1
|
Sharifian Gh M. Recent Experimental Developments in Studying Passive Membrane Transport of Drug Molecules. Mol Pharm 2021; 18:2122-2141. [PMID: 33914545 DOI: 10.1021/acs.molpharmaceut.1c00009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability to measure the passive membrane permeation of drug-like molecules is of fundamental biological and pharmaceutical importance. Of significance, passive diffusion across the cellular membranes plays an effective role in the delivery of many pharmaceutical agents to intracellular targets. Hence, approaches for quantitative measurement of membrane permeability have been the topics of research for decades, resulting in sophisticated biomimetic systems coupled with advanced techniques. In this review, recent developments in experimental approaches along with theoretical models for quantitative and real-time analysis of membrane transport of drug-like molecules through mimetic and living cell membranes are discussed. The focus is on time-resolved fluorescence-based, surface plasmon resonance, and second-harmonic light scattering approaches. The current understanding of how properties of the membrane and permeant affect the permeation process is discussed.
Collapse
Affiliation(s)
- Mohammad Sharifian Gh
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
2
|
Tsemperouli M, Amstad E, Sakai N, Matile S, Sugihara K. Black Lipid Membranes: Challenges in Simultaneous Quantitative Characterization by Electrophysiology and Fluorescence Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8748-8757. [PMID: 31244250 DOI: 10.1021/acs.langmuir.9b00673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Horizontal black lipid membranes (BLMs) enable optical microscopy to be combined with the electrophysiological measurements for studying ion channels, peptide pores, and ionophores. However, a careful literature review reveals that simultaneous fluorescence and electrical recordings in horizontal BLMs have been rarely reported for an unclear reason, whereas many works employ bright-field microscopy instead of fluorescence microscopy or perform fluorescence imaging and electrical measurements one after another separately without truly exploiting the advantage of the combined setup. In this work, the major causes related to the simultaneous electrical and fluorescence recordings in horizontal BLMs are identified, and several solutions to counteract the issue are also proposed.
Collapse
Affiliation(s)
- Maria Tsemperouli
- School of Chemistry and Biochemistry , University of Geneva , CH-1211 Geneva , Switzerland
| | - Esther Amstad
- Institute of Materials , Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne , Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry , University of Geneva , CH-1211 Geneva , Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry , University of Geneva , CH-1211 Geneva , Switzerland
| | - Kaori Sugihara
- School of Chemistry and Biochemistry , University of Geneva , CH-1211 Geneva , Switzerland
| |
Collapse
|
3
|
Šakanovič A, Hodnik V, Anderluh G. Surface Plasmon Resonance for Measuring Interactions of Proteins with Lipids and Lipid Membranes. Methods Mol Biol 2019; 2003:53-70. [PMID: 31218613 DOI: 10.1007/978-1-4939-9512-7_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Surface plasmon resonance (SPR) is an established method for studying molecular interactions in real time. It allows obtaining qualitative and quantitative data on interactions of proteins with lipids or lipid membranes. In most of the approaches a lipid membrane or a membrane-mimetic surface is prepared on the surface of Biacore (GE Healthcare) sensor chips HPA or L1, and the studied protein is then injected across the surface. Here we provide an overview of SPR in protein-lipid and protein-membrane interactions, different approaches described in the literature and a general protocol for conducting an SPR experiment including lipid membranes, together with some experimental considerations.
Collapse
Affiliation(s)
- Aleksandra Šakanovič
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.,Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Heating treatments affect the thermal behaviour of doxorubicin loaded in PEGylated liposomes. Int J Pharm 2017; 534:81-88. [PMID: 28993166 DOI: 10.1016/j.ijpharm.2017.09.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 11/23/2022]
Abstract
Doxil® is a stealth marketed PEGylated liposomal formulation, containing the anticancer drug doxorubicin. After loading via a pH gradient, fibrillar supramolecular structures of doxorubicin sulfate originates inside the core of the liposomes. Recently, the crystallinity of doxorubicin sulfate has been confirmed by high-resolution calorimetry. However, no detailed information are available on the nature of doxorubicin sulfate nanocrystals and on the effect of different thermal treatments. Thus, the aim of this work was to characterize the thermal behaviour of Doxil® in comparison to the unloaded liposomes using microcalorimetry, dynamic light scattering and high-resolution ultrasound spectroscopy (HR-US). Different thermal programmes were applied with the aim to highlight the effect of the treatments on the formulation. The used techniques confirmed the ordered state of doxorubicin nanocrystals inside PEGylated liposomes. Particularly, microcalorimetry and HR-US highlighted the changes in the thermal behaviour of the drug under different heating programmes. Doxorubicin nanocrystals were found to be stable after heating up to 80°C, but an irreversible thermal behaviour was observed after a prolonged heating at elevated temperature (2h at 80°C). The non-reversibility could be related to the formation of a different ordered structure and enhanced by the slight leakage of the drug occurring after a prolonged heating.
Collapse
|
5
|
Wambo TO, Rodriguez RA, Chen LY. Computing osmotic permeabilities of aquaporins AQP4, AQP5, and GlpF from near-equilibrium simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1310-1316. [PMID: 28455098 DOI: 10.1016/j.bbamem.2017.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 12/01/2022]
Abstract
Measuring or computing the single-channel permeability of aquaporins/aquaglyceroporins (AQPs) has long been a challenge. The measured values scatter over an order of magnitude but the corresponding Arrhenius activation energies converge in the current literature. Osmotic flux through an AQP was simulated as water current forced through the channel by kilobar hydraulic pressure or theoretically approximated as single-file diffusion. In this paper, we report large scale simulations of osmotic current under sub M gradient through three AQPs (water channels AQP4 and AQP5 and glycerol-water channel GlpF) using the mature particle mesh Ewald technique (PME) for which the established force fields have been optimized with known accuracy. These simulations were implemented with hybrid periodic boundary conditions devised to avoid the artifactitious mixing across the membrane in a regular PME simulation. The computed single-channel permeabilities at 5°C and 25°C are in agreement with recently refined experiments on GlpF. The Arrhenius activation energies extracted from our simulations for all the three AQPs agree with the in vitro measurements. The single-file diffusion approximations from our large-scale simulations are consistent with the current literature on smaller systems. From these unambiguous agreements among the in vitro and in silico studies, we observe the quantitative accuracy of the all-atom force fields of the current literature for water-channel biology. We also observe that AQP4, that is particularly rich in the central nervous system, is more efficient in water conduction and more temperature-sensitive than other water-only channels (excluding glycerol channels that also conduct water when not inhibited by glycerol).
Collapse
Affiliation(s)
- Thierry O Wambo
- Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Roberto A Rodriguez
- Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Liao Y Chen
- Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
6
|
Yu L, Rodriguez RA, Chen LL, Chen LY, Perry G, McHardy SF, Yeh CK. 1,3-propanediol binds deep inside the channel to inhibit water permeation through aquaporins. Protein Sci 2016; 25:433-41. [PMID: 26481430 DOI: 10.1002/pro.2832] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 01/10/2023]
Abstract
Aquaporins and aquaglyceroporins (AQPs) are membrane channel proteins responsible for transport of water and for transport of glycerol in addition to water across the cell membrane, respectively. They are expressed throughout the human body and also in other forms of life. Inhibitors of human AQPs have been sought for therapeutic treatment for various medical conditions including hypertension, refractory edema, neurotoxic brain edema, and so forth. Conducting all-atom molecular dynamics simulations, we computed the binding affinity of acetazolamide to human AQP4 that agrees closely with in vitro experiments. Using this validated computational method, we found that 1,3-propanediol (PDO) binds deep inside the AQP4 channel to inhibit that particular aquaporin efficaciously. Furthermore, we used the same method to compute the affinities of PDO binding to four other AQPs and one aquaglyceroporin whose atomic coordinates are available from the protein data bank (PDB). For bovine AQP1, human AQP2, AQP4, AQP5, and Plasmodium falciparum PfAQP whose structures were resolved with high resolution, we obtained definitive predictions on the PDO dissociation constant. For human AQP1 whose PDB coordinates are less accurate, we estimated the dissociation constant with a rather large error bar. Taking into account the fact that PDO is generally recognized as safe by the US FDA, we predict that PDO can be an effective diuretic which directly modulates water flow through the protein channels. It should be free from the serious side effects associated with other diuretics that change the hydro-homeostasis indirectly by altering the osmotic gradients.
Collapse
Affiliation(s)
- Lili Yu
- Department of Physics, University of Texas at San Antonio, San Antonio, Texas, 78249
| | - Roberto A Rodriguez
- Department of Physics, University of Texas at San Antonio, San Antonio, Texas, 78249
| | - L Laurie Chen
- Medical School, University of Texas Southwestern Medical Center, Dallas, Texas, 75390
| | - Liao Y Chen
- Department of Physics, University of Texas at San Antonio, San Antonio, Texas, 78249
| | - George Perry
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, 78249
| | - Stanton F McHardy
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, 78249
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio & GRECC, South Texas Veterans Health Care System, San Antonio, Texas 78229
| |
Collapse
|
7
|
Bunker A, Magarkar A, Viitala T. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2334-2352. [DOI: 10.1016/j.bbamem.2016.02.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/22/2023]
|
8
|
Tabaei SR, Gillissen JJJ, Block S, Höök F, Cho NJ. Hydrodynamic Propulsion of Liposomes Electrostatically Attracted to a Lipid Membrane Reveals Size-Dependent Conformational Changes. ACS NANO 2016; 10:8812-8820. [PMID: 27603118 DOI: 10.1021/acsnano.6b04572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The efficiency of lipid nanoparticle uptake across cellular membranes is strongly dependent on the very first interaction step. Detailed understanding of this step is in part hampered by the large heterogeneity in the physicochemical properties of lipid nanoparticles, such as liposomes, making conventional ensemble-averaging methods too blunt to address details of this complex process. Here, we contribute a means to explore whether individual liposomes become deformed upon binding to fluid cell-membrane mimics. This was accomplished by using hydrodynamic forces to control the propulsion of nanoscale liposomes electrostatically attracted to a supported lipid bilayer. In this way, the size of individual liposomes could be determined by simultaneously measuring both their individual drift velocity and diffusivity, revealing that for a radius of ∼45 nm, a close agreement with dynamic light scattering data was observed, while larger liposomes (radius ∼75 nm) displayed a significant deformation unless composed of a gel-phase lipid. The relevance of being able to extract this type of information is discussed in the context of membrane fusion and cellular uptake.
Collapse
Affiliation(s)
- Seyed R Tabaei
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Jurriaan J J Gillissen
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
| | - Stephan Block
- Department of Applied Physics, Chalmers University of Technology , SE-412 96 Göteborg, Sweden
| | - Fredrik Höök
- Department of Applied Physics, Chalmers University of Technology , SE-412 96 Göteborg, Sweden
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive, 637553, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, 637459, Singapore
| |
Collapse
|
9
|
Tabaei SR, Gillissen JJJ, Kim MC, Ho JCS, Liedberg B, Parikh AN, Cho NJ. Brownian Dynamics of Electrostatically Adhering Small Vesicles to a Membrane Surface Induces Domains and Probes Viscosity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5445-5450. [PMID: 27164321 DOI: 10.1021/acs.langmuir.6b00985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Using single-particle tracking, we investigate the interaction of small unilamellar vesicles (SUVs) that are electrostatically tethered to the freestanding membrane of a giant unilamellar vesicle (GUV). We find that the surface mobility of the GUV-riding SUVs is Brownian, insensitive to the bulk viscosity, vesicle size, and vesicle fluidity but strongly altered by the viscosity of the underlying membrane. Analyzing the diffusional behavior of SUVs within the Saffman-Delbrück model for the dynamics of membrane inclusions supports the notion that the mobility of the small vesicles is coupled to that of dynamically induced lipid clusters within the target GUV membrane. The reversible binding also offers a nonperturbative means for measuring the viscosity of biomembranes, which is an important parameter in cell physiology and function.
Collapse
Affiliation(s)
- Seyed R Tabaei
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore
| | - Jurriaan J J Gillissen
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore
| | - Min Chul Kim
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore
| | - James C S Ho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore
| | - Bo Liedberg
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore
| | - Atul N Parikh
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore
- Department of Biomedical Engineering and Department of Chemical Engineering and Materials Science, University of California , Davis, California 95616, United States
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue 639798, Singapore
- Centre for Biomimetic Sensor Science, Nanyang Technological University , 50 Nanyang Drive 637553, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive 637459, Singapore
| |
Collapse
|
10
|
Yu L, Villarreal OD, Chen LL, Chen LY. 1,3-Propanediol binds inside the water-conducting pore of aquaporin 4: Does this efficacious inhibitor have sufficient potency? ACTA ACUST UNITED AC 2016; 2:91-98. [PMID: 27213050 DOI: 10.15761/jsin.1000117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Among the thirteen types of water channel proteins, aquaporins (AQPs), which play various essential roles in human physiology, AQP4 is richly expressed in cells of the central nervous system and implicated in pathological conditions such as brain edema. Therefore, researchers have been looking for ways to inhibit AQP4's water-conducting function. Many small molecules have been investigated for their interactions with the residues that form the AQP4 channel entry vestibule on the extracellular side and their interruption of waters entering into the conducting pore. Conducting all-atom simulations on the basis of CHARMM 36 force field, we study one such inhibitor, 5-acetamido-1,3,4-thiadiazole-2-sulfonamide (AZM), to achieve quantitative agreement between the computed and the experimentally measured values of AZM-AQP4 binding affinity. Using the same method, we examine the possibility of plugging up the AQP4 channel around the Asn-Pro-Ala motifs located near the channel center because a small molecule bound there would totally occlude water conduction through AQP4. We compute the binding affinities of 1,2-ethanediol (EDO) and 1,3-propanediol (PDO) inside the AQP4 conducting pore and identify the specificities of the interactions. The EDO-AQP4 interaction is weak with a dissociation constant of 80 mM. The PDO-AQP4 interaction is rather strong with a dissociation constant of 328 μM, which indicates that PDO is an efficacious AQP4 inhibitor with sufficiently high potency. Considering the fact that PDO is classified by the US Food and Drug Administration as generally safe, we predict that 1,3-propanediol could be an effective drug for brain edema and other AQP4-correlated neurological conditions.
Collapse
Affiliation(s)
- Lili Yu
- Department of Physics, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Oscar D Villarreal
- Department of Physics, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - L Laurie Chen
- Medical School, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Liao Y Chen
- Department of Physics, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| |
Collapse
|
11
|
Beitz E, Golldack A, Rothert M, von Bülow J. Challenges and achievements in the therapeutic modulation of aquaporin functionality. Pharmacol Ther 2015; 155:22-35. [PMID: 26277280 DOI: 10.1016/j.pharmthera.2015.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aquaporin (AQP) water and solute channels have basic physiological functions throughout the human body. AQP-facilitated water permeability across cell membranes is required for rapid reabsorption of water from pre-urine in the kidneys and for sustained near isosmolar water fluxes e.g. in the brain, eyes, inner ear, and lungs. Cellular water permeability is further connected to cell motility. AQPs of the aquaglyceroporin subfamily are necessary for lipid degradation in adipocytes and glycerol uptake into the liver, as well as for skin moistening. Modulation of AQP function is desirable in several pathophysiological situations, such as nephrogenic diabetes insipidus, Sjögren's syndrome, Menière's disease, heart failure, or tumors to name a few. Attempts to design or to find effective small molecule AQP inhibitors have yielded only a few hits. Challenges reside in the high copy number of AQP proteins in the cell membranes, and spatial restrictions in the protein structure. This review gives an overview on selected physiological and pathophysiological conditions in which modulation of AQP functions appears beneficial and discusses first achievements in the search of drug-like AQP inhibitors.
Collapse
Affiliation(s)
- Eric Beitz
- Pharmaceutical and Medicinal Chemistry, University of Kiel, Germany.
| | - André Golldack
- Pharmaceutical and Medicinal Chemistry, University of Kiel, Germany
| | - Monja Rothert
- Pharmaceutical and Medicinal Chemistry, University of Kiel, Germany
| | - Julia von Bülow
- Pharmaceutical and Medicinal Chemistry, University of Kiel, Germany
| |
Collapse
|
12
|
Tabaei SR, Cho NJ. Lamellar sheet exfoliation of single lipid vesicles by a membrane-active peptide. Chem Commun (Camb) 2015; 51:10272-5. [DOI: 10.1039/c5cc02769a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using total internal fluorescence microscopy, highly parallel measurements of single lipid vesicles unexpectedly reveal that a small fraction of vesicles rupture in multiple discrete steps when destabilized by a membrane-active peptide which is in contrast to classical solubilization models.
Collapse
Affiliation(s)
- Seyed R. Tabaei
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| | - N. J. Cho
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore
- Centre for Biomimetic Sensor Science
- Nanyang Technological University
| |
Collapse
|
13
|
Gleisner M, Mey I, Barbot M, Dreker C, Meinecke M, Steinem C. Driving a planar model system into the 3(rd) dimension: generation and control of curved pore-spanning membrane arrays. SOFT MATTER 2014; 10:6228-6236. [PMID: 25012509 DOI: 10.1039/c4sm00702f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The generation of a regular array of micrometre-sized pore-spanning membranes that protrude from the underlying surface as a function of osmotic pressure is reported. Giant unilamellar vesicles are spread onto non-functionalized Si/SiO(2) substrates containing a highly ordered array of cavities with pore diameters of 850 nm, an interpore distance of 4 μm and a pore depth of 10 μm. The shape of the resulting pore-spanning membranes is controlled by applying an osmotic pressure difference between the bulk solution and the femtoliter-sized cavity underneath each membrane. By applying Young-Laplace's law assuming moderate lateral membrane tensions, the response of the membranes to the osmotic pressure difference can be theoretically well described. Protruded pore-spanning membranes containing the receptor lipid PIP(2) specifically bind the ENTH domain of epsin resulting in an enlargement of the protrusions and disappearance as a result of ENTH-domain induced defects in the membranes. These results are discussed in the context of an ENTH-domain induced reduction of lateral membrane tension and formation of defects as a result of helix insertion of the protein in the bilayer.
Collapse
Affiliation(s)
- Martin Gleisner
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Jing Y, Trefna H, Persson M, Kasemo B, Svedhem S. Formation of supported lipid bilayers on silica: relation to lipid phase transition temperature and liposome size. SOFT MATTER 2014; 10:187-195. [PMID: 24651504 DOI: 10.1039/c3sm50947h] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
DPPC liposomes ranging from 90 nm to 160 nm in diameter were prepared and used for studies of the formation of supported lipid membranes on silica (SiO2) at temperatures below and above the gel to liquid-crystalline phase transition temperature (Tm = 41 °C), and by applying temperature gradients through Tm. The main method was the quartz crystal microbalance with dissipation (QCM-D) technique. It was found that liposomes smaller than 100 nm spontaneously rupture on the silica surface when deposited at a temperature above Tm and at a critical surface coverage, following a well-established pathway. In contrast, DPPC liposomes larger than 160 nm do not rupture on the surface when adsorbed at 22 °C or at 50 °C. However, when liposomes of this size are first adsorbed at 22 °C and at a high enough surface coverage, after which they are subject to a constant temperature gradient up to 50 °C, they rupture and fuse to a bilayer, a process that is initiated around Tm. The results are discussed and interpreted considering a combination of effects derived from liposome-surface and liposome-liposome interactions, different softness/stiffness and shape of liposomes below and above Tm, the dynamics and thermal activation of the bilayers occurring around Tm and (for liposomes containing 33% of NaCl) osmotic pressure. These findings are valuable both for preparation of supported lipid bilayer cell membrane mimics and for designing temperature-responsive material coatings.
Collapse
Affiliation(s)
- Yujia Jing
- Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
15
|
Székács I, Kaszás N, Gróf P, Erdélyi K, Szendrő I, Mihalik B, Pataki Á, Antoni FA, Madarász E. Optical waveguide lightmode spectroscopic techniques for investigating membrane-bound ion channel activities. PLoS One 2013; 8:e81398. [PMID: 24339925 PMCID: PMC3858217 DOI: 10.1371/journal.pone.0081398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/13/2013] [Indexed: 11/18/2022] Open
Abstract
Optical waveguide lightmode spectroscopic (OWLS) techniques were probed for monitoring ion permeation through channels incorporated into artificial lipid environment. A novel sensor set-up was developed by depositing liposomes or cell-derived membrane fragments onto hydrophilic polytetrafluoroethylene (PTFE) membrane. The fibrous material of PTFE membrane could entrap lipoid vesicles and the water-filled pores provided environment for the hydrophilic domains of lipid-embedded proteins. The sensor surface was kept clean from the lipid holder PTFE membrane by a water- and ion-permeable polyethylene terephthalate (PET) mesh. The sensor set-up was tested with egg yolk lecithin liposomes containing gramicidin ion channels and with cell-derived membrane fragments enriched in GABA-gated anion channels. The method allowed monitoring the move of Na+ and organic cations through gramicidin channels and detecting the Cl–-channel functions of the (α5β2γ2) GABAA receptor in the presence or absence of GABA and the competitive GABA-blocker bicuculline.
Collapse
Affiliation(s)
- Inna Székács
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| | - Nóra Kaszás
- Semmelweis University, Department of Biophysics and Radiation Biology, Budapest, Hungary
| | - Pál Gróf
- Semmelweis University, Department of Biophysics and Radiation Biology, Budapest, Hungary
| | | | | | | | | | | | - Emilia Madarász
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
16
|
Kumar K, Dahlin AB, Sannomiya T, Kaufmann S, Isa L, Reimhult E. Embedded plasmonic nanomenhirs as location-specific biosensors. NANO LETTERS 2013; 13:6122-6129. [PMID: 24188470 DOI: 10.1021/nl403445f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We introduce a novel optical biosensing platform that exploits the asymmetry of nanostructures embedded in nanocavities, termed nanomenhirs. Upon oblique illumination using plane polarized white light, two plasmonic resonances attributable to the bases and the axes of the nanomenhirs emerge; these are used for location-specific sensing of membrane-binding events. Numerical simulations of the near field distributions confirmed the experimental results. As a proof-of-concept, we present a model biosensing experiment that exploits the dual-sensing capability, the size selectivity offered by the sensor geometry, and the possibility to separately biochemically modify the nanomenhirs and the nanocavities for the specific binding of lipid membrane structures to the nanomenhirs.
Collapse
Affiliation(s)
- Karthik Kumar
- Department of Materials, Laboratory for Surface Science and Technology, Swiss Federal Institute of Technology (ETH Zürich) , CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
17
|
Christensen AL, Lohr C, Christensen SM, Stamou D. Single vesicle biochips for ultra-miniaturized nanoscale fluidics and single molecule bioscience. LAB ON A CHIP 2013; 13:3613-3625. [PMID: 23856986 DOI: 10.1039/c3lc50492a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
One of the major bottlenecks in the development of biochips is maintaining the structure and function of biomolecules when interfacing them with hard matter (glass, plastics, metals, etc.), a challenge that is exacerbated during miniaturization that inevitably increases the interface to volume ratio of these devices. Biochips based on immobilized vesicles circumvent this problem by encapsulating biomolecules in the protective environment of a lipid bilayer, thus minimizing interactions with hard surfaces. Here we review the development of biochips based on arrays of single nanoscale vesicles, their fabrication via controlled self-assembly, and their characterization using fluorescence microscopy. We also highlight their applications in selected fields such as nanofluidics and single molecule bioscience. Despite their great potential for improved biocompatibility, extreme miniaturization and high throughput, single vesicle biochips are still a niche technology that has yet to establish its commercial relevance.
Collapse
Affiliation(s)
- Andreas L Christensen
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | | | |
Collapse
|
18
|
Guinan T, Godefroy C, Lautrédou N, Pace S, Milhiet PE, Voelcker N, Cunin F. Interaction of antibiotics with lipid vesicles on thin film porous silicon using reflectance interferometric Fourier transform spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:10279-86. [PMID: 23844993 DOI: 10.1021/la401804e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The ability to observe interactions of drugs with cell membranes is an important area in pharmaceutical research. However, these processes are often difficult to understand due to the dynamic nature of cell membranes. Therefore, artificial systems composed of lipids have been used to study membrane properties and their interaction with drugs. Here, lipid vesicle adsorption, rupture, and formation of planar lipid bilayers induced by various antibiotics (surfactin, azithromycin, gramicidin, melittin and ciprofloxacin) and the detergent dodecyl-b-D-thiomaltoside (DOTM) was studied using reflective interferometric Fourier transform spectroscopy (RIFTS) on an oxidized porous silicon (pSi) surface as a transducer. The pSi transducer surfaces are prepared as thin films of 3 μm thickness with pore dimensions of a few nanometers in diameter by electrochemical etching of crystalline silicon followed by passivation with a thermal oxide layer. Furthermore, the sensitivity of RIFTS was investigated using three different concentrations of surfactin. Complementary techniques including atomic force microscopy, fluorescence recovery after photobleaching, and fluorescence microscopy were used to validate the RIFTS-based method and confirm adsorption and consequent rupture of vesicles to form a phospholipid bilayer upon the addition of antibiotics. The method provides a sensitive and real-time approach to monitor the antibiotic-induced transition of lipid vesicles to phospholipid bilayers.
Collapse
Affiliation(s)
- Taryn Guinan
- Mawson Institute, University of South Australia, Adelaide, Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
Hain N, Gallego M, Reviakine I. Unraveling supported lipid bilayer formation kinetics: osmotic effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2282-2288. [PMID: 23311334 DOI: 10.1021/la304197m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Solid-supported lipid bilayers are used as cell membrane models and form the basis of biomimetic and biosensor platforms. The mechanism of their formation from adsorbed liposomes is not well-understood. Using membrane-permeable solute glycerol, impermeable solutes sucrose and dextran, and a pore forming peptide melittin, we studied experimentally how osmotic effects affect the kinetics of the adsorbed liposome-to-bilayer transition. We find that its rate is enhanced if adsorbed liposomes are made permeable but is not significantly retarded by impermeable solutes. The results are explained in terms of adsorbed liposome deformation and formation of transmembrane pores.
Collapse
Affiliation(s)
- Nicole Hain
- CIC biomaGUNE, Paseo Miramón 182, San Sebastián 20009, Spain
| | | | | |
Collapse
|
20
|
Shadiac N, Nagarajan Y, Waters S, Hrmova M. Close allies in membrane protein research: Cell-free synthesis and nanotechnology. Mol Membr Biol 2013; 30:229-45. [DOI: 10.3109/09687688.2012.762125] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Surface plasmon resonance for measuring interactions of proteins with lipid membranes. Methods Mol Biol 2013; 974:23-36. [PMID: 23404270 DOI: 10.1007/978-1-62703-275-9_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Surface plasmon resonance (SPR) is an established method for studying molecular interactions in real time. It allows obtaining qualitative and quantitative data on interactions of proteins with lipid membranes. In most of the approaches, a lipid membrane or a membrane-mimetic surface is prepared on the surface of Biacore (GE Healthcare) sensor chips HPA or L1, and the studied protein is then injected across the surface. Here, we provide an overview of SPR in protein-membrane interactions, different approaches described in the literature, and a general protocol for conducting an SPR experiment including lipid membranes, together with some experimental considerations.
Collapse
|
22
|
Ohlsson G, Tabaei SR, Beech J, Kvassman J, Johanson U, Kjellbom P, Tegenfeldt JO, Höök F. Solute transport on the sub 100 ms scale across the lipid bilayer membrane of individual proteoliposomes. LAB ON A CHIP 2012; 12:4635-4643. [PMID: 22895529 DOI: 10.1039/c2lc40518k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Screening assays designed to probe ligand and drug-candidate regulation of membrane proteins responsible for ion-translocation across the cell membrane are wide spread, while efficient means to screen membrane-protein facilitated transport of uncharged solutes are sparse. We report on a microfluidic-based system to monitor transport of uncharged solutes across the membrane of multiple (>100) individually resolved surface-immobilized liposomes. This was accomplished by rapidly switching (<10 ms) the solution above dye-containing liposomes immobilized on the floor of a microfluidic channel. With liposomes encapsulating the pH-sensitive dye carboxyfluorescein (CF), internal changes in pH induced by transport of a weak acid (acetic acid) could be measured at time scales down to 25 ms. The applicability of the set up to study biological transport reactions was demonstrated by examining the osmotic water permeability of human aquaporin (AQP5) reconstituted in proteoliposomes. In this case, the rate of osmotic-induced volume changes of individual proteoliposomes was time resolved by imaging the self quenching of encapsulated calcein in response to an osmotic gradient. Single-liposome analysis of both pure and AQP5-containing liposomes revealed a relatively large heterogeneity in osmotic permeability. Still, in the case of AQP5-containing liposomes, the single liposome data suggest that the membrane-protein incorporation efficiency depends on liposome size, with higher incorporation efficiency for larger liposomes. The benefit of low sample consumption and automated liquid handling is discussed in terms of pharmaceutical screening applications.
Collapse
Affiliation(s)
- Gabriel Ohlsson
- Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Song J, Almasalmeh A, Krenc D, Beitz E. Molar concentrations of sorbitol and polyethylene glycol inhibit the Plasmodium aquaglyceroporin but not that of E. coli: involvement of the channel vestibules. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1218-24. [PMID: 22326891 DOI: 10.1016/j.bbamem.2012.01.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 11/25/2022]
Abstract
The aquaglyceroporins of Escherichia coli, EcGlpF, and of Plasmodium falciparum, PfAQP, are probably the best characterized members of the solute-conducting aquaporin (AQP) subfamily. Their crystal structures have been elucidated and numerous experimental and theoretical analyses have been conducted. However, opposing reports on their rates of water permeability require clarification. Hence, we expressed EcGlpF and PfAQP in yeast, prepared protoplasts, and compared water and glycerol permeability of both aquaglyceroporins in the presence of different osmolytes, i.e. sucrose, sorbitol, PEG300, and glycerol. We found that water permeability of PfAQP strongly depends on the external osmolyte, with full inhibition by sorbitol, and increasing water permeability when glycerol, PEG300, and sucrose were used. EcGlpF expression did not enhance water permeability over that of non-expressing control protoplasts regardless of the osmolyte. Glycerol permeability of PfAQP was also inhibited by sorbitol, but to a smaller extent, whereas EcGlpF conducted glycerol independently of the osmolyte. Mixtures of glycerol and urea passed PfAQP equally well under isosmotic conditions, whereas under hypertonic conditions in a countercurrent with water, glycerol was clearly preferred over urea. We conclude that PfAQP has high and EcGlpF low water permeability, and explain the inhibiting effect of sorbitol on PfAQP by its binding to the extracellular vestibule. The preference for glycerol under hypertonic conditions implies that in a physiological setting, PfAQP mainly acts as a water/glycerol channel rather than a urea facilitator.
Collapse
Affiliation(s)
- Jie Song
- Department of Medicinal amd Pharmaceutical Chemistry, University of Kiel, Gutenbergstrasse 76, 24118, Kiel, Germany
| | | | | | | |
Collapse
|
24
|
Öberg F, Sjöhamn J, Fischer G, Moberg A, Pedersen A, Neutze R, Hedfalk K. Glycosylation increases the thermostability of human aquaporin 10 protein. J Biol Chem 2011; 286:31915-23. [PMID: 21733844 DOI: 10.1074/jbc.m111.242677] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human aquaporin10 (hAQP10) is a transmembrane facilitator of both water and glycerol transport in the small intestine. This aquaglyceroporin is located in the apical membrane of enterocytes and is believed to contribute to the passage of water and glycerol through these intestinal absorptive cells. Here we overproduced hAQP10 in the yeast Pichia pastoris and observed that the protein is glycosylated at Asn-133 in the extracellular loop C. This finding confirms one of three predicted glycosylation sites for hAQP10, and its glycosylation is unique for the human aquaporins overproduced in this host. Nonglycosylated protein was isolated using both glycan affinity chromatography and through mutating asparagine 133 to a glutamine. All three forms of hAQP10 where found to facilitate the transport of water, glycerol, erythritol, and xylitol, and glycosylation had little effect on functionality. In contrast, glycosylated hAQP10 showed increased thermostability of 3-6 °C compared with the nonglycosylated protein, suggesting a stabilizing effect of the N-linked glycan. Because only one third of hAQP10 was glycosylated yet the thermostability titration was mono-modal, we suggest that the presence of at least one glycosylated protein within each tetramer is sufficient to convey an enhanced structural stability to the remaining hAQP10 protomers of the tetramer.
Collapse
Affiliation(s)
- Fredrik Öberg
- Department of Chemistry/Biochemistry, University of Gothenburg, P. O. Box 462, SE-405 30 Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
25
|
Kuo JS, Chiu DT. Controlling mass transport in microfluidic devices. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2011; 4:275-96. [PMID: 21456968 PMCID: PMC5724977 DOI: 10.1146/annurev-anchem-061010-113926] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Microfluidic platforms offer exquisite capabilities in controlling mass transport for biological studies. In this review, we focus on recent developments in manipulating chemical concentrations at the microscale. Some techniques prevent or accelerate mixing, whereas others shape the concentration gradients of chemical and biological molecules. We also highlight several in vitro biological studies in the areas of organ engineering, cancer, and blood coagulation that have benefited from accurate control of mass transfer.
Collapse
Affiliation(s)
- Jason S Kuo
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, USA
| | | |
Collapse
|
26
|
Christensen SM, Stamou DG. Sensing-applications of surface-based single vesicle arrays. SENSORS (BASEL, SWITZERLAND) 2010; 10:11352-68. [PMID: 22163531 PMCID: PMC3231067 DOI: 10.3390/s101211352] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 11/30/2010] [Accepted: 12/07/2010] [Indexed: 11/26/2022]
Abstract
A single lipid vesicle can be regarded as an autonomous ultra-miniaturised 3D biomimetic "scaffold" (Ø≥13 nm) ideally suited for reconstitution and interrogation of biochemical processes. The enclosing lipid bilayer membrane of a vesicle can be applied for studying binding (protein/lipid or receptor/ligand interactions) or transmembrane events (membrane permeability or ion channel activation) while the aqueous vesicle lumen can be used for confining few or single macromolecules and probe, e.g., protein folding, catalytic pathways of enzymes or more complex biochemical reactions, such as signal transduction cascades. Immobilisation (arraying) of single vesicles on a solid support is an extremely useful technique that allows detailed characterisation of vesicle preparations using surface sensitive techniques, in particular fluorescence microscopy. Surface-based single vesicle arrays allow a plethora of prototypic sensing applications in a high throughput format with high spatial and high temporal resolution. In this review we present a series of applications of single vesicle arrays for screening/sensing of: membrane curvature dependent protein-lipid interactions, bilayer tension, reactions triggered in the vesicle lumen, the activity of transmembrane protein channels and biological membrane fusion reactions.
Collapse
Affiliation(s)
- Sune M. Christensen
- Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Nano-Science Center, University of Copenhagen, 2100 Copenhagen, Denmark
- Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Dimitrios G. Stamou
- Bio-Nanotechnology Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Nano-Science Center, University of Copenhagen, 2100 Copenhagen, Denmark
- Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Center for Pharmaceutical Nanotechnology and Nanotoxicology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|