Only a portion of the FA properties and protrusion dynamics that correlate with migration speed, correlate with EGF stimulation condition. Those that do not correlate with EGF stimulation condition constitute the most sensitive output for identifying why cells respond differently to EGF. The idea that EGF can both increase and decrease the migration speed of individual cells in a population has particular relevance to cancer metastasis where the microenvironment can select subpopulations based on some adhesion and protrusion characteristics, leading to a more invasive phenotype as would be seen if all cells responded like an “average” cell.
Collapse
Affiliation(s)
- Yue Hou
- Department of Chemical and Biological Engineering, Iowa State University, Iowa, USA.
| | | | | |
Collapse
|
33
|
Coupling actin flow, adhesion, and morphology in a computational cell motility model. Proc Natl Acad Sci U S A 2012; 109:6851-6. [PMID: 22493219 DOI: 10.1073/pnas.1203252109] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell migration is a pervasive process in many biology systems and involves protrusive forces generated by actin polymerization, myosin dependent contractile forces, and force transmission between the cell and the substrate through adhesion sites. Here we develop a computational model for cell motion that uses the phase-field method to solve for the moving boundary with physical membrane properties. It includes a reaction-diffusion model for the actin-myosin machinery and discrete adhesion sites which can be in a "gripping" or "slipping" mode and integrates the adhesion dynamics with the dynamics of the actin filaments, modeled as a viscous network. To test this model, we apply it to fish keratocytes, fast moving cells that maintain their morphology, and show that we are able to reproduce recent experimental results on actin flow and stress patterns. Furthermore, we explore the phase diagram of cell motility by varying myosin II activity and adhesion strength. Our model suggests that the pattern of the actin flow inside the cell, the cell velocity, and the cell morphology are determined by the integration of actin polymerization, myosin contraction, adhesion forces, and membrane forces.
Collapse
|
34
|
Ryan GL, Petroccia HM, Watanabe N, Vavylonis D. Excitable actin dynamics in lamellipodial protrusion and retraction. Biophys J 2012; 102:1493-502. [PMID: 22500749 DOI: 10.1016/j.bpj.2012.03.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 02/19/2012] [Accepted: 03/02/2012] [Indexed: 12/28/2022] Open
Abstract
Many animal cells initiate crawling by protruding lamellipodia, consisting of a dense network of actin filaments, at their leading edge. We imaged XTC cells that exhibit flat lamellipodia on poly-L-lysine-coated coverslips. Using active contours, we tracked the leading edge and measured the total amount of F-actin by summing the pixel intensities within a 5-μm band. We observed protrusion and retraction with period 130-200 s and local wavelike features. Positive (negative) velocities correlated with minimum (maximum) integrated actin concentration. Approximately constant retrograde flow indicated that protrusions and retractions were driven by fluctuations of the actin polymerization rate. We present a model of these actin dynamics as an excitable system in which a diffusive, autocatalytic activator causes actin polymerization; F-actin accumulation in turn inhibits further activator accumulation. Simulations of the model reproduced the pattern of actin polymerization seen in experiments. To explore the model's assumption of an autocatalytic activation mechanism, we imaged cells expressing markers for both F-actin and the p21 subunit of the Arp2/3 complex. We found that integrated Arp2/3-complex concentrations spike several seconds before spikes of F-actin concentration. This suggests that the Arp2/3 complex participates in an activation mechanism that includes additional diffuse components. Response of cells to stimulation by fetal calf serum could be reproduced by the model, further supporting the proposed dynamical picture.
Collapse
Affiliation(s)
- Gillian L Ryan
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania, USA
| | | | | | | |
Collapse
|
35
|
Ryan GL, Watanabe N, Vavylonis D. A review of models of fluctuating protrusion and retraction patterns at the leading edge of motile cells. Cytoskeleton (Hoboken) 2012; 69:195-206. [PMID: 22354870 DOI: 10.1002/cm.21017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/30/2011] [Accepted: 02/03/2012] [Indexed: 01/03/2023]
Abstract
A characteristic feature of motile cells as they undergo a change in motile behavior is the development of fluctuating exploratory motions of the leading edge, driven by actin polymerization. We review quantitative models of these protrusion and retraction phenomena. Theoretical studies have been motivated by advances in experimental and computational methods that allow controlled perturbations, single molecule imaging, and analysis of spatiotemporal correlations in microscopic images. To explain oscillations and waves of the leading edge, most theoretical models propose nonlinear interactions and feedback mechanisms among different components of the actin cytoskeleton system. These mechanisms include curvature-sensing membrane proteins, myosin contraction, and autocatalytic biochemical reaction kinetics. We discuss how the combination of experimental studies with modeling promises to quantify the relative importance of these biochemical and biophysical processes at the leading edge and to evaluate their generality across cell types and extracellular environments.
Collapse
Affiliation(s)
- Gillian L Ryan
- Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | | | | |
Collapse
|
36
|
Enculescu M, Falcke M. Modeling morphodynamic phenotypes and dynamic regimes of cell motion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 736:337-58. [PMID: 22161339 DOI: 10.1007/978-1-4419-7210-1_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many cellular processes and signaling pathways converge onto cell morphology and cell motion, which share important components. The mechanisms used for propulsion could also be responsible for shape changes, if they are capable of generating the rich observed variety of dynamic regimes. Additionally, the analysis of cell shape changes in space and time promises insight into the state of the cytoskeleton and signaling pathways controlling it. While this has been obvious for some time by now, little effort has been made to systematically and quantitatively explore this source of information. First pioneering experimental work revealed morphodynamic phenotypes which can be associated with dynamic regimes like oscillations and excitability. Here, we review the current state of modeling of morphodynamic phenotypes, the experimental results and discuss the ideas on the mechanisms driving shape changes which are suggested by modeling.
Collapse
Affiliation(s)
- Mihaela Enculescu
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | | |
Collapse
|
37
|
Doubrovinski K, Kruse K. Cell motility resulting from spontaneous polymerization waves. PHYSICAL REVIEW LETTERS 2011; 107:258103. [PMID: 22243118 DOI: 10.1103/physrevlett.107.258103] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Indexed: 05/31/2023]
Abstract
The crawling of cells on a substrate is in many cases driven by the actin cytoskeleton. How actin filaments and associated proteins are organized to generate directed motion is still poorly understood. Recent experimental observations suggest that spontaneous cytoskeletal waves might orchestrate the actin-filament network to produce directed motion. We investigate this possibility by studying a mean-field description of treadmilling filaments interacting with nucleating proteins, a system that is known to self-organize into waves. Confining the system by a boundary that shares essential features of membranes, we find that spontaneous waves can generate directional motion. We also find that it can produce lateral waves along the confining membrane as are observed in spreading cells.
Collapse
Affiliation(s)
- K Doubrovinski
- Theoretische Physik, Universität des Saarlandes, 66041 Saarbrücken, Germany
| | | |
Collapse
|
38
|
Lai T, Chiam KH. Mechanochemical model of cell migration on substrates of varying stiffness. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:061907. [PMID: 22304116 DOI: 10.1103/physreve.84.061907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/08/2011] [Indexed: 05/31/2023]
Abstract
Cells propel themselves along a substrate by organizing structures at the leading edge called lamellipodia that contain the actin network, myosin, integrin, and other proteins. In this article, we describe a quantitative model that couples the response of stretch-sensitive proteins in the lamellipodia to the dynamics of the actin cytoskeleton, therefore allowing the cell to respond to different substrate stiffnesses. Using this model, we predict the various phases of dynamics possible, including continuous protrusion, unstable retractions leading to ruffling, and periodic protrusion-retraction cycles. We explain the necessary conditions for each type of migratory behavior to occur. In particular, we show that, for periodic protrusion-retraction cycles to occur, the stiffness of the substrate must be high, the myosin-dependent maturation rate of nascent to focal adhesions must be high, and the myosin-independent integrin activation rate must be low. In addition, we also predict the dynamics expected at a given substrate stiffness, leading to a quantitative explanation of experimental data that showed that periodic protrusion-retraction cycles disappear when cells are placed on soft substrates. We also suggest experiments with downregulating α actinin and/or talin and upregulating p130Cas and make predictions on what types of migratory dynamics will be observed.
Collapse
Affiliation(s)
- Tanny Lai
- A*STAR Institute of High Performance Computing, Singapore and Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | | |
Collapse
|
39
|
Theoretical model for cellular shapes driven by protrusive and adhesive forces. PLoS Comput Biol 2011; 7:e1001127. [PMID: 21573201 PMCID: PMC3088653 DOI: 10.1371/journal.pcbi.1001127] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 03/31/2011] [Indexed: 01/27/2023] Open
Abstract
The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia) have very different morphologies, as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix. Cells have highly varied and dynamic shapes, which are determined by internal forces generated by the cytoskeleton. These forces include protrusive forces due to the formation of new internal fibers and forces produced due to attachment of the cell to an external substrate. A long standing challenge is to explain how the myriad components of the cytoskeleton self-organize to form the observed shapes of cells. We present here a theoretical study of the shapes of cells that are driven only by protrusive forces of two types; one is the force due to polymerization of actin filaments which acts as an internal pressure on the membrane, and the second is the force due to adhesion between the membrane and external substrate. The key property is that both forces are localized on the cell membrane by protein complexes that have convex spontaneous curvature. This leads to a positive feedback that destabilizes the uniform cell shape and induces the spontaneous formation of patterns. We compare the resulting patterns to observed cellular shapes and find good agreement, which allows us to explain some of the puzzling dependencies of cell shapes on the properties of the surrounding matrix.
Collapse
|
40
|
Neilson MP, Veltman DM, van Haastert PJM, Webb SD, Mackenzie JA, Insall RH. Chemotaxis: a feedback-based computational model robustly predicts multiple aspects of real cell behaviour. PLoS Biol 2011; 9:e1000618. [PMID: 21610858 PMCID: PMC3096608 DOI: 10.1371/journal.pbio.1000618] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 04/07/2011] [Indexed: 11/19/2022] Open
Abstract
The mechanism of eukaryotic chemotaxis remains unclear despite intensive study. The most frequently described mechanism acts through attractants causing actin polymerization, in turn leading to pseudopod formation and cell movement. We recently proposed an alternative mechanism, supported by several lines of data, in which pseudopods are made by a self-generated cycle. If chemoattractants are present, they modulate the cycle rather than directly causing actin polymerization. The aim of this work is to test the explanatory and predictive powers of such pseudopod-based models to predict the complex behaviour of cells in chemotaxis. We have now tested the effectiveness of this mechanism using a computational model of cell movement and chemotaxis based on pseudopod autocatalysis. The model reproduces a surprisingly wide range of existing data about cell movement and chemotaxis. It simulates cell polarization and persistence without stimuli and selection of accurate pseudopods when chemoattractant gradients are present. It predicts both bias of pseudopod position in low chemoattractant gradients and--unexpectedly--lateral pseudopod initiation in high gradients. To test the predictive ability of the model, we looked for untested and novel predictions. One prediction from the model is that the angle between successive pseudopods at the front of the cell will increase in proportion to the difference between the cell's direction and the direction of the gradient. We measured the angles between pseudopods in chemotaxing Dictyostelium cells under different conditions and found the results agreed with the model extremely well. Our model and data together suggest that in rapidly moving cells like Dictyostelium and neutrophils an intrinsic pseudopod cycle lies at the heart of cell motility. This implies that the mechanism behind chemotaxis relies on modification of intrinsic pseudopod behaviour, more than generation of new pseudopods or actin polymerization by chemoattractants.
Collapse
Affiliation(s)
| | | | | | - Steven D. Webb
- Department of Mathematics and Statistics,
University of Strathclyde, Glasgow, United Kingdom
| | - John A. Mackenzie
- Department of Mathematics and Statistics,
University of Strathclyde, Glasgow, United Kingdom
| | | |
Collapse
|
41
|
Zimmermann J, Enculescu M, Falcke M. Leading-edge-gel coupling in lamellipodium motion. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:051925. [PMID: 21230518 DOI: 10.1103/physreve.82.051925] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 10/08/2010] [Indexed: 05/30/2023]
Abstract
We present a model for actin-based motility that combines the dynamics of the semiflexible region at the leading edge of the lamellipodium with actomyosin gel properties in the bulk described by the theory of active polar gels. We calculate the velocity of the lamellipodium determined by the interaction of the gel and adhesion with forces in the semiflexible region. The stationary concave force-velocity relation of the model reproduces experimental results. We suggest that it is determined by retrograde flow at small forces and gel formation and retrograde flow at large ones. The variety of dynamic regimes of the semiflexible region reproducing experimentally observed morphodynamics is conserved when we couple the leading edge to the gel.
Collapse
Affiliation(s)
- Juliane Zimmermann
- Mathematical Cell Physiology, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany.
| | | | | |
Collapse
|