1
|
Oliveira IS, Pinheiro GX, Sa MLB, Gurgel PHLO, Pizzol SU, Itri R, Henriques VB, Enoki TA. The Importance of Bilayer Asymmetry in Biological Membranes: Insights from Model Membranes. MEMBRANES 2025; 15:79. [PMID: 40137031 PMCID: PMC11943618 DOI: 10.3390/membranes15030079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
This mini-review intends to highlight the importance of bilayer asymmetry. Biological membranes are complex structures that are a physical barrier separating the external environment from the cellular content. This complex bilayer comprises an extensive lipid repertory, suggesting that the different lipid structures might play a role in the membrane. Interestingly, this vast repertory of lipids is asymmetrically distributed between leaflets that form the lipid bilayer. Here, we discuss the properties of the plasma membrane from the perspective of experimental model membranes, consisting of simplified and controlled in vitro systems. We summarize some crucial features of the exoplasmic (outer) and cytoplasmic (inner) leaflets observed through investigations using symmetric and asymmetric membranes. Symmetric model membranes for the exoplasmic leaflet have a unique lipid composition that might form a coexistence of phases, namely the liquid disordered and liquid order phases. These phase domains may appear in different sizes and shapes depending on lipid composition and lipid-lipid interactions. In contrast, symmetric model membranes for the cytoplasmic leaflet form a fluid phase. We discuss the outcomes reported in the literature for asymmetric bilayers, which vary according to lipid compositions and, consequently, reflect different intra- and inter-leaflet interactions. Interestingly, the asymmetric bilayer could show induced domains in the inner leaflet, or it could decrease the tendency of the outer leaflet to phase separation. If cells regulate the lipid composition of the plasma membrane, they can adjust the existence and sizes of the domains by tuning the lipid composition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Thais A. Enoki
- Institute of Physics, University of Sao Paulo, Sao Paulo 05508-090, Brazil
| |
Collapse
|
2
|
Carravilla P, Andronico L, Schlegel J, Urem YB, Sjule E, Ragaller F, Weber F, Gurdap CO, Ascioglu Y, Sych T, Lorent J, Sezgin E. Measuring plasma membrane fluidity using confocal microscopy. Nat Protoc 2025:10.1038/s41596-024-01122-8. [PMID: 39972239 DOI: 10.1038/s41596-024-01122-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/29/2024] [Indexed: 02/21/2025]
Abstract
Membrane fluidity is a crucial parameter for cellular physiology. Recent evidence suggests that fluidity varies between cell types and states and in diseases. As membrane fluidity has gradually become an important consideration in cell biology and biomedicine, it is essential to have reliable and quantitative ways to measure it in cells. In the past decade, there has been substantial progress both in chemical probes and in imaging tools to make membrane fluidity measurements easier and more reliable. We have recently established a robust pipeline, using confocal imaging and new environment-sensitive probes, that has been successfully used for several studies. Here we present our detailed protocol for membrane fluidity measurement, from labeling to imaging and image analysis. The protocol takes ~4 h and requires basic expertise in cell culture, wet lab and microscopy.
Collapse
Affiliation(s)
- Pablo Carravilla
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Luca Andronico
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Jan Schlegel
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Yagmur B Urem
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Ellen Sjule
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Franziska Ragaller
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Florian Weber
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
- Upper Austria University of Applied Sciences, Department Medical Engineering, Linz, Austria
| | - Cenk O Gurdap
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Yavuz Ascioglu
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Joseph Lorent
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Utrecht, the Netherlands
- Cellular and Molecular Pharmacology, Translational Research from Experimental and Clinical Pharmacology to Treatment Optimization, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
3
|
Blawitzki LC, Bartels N, Bonda L, Schmidt S, Monzel C, Hartmann L. Glycomacromolecules to Tailor Crowded and Heteromultivalent Glycocalyx Mimetics. Biomacromolecules 2024; 25:5979-5994. [PMID: 39122664 DOI: 10.1021/acs.biomac.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
The glycocalyx, a complex carbohydrate layer on cell surfaces, plays a crucial role in various biological processes. Understanding native glycocalyces' complexity is challenging due to their intricate and dynamic nature. Simplified mimics of native glycocalyces offer insights into glycocalyx functions but often lack molecular precision and fail to replicate key features of the natural analogues like molecular crowding and heteromultivalency. We introduce membrane-anchoring precision glycomacromolecules synthesized via solid-phase polymer synthesis (SPPoS) and thiol-induced, light-activated controlled radical polymerization (TIRP), enabling the construction of crowded and heteromultivalent glycocalyx mimetics with varying molecular weights and densities in giant unilamellar vesicles (GUVs). The incorporation and dynamics of glycomacromolecules in the GUVs are examined via microscopy and fluorescence correlation spectroscopy (FCS) and studies on lectin-carbohydrate-mediated adhesion of GUVs reveal inhibitory and promotional adhesion effects corresponding to different glycocalyx mimetic compositions, bridging the gap between synthetic models and native analogues.
Collapse
Affiliation(s)
- Luca-Cesare Blawitzki
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Department for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg i.Br., Germany
| | - Nina Bartels
- Department for Experimental Medical Physics, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Lorand Bonda
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Stephan Schmidt
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Department for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg i.Br., Germany
| | - Cornelia Monzel
- Department for Experimental Medical Physics, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Laura Hartmann
- Department for Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Duesseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Department for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg i.Br., Germany
| |
Collapse
|
4
|
Yang GS, Wagenknecht-Wiesner A, Yin B, Suresh P, London E, Baird BA, Bag N. Lipid-driven interleaflet coupling of plasma membrane order regulates FcεRI signaling in mast cells. Biophys J 2024; 123:2256-2270. [PMID: 37533258 PMCID: PMC11331041 DOI: 10.1016/j.bpj.2023.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
Interleaflet coupling-the influence of one leaflet on the properties of the opposing leaflet-is a fundamental plasma membrane organizational principle. This coupling is proposed to participate in maintaining steady-state biophysical properties of the plasma membrane, which in turn regulates some transmembrane signaling processes. A prominent example is antigen (Ag) stimulation of signaling by clustering transmembrane receptors for immunoglobulin E (IgE), FcεRI. This transmembrane signaling depends on the stabilization of ordered regions in the inner leaflet for sorting of intracellular signaling components. The resting inner leaflet has a lipid composition that is generally less ordered than the outer leaflet and that does not spontaneously phase separate in model membranes. We propose that interleaflet coupling can mediate ordering and disordering of the inner leaflet, which is poised in resting cells to reorganize upon stimulation. To test this in live cells, we first established a straightforward approach to evaluate induced changes in membrane order by measuring inner leaflet diffusion of lipid probes by imaging fluorescence correlation spectroscopy, by imaging fluorescence correlation spectroscopy (ImFCS), before and after methyl-α-cyclodexrin (mαCD)-catalyzed exchange of outer leaflet lipids (LEX) with exogenous order- or disorder-promoting phospholipids. We examined the functional impact of LEX by monitoring two Ag-stimulated responses: recruitment of cytoplasmic Syk kinase to the inner leaflet and exocytosis of secretory granules (degranulation). Based on the ImFCS data in resting cells, we observed global increase or decrease of inner leaflet order when outer leaflet is exchanged with order- or disorder-promoting lipids, respectively. We find that the degree of both stimulated Syk recruitment and degranulation correlates positively with LEX-mediated changes of inner leaflet order in resting cells. Overall, our results show that resting-state lipid ordering of the outer leaflet influences the ordering of the inner leaflet, likely via interleaflet coupling. This imposed lipid reorganization modulates transmembrane signaling stimulated by Ag clustering of IgE-FcεRI.
Collapse
Affiliation(s)
- Gil-Suk Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | | | - Boyu Yin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Pavana Suresh
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York; Department of Chemistry, Indian Institute of Technology, Kharagpur, India.
| |
Collapse
|
5
|
Kennison-Cook KB, Heberle FA. Disruption of liquid/liquid phase separation in asymmetric GUVs prepared by hemifusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600037. [PMID: 38979299 PMCID: PMC11230200 DOI: 10.1101/2024.06.21.600037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Model asymmetric bilayers are useful for studying the coupling between lateral and transverse lipid organization. Here, we used calcium-induced hemifusion to create asymmetric giant unilamellar vesicles (aGUVs) for exploring the phase behavior of 16:0-PC/16:1-PC/Cholesterol, a simplified model for the mammalian plasma membrane. Symmetric GUVs (sGUVs) were first prepared using a composition that produced coexisting liquid-disordered and liquid-ordered phases visible by confocal fluorescence microscopy. The sGUVs were then hemifused to a supported lipid bilayer (SLB) composed of uniformly mixed 16:1-PC/Cholesterol. The extent of outer leaflet exchange was quantified in aGUVs in two ways: (1) from the reduction in fluorescence intensity of a lipid probe initially in the sGUV ("probe exit"); or (2) from the gain in intensity of a probe initially in the SLB ("probe entry"). These measurements revealed a large variability in the extent of outer leaflet exchange in aGUVs within a given preparation, and two populations with respect to their phase behavior: a subset of vesicles that remained phase separated, and a second subset that appeared uniformly mixed. Moreover, a correlation between phase behavior and extent of asymmetry was observed, with more strongly asymmetric vesicles having a greater probability of being uniformly mixed. We also observed substantial overlap between these populations, an indication that the uncertainty in measured exchange fraction is high. We developed models to determine the position of the phase boundary (i.e., the fraction of outer leaflet exchange above which domain formation is suppressed) and found that the phase boundaries determined separately from probe-entry and probe-exit data are in good agreement. Our models also provide improved estimates of the compositional uncertainty of individual aGUVs. We discuss several potential sources of uncertainty in the determination of lipid exchange from fluorescence measurements.
Collapse
|
6
|
Suresh P, London E. MαCD-based plasma membrane outer leaflet lipid exchange in mammalian cells to study insulin receptor activity. Methods Enzymol 2024; 700:485-507. [PMID: 38971611 PMCID: PMC11748235 DOI: 10.1016/bs.mie.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Signaling receptors on the plasma membrane, such as insulin receptor, can have their activity modulated to some extent by their surrounding lipids. Studying the contribution of membrane lipid properties such as presence of ordered lipid domains or bilayer thickness on the activity of receptors has been a challenging objective in living cells. Using methyl-alpha cyclodextrin-mediated lipid exchange, we are able to alter the lipids of the outer leaflet plasma membrane of mammalian cells to investigate the effect of the properties of the exchanged lipid upon receptor function in live cells. In this article, we describe the technique of lipid exchange in detail and how it can be applied to better understand lipid-mediated regulation of insulin receptor activity in cells.
Collapse
Affiliation(s)
- Pavana Suresh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
7
|
Enoki TA. The use of hemifusion to create asymmetric giant unilamellar vesicles: Insights on induced order domains. Methods Enzymol 2024; 700:127-159. [PMID: 38971598 DOI: 10.1016/bs.mie.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The natural asymmetry of the lipid bilayer in biological membranes is, in part, a testament to the complexity of the structure and function of this barrier limiting and protecting cells (or organelles). These lipid bilayers consist of two lipid leaflets with different lipid compositions, resulting in unique interactions within each leaflet. These interactions, combined with interactions between the two leaflets, determine the overall behavior of the membrane. Model membranes provide the most suitable option for investigating the fundamental interactions of lipids. This report describes a comprehensive method to make asymmetric giant unilamellar vesicles (aGUVs) using the technique of hemifusion. In this method, calcium ions induce the hemifusion of giant unilamellar vesicles (GUVs) with a supported lipid bilayer (SLB), both having different lipid compositions. During hemifusion, a stalk, or a more commonly seen hemifusion diaphragm, connects the outer leaflets of GUVs and the SLB. The lateral diffusion of lipids naturally promotes the lipid exchange between the connected outer leaflets. After calcium chelation to prevent further fusion, a mechanical shear detaches aGUVs from the SLB. A fluorescence quench assay is employed to test the extent of bilayer asymmetry. A fluorescence quenching assay tests bilayer asymmetry and verifies dye and lipid migration to a GUV's outer leaflet.
Collapse
Affiliation(s)
- Thais A Enoki
- Institute of Physics of University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
8
|
Pivovarenko VG, Klymchenko AS. Fluorescent Probes Based on Charge and Proton Transfer for Probing Biomolecular Environment. CHEM REC 2024; 24:e202300321. [PMID: 38158338 DOI: 10.1002/tcr.202300321] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Fluorescent probes for sensing fundamental properties of biomolecular environment, such as polarity and hydration, help to study assembly of lipids into biomembranes, sensing interactions of biomolecules and imaging physiological state of the cells. Here, we summarize major efforts in the development of probes based on two photophysical mechanisms: (i) an excited-state intramolecular charge transfer (ICT), which is represented by fluorescent solvatochromic dyes that shift their emission band maximum as a function of environment polarity and hydration; (ii) excited-state intramolecular proton transfer (ESIPT), with particular focus on 5-membered cyclic systems, represented by 3-hydroxyflavones, because they exhibit dual emission sensitive to the environment. For both ICT and ESIPT dyes, the design of the probes and their biological applications are summarized. Thus, dyes bearing amphiphilic anchors target lipid membranes and report their lipid organization, while targeting ligands direct them to specific organelles for sensing their local environment. The labels, amino acid and nucleic acid analogues inserted into biomolecules enable monitoring their interactions with membranes, proteins and nucleic acids. While ICT probes are relatively simple and robust environment-sensitive probes, ESIPT probes feature high information content due their dual emission. They constitute a powerful toolbox for addressing multitude of biological questions.
Collapse
Affiliation(s)
- Vasyl G Pivovarenko
- Department of Chemistry, Kyiv National Taras Shevchenko University, 01033, Kyiv, Ukraine
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, ITI SysChem, Université de Strasbourg, 67401, Illkirch, France
| |
Collapse
|
9
|
Doktorova M, Levental I, Heberle FA. Seeing the Membrane from Both Sides Now: Lipid Asymmetry and Its Strange Consequences. Cold Spring Harb Perspect Biol 2023; 15:a041393. [PMID: 37604588 PMCID: PMC10691478 DOI: 10.1101/cshperspect.a041393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Almost all biomembranes are constructed as lipid bilayers and, in almost all of these, the two opposing monolayers (leaflets) have distinct lipid compositions. This lipid asymmetry arises through the concerted action of a suite of energy-dependent enzymes that maintain living bilayers in a far-from-equilibrium steady-state. Recent discoveries reveal that lipid compositional asymmetry imparts biophysical asymmetries and that this dualistic organization may have major consequences for cellular physiology. Importantly, while transbilayer asymmetry appears to be an essential, near-ubiquitous characteristic of biological membranes, it has been challenging to reproduce in reconstituted or synthetic systems. Although recent methodological developments have overcome some critical challenges, it remains difficult to extrapolate results from available models to biological systems. Concurrently, there are few experimental approaches for targeted, controlled manipulation of lipid asymmetry in living cells. Thus, the biophysical and functional consequences of membrane asymmetry remain almost wholly unexplored. This perspective summarizes the current state of knowledge and highlights emerging themes that are beginning to make inroads into the fundamental question of why life tends toward asymmetry in its bilayers.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Molecular Physiology and Pharmacology, University of Virginia, Center for Membrane and Cell Physiology, Charlottesville, Virginia 22908, USA
| | - Ilya Levental
- Department of Molecular Physiology and Pharmacology, University of Virginia, Center for Membrane and Cell Physiology, Charlottesville, Virginia 22908, USA
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, Tennessee 37996, USA
| |
Collapse
|
10
|
Shi Y, Ruan H, Xu Y, Zou C. Cholesterol, Eukaryotic Lipid Domains, and an Evolutionary Perspective of Transmembrane Signaling. Cold Spring Harb Perspect Biol 2023; 15:a041418. [PMID: 37604587 PMCID: PMC10626259 DOI: 10.1101/cshperspect.a041418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Transmembrane signaling is essential for complex life forms. Communication across a bilayer lipid barrier is elaborately organized to convey precision and to fine-tune strength. Looking back, the steps that it has taken to enable this seemingly mundane errand are breathtaking, and with our survivorship bias, Darwinian. While this review is to discuss eukaryotic membranes in biological functions for coherence and theoretical footing, we are obliged to follow the evolution of the biological membrane through time. Such a visit is necessary for our hypothesis that constraints posited on cellular functions are mainly via the biomembrane, and relaxation thereof in favor of a coordinating membrane environment is the molecular basis for the development of highly specialized cellular activities, among them transmembrane signaling. We discuss the obligatory paths that have led to eukaryotic membrane formation, its intrinsic ability to signal, and how it set up the platform for later integration of protein-based receptor activation.
Collapse
Affiliation(s)
- Yan Shi
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Hefei Ruan
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanni Xu
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Chunlin Zou
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Li B, London E. Inner leaflet cationic lipid increases nucleic acid loading independently of outer leaflet lipid charge in asymmetric liposomes. Methods 2023; 219:16-21. [PMID: 37683900 PMCID: PMC10680395 DOI: 10.1016/j.ymeth.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/17/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Use of cationic lipid vesicles (liposomes) can yield large amounts of nucleic acid entrapped inside the vesicles and/or bound to the external surface of the vesicles. To show a method to prepare asymmetric lipid vesicles (liposomes) with high amounts of entrapped nucleic acid is possible, symmetric and asymmetric lipid vesicles composed of mixtures of neutral (zwitterionic), anionic, and/or cationic phospholipids were formed in the presence of oligo DNA. For symmetric large unilamellar vesicles nucleic acid association with vesicles was roughly 100 times greater for vesicles with a net cationic charge than for vesicles having a net neutral or anionic net charge. A high degree of association between nucleic acid and lipid was also achieved using asymmetric large unilamellar vesicles with a net cationic charge in their inner leaflet, even when they had an anionic charge in their outer leaflet. In contrast, asymmetric vesicles in which only the outer leaflet had a net cationic charge had only low amounts of vesicle-associated nucleic acid, similar in amount to the amount of nucleic acid associated with asymmetric vesicles with an outer leaflet having a net anionic charge. These results indicate that in asymmetric vesicles with cationic lipid enriched inner leaflets nucleic acid is largely entrapped inside the vesicle lumen rather than bound to their external surface, and that asymmetric vesicles can be used to trap high amounts of nucleic acid even when using a lipid composition in the outer leaflet of a lipid vesicle that does not associate with nucleic acids. Such asymmetrically charged vesicles should have applications in studies of membrane protein-nucleic acid interactions as well as in studies of how membrane charge asymmetry can influence membrane protein structure, orientation, and function.
Collapse
Affiliation(s)
- Bingchen Li
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Erwin London
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
12
|
Frawley AT, Leslie KG, Wycisk V, Galiani S, Shrestha D, Eggeling C, Anderson HL. A Photoswitchable Solvatochromic Dye for Probing Membrane Ordering by RESOLFT Super-resolution Microscopy. Chemphyschem 2023; 24:e202300125. [PMID: 36946252 DOI: 10.1002/cphc.202300125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/23/2023]
Abstract
A switchable solvatochromic fluorescent dyad can be used to map ordering of lipids in vesicle membranes at a resolution better than the diffraction limit. Combining a Nile Red fluorophore with a photochromic spironaphthoxazine quencher allows the fluorescence to be controlled using visible light, via photoswitching and FRET quenching. Synthetic lipid vesicles of varying composition were imaged with an average 2.5-fold resolution enhancement, compared to the confocal images. Ratiometric detection was used to probe the membrane polarity, and domains of different lipid ordering were distinguished within the same membrane.
Collapse
Affiliation(s)
- Andrew T Frawley
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Kathryn G Leslie
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Virginia Wycisk
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Silvia Galiani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Dilip Shrestha
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien-Platz 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Strasse 9, 07745, Jena, Germany
- Jena Center for Soft Matter (JCSM), Philosophenweg 7, 07743, Jena, Germany
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
13
|
Krompers M, Heerklotz H. A Guide to Your Desired Lipid-Asymmetric Vesicles. MEMBRANES 2023; 13:267. [PMID: 36984654 PMCID: PMC10054703 DOI: 10.3390/membranes13030267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Liposomes are prevalent model systems for studies on biological membranes. Recently, increasing attention has been paid to models also representing the lipid asymmetry of biological membranes. Here, we review in-vitro methods that have been established to prepare free-floating vesicles containing different compositions of the classic two-chain glycero- or sphingolipids in their outer and inner leaflet. In total, 72 reports are listed and assigned to four general strategies that are (A) enzymatic conversion of outer leaflet lipids, (B) re-sorting of lipids between leaflets, (C) assembly from different monolayers and (D) exchange of outer leaflet lipids. To guide the reader through this broad field of available techniques, we attempt to draw a road map that leads to the lipid-asymmetric vesicles that suit a given purpose. Of each method, we discuss advantages and limitations. In addition, various verification strategies of asymmetry as well as the role of cholesterol are briefly discussed. The ability to specifically induce lipid asymmetry in model membranes offers insights into the biological functions of asymmetry and may also benefit the technical applications of liposomes.
Collapse
Affiliation(s)
- Mona Krompers
- Department of Pharmaceutical Technology and Biopharmacy, Institute for Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Heiko Heerklotz
- Department of Pharmaceutical Technology and Biopharmacy, Institute for Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, 79085 Freiburg im Breisgau, Germany
| |
Collapse
|
14
|
Assembly methods for asymmetric lipid and polymer-lipid vesicles. Emerg Top Life Sci 2022; 6:609-617. [PMID: 36533596 DOI: 10.1042/etls20220055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Asymmetric unilamellar vesicles are aqueous bodies surrounded by two dissimilar leaflets made from lipids, polymers, or both. They are great models for cell membranes and attractive vehicles in potential biomedicine applications. Despite their promise, asymmetric unilamellar vesicles are not widely studied or adopted in applications. This is largely due to the complexity in generating asymmetric membranes. Recent technical advances in microfluidics have opened doors to high throughput fabrication of asymmetric unilamellar vesicles. In this review, we focus on microfluidic methods for generating asymmetric lipid vesicles, with two dissimilar lipid leaflets, and asymmetric lipid-polymer vesicles, with one lipid leaflet and one polymer leaflet. We also review a few standard non-microfluidic methods for generating asymmetric vesicles. We hope to highlight the improved capability in obtaining asymmetric vesicles through a variety of methods and encourage the wider scientific community to adopt some of these for their own work.
Collapse
|
15
|
Stephan MS, Dunsing V, Pramanik S, Chiantia S, Barbirz S, Robinson T, Dimova R. Biomimetic asymmetric bacterial membranes incorporating lipopolysaccharides. Biophys J 2022:S0006-3495(22)03927-3. [PMID: 36523159 DOI: 10.1016/j.bpj.2022.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Gram-negative bacteria are equipped with a cell wall that contains a complex matrix of lipids, proteins, and glycans, which form a rigid layer protecting bacteria from the environment. Major components of this outer membrane are the high-molecular weight and amphiphilic lipopolysaccharides (LPSs). They form the extracellular part of a heterobilayer with phospholipids. Understanding LPS properties within the outer membrane is therefore important to develop new antimicrobial strategies. Model systems, such as giant unilamellar vesicles (GUVs), provide a suitable platform for exploring membrane properties and interactions. However, LPS molecules contain large polysaccharide parts that confer high water solubility, which makes LPS incorporation in artificial membranes difficult; this hindrance is exacerbated for LPS with long polysaccharide chains, i.e., the smooth LPS. Here, a novel emulsification step of the inverted emulsion method is introduced to incorporate LPS in the outer or the inner leaflet of GUVs, exclusively. We developed an approach to determine the LPS content on individual GUVs and quantify membrane asymmetry. The asymmetric membranes with outer leaflet LPS show incorporations of 1-16 mol % smooth LPS (corresponding to 16-79 wt %), while vesicles with inner leaflet LPS reach coverages of 2-7 mol % smooth LPS (28-60 wt %). Diffusion coefficient measurements in the obtained GUVs showed that increasing LPS concentrations in the membranes resulted in decreased diffusivity.
Collapse
Affiliation(s)
| | - Valentin Dunsing
- Aix-Marseille Université, CNRS, IBDM, Turing Center for Living Systems, Marseille, France; University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Germany
| | - Shreya Pramanik
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Salvatore Chiantia
- University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Germany
| | - Stefanie Barbirz
- Department Humanmedizin, MSB Medical School Berlin, Berlin, Germany
| | - Tom Robinson
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
16
|
Varma M, Deserno M. Distribution of cholesterol in asymmetric membranes driven by composition and differential stress. Biophys J 2022; 121:4001-4018. [PMID: 35927954 PMCID: PMC9674969 DOI: 10.1016/j.bpj.2022.07.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Many lipid membranes of eukaryotic cells are asymmetric, which means the two leaflets differ in at least one physical property, such as lipid composition or lateral stress. Maintaining this asymmetry is helped by the fact that ordinary phospholipids rarely transition between leaflets, but cholesterol is an exception: its flip-flop times are in the microsecond range, so that its distribution between leaflets is determined by a chemical equilibrium. In particular, preferential partitioning can draw cholesterol into a more saturated leaflet, and phospholipid number asymmetry can force it out of a compressed leaflet. Combining highly coarse-grained membrane simulations with theoretical modeling, we investigate how these two driving forces play against each other until cholesterol's chemical potential is equilibrated. The theory includes two coupled elastic sheets and a Flory-Huggins mixing free energy with a χ parameter. We obtain a relationship between χ and the interaction strength between cholesterol and lipids in either of the two leaflets, and we find that it depends, albeit weakly, on lipid number asymmetry. The differential stress measurements under various asymmetry conditions agree with our theoretical predictions. Using the two kinds of asymmetries in combination, we find that it is possible to counteract the phospholipid number bias, and the resultant stress in the membrane, via the control of cholesterol mixing in the leaflets.
Collapse
Affiliation(s)
- Malavika Varma
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
17
|
Enoki TA, Feigenson GW. Improving our picture of the plasma membrane: Rafts induce ordered domains in a simplified model cytoplasmic leaflet. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183995. [PMID: 35753393 DOI: 10.1016/j.bbamem.2022.183995] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 01/06/2023]
Abstract
By study of asymmetric membranes, models of the cell plasma membrane (PM) have improved, with more realistic properties of the asymmetric lipid composition of the membrane being explored. We used hemifusion of symmetric giant unilamellar vesicles (GUVs) with a supported lipid bilayer (SLB) to engineer bilayer leaflets of different composition. During hemifusion, only the outer leaflets of GUV and SLB are connected, exchanging lipids by simple diffusion. aGUVs were detached from the SLB for study. In general these aGUVs are formed with one leaflet that phase-separates into Ld (liquid disordered) + Lo (liquid ordered) phases, and another leaflet with lipid composition that would form a single fluid phase in a symmetric bilayer. We observed that ordered phases of either Lo or Lβ (gel phase) induce an ordered domain in the apposed fluid leaflet that lacks high melting lipids. Results suggest both an inter-leaflet and an intra-leaflet redistribution of cholesterol. We used C-Laurdan spectral images to investigate the lipid packing/order of aGUVs, finding that cholesterol partitions into the induced ordered domains. We suggest this behavior to be commonplace, that when Ld + Lo phase separation occurs in a cell PM exoplasmic leaflet, an induced order domain forms in the cytoplasmic leaflet.
Collapse
Affiliation(s)
- Thais A Enoki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
18
|
Foley SL, Hossein A, Deserno M. Fluid-gel coexistence in lipid membranes under differential stress. Biophys J 2022; 121:2997-3009. [PMID: 35859420 PMCID: PMC9463654 DOI: 10.1016/j.bpj.2022.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/03/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
A widely conserved property of many biological lipid bilayers is their asymmetry. In addition to having distinct compositions on its two sides, a membrane can also exhibit different tensions in its two leaflets, a state known as differential stress. Here, we examine how this stress can influence the phase behavior of the constituent lipid monolayers of a single-component membrane. For temperatures sufficiently close to, but still above, the main transition, molecular dynamics simulations show the emergence of finite gel domains within the compressed leaflet. We describe the thermodynamics of this phenomenon by adding two empirical single-leaflet free energies for the fluid-gel transition, each evaluated at its respective asymmetry-dependent lipid density. Finite size effects arising in simulation are included in the theory through a geometry-dependent interfacial term. Our model reproduces the phase coexistence observed in simulation. It could therefore be used to connect the "hidden variable" of differential stress to experimentally observable properties of the main phase transition. These ideas could be generalized to any first-order bilayer phase transition in the presence of asymmetry, including liquid-ordered/liquid-disordered phase separation.
Collapse
Affiliation(s)
- Samuel L Foley
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Amirali Hossein
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania; Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
19
|
Deciphering the Assembly of Enveloped Viruses Using Model Lipid Membranes. MEMBRANES 2022; 12:membranes12050441. [PMID: 35629766 PMCID: PMC9142974 DOI: 10.3390/membranes12050441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 01/09/2023]
Abstract
The cell plasma membrane is mainly composed of phospholipids, cholesterol and embedded proteins, presenting a complex interface with the environment. It maintains a barrier to control matter fluxes between the cell cytosol and its outer environment. Enveloped viruses are also surrounded by a lipidic membrane derived from the host-cell membrane and acquired while exiting the host cell during the assembly and budding steps of their viral cycle. Thus, model membranes composed of selected lipid mixtures mimicking plasma membrane properties are the tools of choice and were used to decipher the first step in the assembly of enveloped viruses. Amongst these viruses, we choose to report the three most frequently studied viruses responsible for lethal human diseases, i.e., Human Immunodeficiency Type 1 (HIV-1), Influenza A Virus (IAV) and Ebola Virus (EBOV), which assemble at the host-cell plasma membrane. Here, we review how model membranes such as Langmuir monolayers, bicelles, large and small unilamellar vesicles (LUVs and SUVs), supported lipid bilayers (SLBs), tethered-bilayer lipid membranes (tBLM) and giant unilamellar vesicles (GUVs) contribute to the understanding of viral assembly mechanisms and dynamics using biophysical approaches.
Collapse
|
20
|
Bacterial Membranes Are More Perturbed by the Asymmetric Versus Symmetric Loading of Amphiphilic Molecules. MEMBRANES 2022; 12:membranes12040350. [PMID: 35448320 PMCID: PMC9032087 DOI: 10.3390/membranes12040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023]
Abstract
Characterizing the biophysical properties of bacterial membranes is critical for understanding the protective nature of the microbial envelope, interaction of biological membranes with exogenous materials, and designing new antibacterial agents. Presented here are molecular dynamics simulations for two cationic quaternary ammonium compounds, and the anionic and nonionic form of a fatty acid molecule interacting with a Staphylococcus aureus bacterial inner membrane. The effect of the tested materials on the properties of the model membranes are evaluated with respect to various structural properties such as the lateral pressure profile, lipid tail order parameter, and the bilayer’s electrostatic potential. Conducting asymmetric loading of molecules in only one leaflet, it was observed that anionic and cationic amphiphiles have a large impact on the Staphylococcus aureus membrane’s electrostatic potential and lateral pressure profile as compared to a symmetric distribution. Nonintuitively, we find that the cationic and anionic molecules induce a similar change in the electrostatic potential, which points to the complexity of membrane interfaces, and how asymmetry can induce biophysical consequences. Finally, we link changes in membrane structure to the rate of electroporation for the membranes, and again find a crucial impact of introducing asymmetry to the system. Understanding these physical mechanisms provides critical insights and viable pathways for the rational design of membrane-active molecules, where controlling the localization is key.
Collapse
|
21
|
Suresh P, London E. Using cyclodextrin-induced lipid substitution to study membrane lipid and ordered membrane domain (raft) function in cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183774. [PMID: 34534531 PMCID: PMC9128603 DOI: 10.1016/j.bbamem.2021.183774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023]
Abstract
Methods for efficient cyclodextrin-induced lipid exchange have been developed in our lab. These make it possible to almost completely replace the lipids in the outer leaflet of artificial membranes or the plasma membranes of living cells with exogenous lipids. Lipid replacement/substitution allows detailed studies of how lipid composition and asymmetry influence the structure and function of membrane domains and membrane proteins. In this review, we both summarize progress on cyclodextrin exchange in cells, mainly by the use of methyl-alpha cyclodextrin to exchange phospholipids and sphingolipids, and discuss the issues to consider when carrying out lipid exchange experiments upon cells. Issues that impact interpretation of lipid exchange are also discussed. This includes how overly naïve interpretation of how lipid exchange-induced changes in domain formation can impact protein function.
Collapse
|
22
|
Vázquez RF, Ovalle-García E, Antillón A, Ortega-Blake I, Muñoz-Garay C, Maté SM. Formation and Nanoscale Characterization of Asymmetric Supported Lipid Bilayers Containing Raft-Like Domains. Methods Mol Biol 2022; 2402:243-256. [PMID: 34854049 DOI: 10.1007/978-1-0716-1843-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of new strategies for achieving stable asymmetric membrane models has turned interleaflet lipid asymmetry into a topic of major interest. Cyclodextrin-mediated lipid exchange constitutes a simple and versatile method for preparing asymmetric membrane models without the need for sophisticated equipment. Here we describe a protocol for preparing asymmetric supported lipid bilayers mimicking membrane rafts by cyclodextrin-mediated lipid exchange and the main guidelines for obtaining structural information and quantitative measures of their mechanical properties using Atomic force microscopy and Force spectroscopy; two powerful techniques that allow membrane characterization at the nanoscale.
Collapse
Affiliation(s)
- Romina F Vázquez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Erasmo Ovalle-García
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Armando Antillón
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Carlos Muñoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Sabina M Maté
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
23
|
Lipid Self-Assemblies under the Atomic Force Microscope. Int J Mol Sci 2021; 22:ijms221810085. [PMID: 34576248 PMCID: PMC8467407 DOI: 10.3390/ijms221810085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid model membranes are important tools in the study of biophysical processes such as lipid self-assembly and lipid–lipid interactions in cell membranes. The use of model systems to adequate and modulate complexity helps in the understanding of many events that occur in cellular membranes, that exhibit a wide variety of components, including lipids of different subfamilies (e.g., phospholipids, sphingolipids, sterols…), in addition to proteins and sugars. The capacity of lipids to segregate by themselves into different phases at the nanoscale (nanodomains) is an intriguing feature that is yet to be fully characterized in vivo due to the proposed transient nature of these domains in living systems. Model lipid membranes, instead, have the advantage of (usually) greater phase stability, together with the possibility of fully controlling the system lipid composition. Atomic force microscopy (AFM) is a powerful tool to detect the presence of meso- and nanodomains in a lipid membrane. It also allows the direct quantification of nanomechanical resistance in each phase present. In this review, we explore the main kinds of lipid assemblies used as model membranes and describe AFM experiments on model membranes. In addition, we discuss how these assemblies have extended our knowledge of membrane biophysics over the last two decades, particularly in issues related to the variability of different model membranes and the impact of supports/cytoskeleton on lipid behavior, such as segregated domain size or bilayer leaflet uncoupling.
Collapse
|
24
|
Scott HL, Kennison KB, Enoki TA, Doktorova M, Kinnun JJ, Heberle FA, Katsaras J. Model Membrane Systems Used to Study Plasma Membrane Lipid Asymmetry. Symmetry (Basel) 2021; 13. [PMID: 35498375 PMCID: PMC9053528 DOI: 10.3390/sym13081356] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It is well known that the lipid distribution in the bilayer leaflets of mammalian plasma membranes (PMs) is not symmetric. Despite this, model membrane studies have largely relied on chemically symmetric model membranes for the study of lipid–lipid and lipid–protein interactions. This is primarily due to the difficulty in preparing stable, asymmetric model membranes that are amenable to biophysical studies. However, in the last 20 years, efforts have been made in producing more biologically faithful model membranes. Here, we review several recently developed experimental and computational techniques for the robust generation of asymmetric model membranes and highlight a new and particularly promising technique to study membrane asymmetry.
Collapse
Affiliation(s)
- Haden L. Scott
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Kristen B. Kennison
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Thais A. Enoki
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Jacob J. Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Frederick A. Heberle
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - John Katsaras
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| |
Collapse
|
25
|
Niko Y, Klymchenko AS. Emerging Solvatochromic Push-Pull Dyes for Monitoring the Lipid Order of Biomembranes in Live Cells. J Biochem 2021; 170:163-174. [PMID: 34213537 DOI: 10.1093/jb/mvab078] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Solvatochromic dyes have emerged as a new class of fluorescent probes in the field of lipid membranes due to their ability to identify the lipid organization of biomembranes in live cells by changing the color of their fluorescence. This type of solvatochromic function is useful for studying the heterogeneous features of biomembranes caused by the uneven distribution of lipids and cholesterols in live cells and related cellular processes. Therefore, a variety of advanced solvatochromic dyes have been rapidly developed over the last decade. To provide an overview of the works recently developed solvatochromic dyes have enabled, we herein present some solvatochromic dyes, with a particular focus on those based on pyrene and Nile red. As these dyes exhibit preferable photophysical properties in terms of fluorescence microscopy applications and unique distribution/localization in cellular compartments, some have already found applications in cell biological and biophysical studies. The goal of this review is to provide information to researchers who have never used solvatochromic dyes or who have not discovered applications of such dyes in biological studies.
Collapse
Affiliation(s)
- Yosuke Niko
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi, 780-8520, Japan
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch, France
| |
Collapse
|
26
|
Investigation of the domain line tension in asymmetric vesicles prepared via hemifusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183586. [PMID: 33647248 DOI: 10.1016/j.bbamem.2021.183586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/28/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
The plasma membrane (PM) is asymmetric in lipid composition. The distinct and characteristic lipid compositions of the exoplasmic and cytoplasmic leaflets lead to different lipid-lipid interactions and physical-chemical properties in each leaflet. The exoplasmic leaflet possesses an intrinsic ability to form coexisting ordered and disordered fluid domains, whereas the cytoplasmic leaflet seems to form a single fluid phase. To better understand the interleaflet interactions that influence domains, we compared asymmetric model membranes that capture salient properties of the PM with simpler symmetric membranes. Using asymmetric giant unilamellar vesicles (aGUVs) prepared by hemifusion with a supported lipid bilayer, we investigate the domain line tension that characterizes the behavior of coexisting ordered + disordered domains. The line tension can be related to the contact perimeter of the different phases. Compared to macroscopic phase separation, the appearance of modulated phases was found to be a robust indicator of a decrease in domain line tension. Symmetric GUVs of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC)/cholesterol (chol) were formed into aGUVs by replacing the GUV outer leaflet with DOPC/chol = 0.8/0.2 in order to create a cytoplasmic leaflet model. These aGUVs revealed lower line tension for the ordered + disordered domains of the exoplasmic model leaflet.
Collapse
|
27
|
Milardi D, Gazit E, Radford SE, Xu Y, Gallardo RU, Caflisch A, Westermark GT, Westermark P, Rosa CL, Ramamoorthy A. Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Chem Rev 2021; 121:1845-1893. [PMID: 33427465 PMCID: PMC10317076 DOI: 10.1021/acs.chemrev.0c00981] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possible link between hIAPP accumulation and β-cell death in diabetic patients has inspired numerous studies focusing on amyloid structures and aggregation pathways of this hormone. Recent studies have reported on the importance of early oligomeric intermediates, the many roles of their interactions with lipid membrane, pH, insulin, and zinc on the mechanism of aggregation of hIAPP. The challenges posed by the transient nature of amyloid oligomers, their structural heterogeneity, and the complex nature of their interaction with lipid membranes have resulted in the development of a wide range of biophysical and chemical approaches to characterize the aggregation process. While the cellular processes and factors activating hIAPP-mediated cytotoxicity are still not clear, it has recently been suggested that its impaired turnover and cellular processing by proteasome and autophagy may contribute significantly toward toxic hIAPP accumulation and, eventually, β-cell death. Therefore, studies focusing on the restoration of hIAPP proteostasis may represent a promising arena for the design of effective therapies. In this review we discuss the current knowledge of the structures and pathology associated with hIAPP self-assembly and point out the opportunities for therapy that a detailed biochemical, biophysical, and cellular understanding of its aggregation may unveil.
Collapse
Affiliation(s)
- Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, 95126 Catania, Italy
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 41809-1055, United States
| |
Collapse
|
28
|
Hossein A, Deserno M. Stiffening transition in asymmetric lipid bilayers: The role of highly ordered domains and the effect of temperature and size. J Chem Phys 2021; 154:014704. [PMID: 33412863 DOI: 10.1063/5.0028255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cellular membranes consist of a large variety of lipids and proteins, with a composition that generally differs between the two leaflets of the same bilayer. One consequence of this asymmetry is thought to be the emergence of differential stress, i.e., a mismatch in the lateral tension of the two leaflets. This can affect a membrane's mechanical properties; for instance, it can increase the bending rigidity once the differential stress exceeds a critical threshold. Using coarse-grained molecular dynamics simulations based on the MARTINI model, we show that this effect arises due to the formation of more highly ordered domains in the compressed leaflet. The threshold asymmetry increases with temperature, indicating that the transition to a stiffened regime might be restricted to a limited temperature range above the gel transition. We also show that stiffening occurs more readily for larger membranes with smaller typical curvatures, suggesting that the stiffening transition is easier to observe experimentally than in the small-scale systems accessible to simulation.
Collapse
Affiliation(s)
- Amirali Hossein
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
29
|
Staneva G, Watanabe C, Puff N, Yordanova V, Seigneuret M, Angelova MI. Amyloid-β Interactions with Lipid Rafts in Biomimetic Systems: A Review of Laboratory Methods. Methods Mol Biol 2021; 2187:47-86. [PMID: 32770501 DOI: 10.1007/978-1-0716-0814-2_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biomimetic lipid bilayer systems are a useful tool for modeling specific properties of cellular membranes in order to answer key questions about their structure and functions. This approach has prompted scientists from all over the world to create more and more sophisticated model systems in order to decipher the complex lateral and transverse organization of cellular plasma membranes. Among a variety of existing biomembrane domains, lipid rafts are defined as small, dynamic, and ordered assemblies of lipids and proteins, enriched in cholesterol and sphingolipids. Lipid rafts appear to be involved in the development of Alzheimer's disease (AD) by affecting the aggregation of the amyloid-β (Aβ) peptide at neuronal membranes thereby forming toxic oligomeric species. In this review, we summarize the laboratory methods which allow to study the interaction of Aβ with lipid rafts. We describe step by step protocols to form giant (GUVs) and large unilamellar vesicles (LUVs) containing raft-mimicking domains surrounded by membrane nonraft regions. Using fluorescence microscopy GUV imaging protocols, one can design experiments to visualize micron-scale raft-like domains, to determine the micron-scale demixing temperature of a given lipid mixture, construct phase diagram, and photogenerate domains in order to assess the dynamics of raft formation and raft size distribution. LUV fluorescence spectroscopy protocols with proper data analysis can be used to measure molecular packing of raft/nonraft regions of the membrane, to report on nanoscale raft formation and determine nanoscale demixing temperature. Because handling of the Aβ requires dedicated laboratory experience, we present illustrated protocols for Aβ-stock aliquoting, Aβ aqueous solubilization, oligomer preparation, determination of the Aβ concentration before and after filtration. Thioflavin binding, dynamic light scattering, and transmission electron microscopy protocols are described as complementary methods to detect Aβ aggregation kinetics, aggregate sizes, and morphologies of observed aggregates.
Collapse
Affiliation(s)
- Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Chiho Watanabe
- Komaba Institute for Science, The University of Tokyo, Tokyo, Japan
| | - Nicolas Puff
- Faculty of Science and Engineering, UFR 925 Physics, Sorbonne Université, Paris, France
- Laboratoire Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Université Paris Diderot - Paris 7, Université de Paris, Paris, France
| | - Vesela Yordanova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Michel Seigneuret
- Laboratoire Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Université Paris Diderot - Paris 7, Université de Paris, Paris, France
| | - Miglena I Angelova
- Faculty of Science and Engineering, UFR 925 Physics, Sorbonne Université, Paris, France
- Laboratoire Matière et Systèmes Complexes (MSC) UMR 7057 CNRS, Université Paris Diderot - Paris 7, Université de Paris, Paris, France
| |
Collapse
|
30
|
Foley S, Deserno M. Stabilizing Leaflet Asymmetry under Differential Stress in a Highly Coarse-Grained Lipid Membrane Model. J Chem Theory Comput 2020; 16:7195-7206. [PMID: 33126796 DOI: 10.1021/acs.jctc.0c00862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a version of the coarse-grained Cooke lipid model, modified to simulate asymmetric lipid membranes. It is inspired by a method employed by Wang et al. [ Commun. Comput. Phys. 2013, 13, 1093-1106] for artificially penalizing lipid flip-flop but copes more robustly with differential stress, at the cost of one additional bead per lipid and the concomitant increase in computational overhead. Bilayer asymmetry ultimately breaks down beyond a system size dependent critical differential stress, which can be predicted from a simple analytical model. We remeasure many important material parameters for the new model and find it to be consistent with typical fluid lipid membranes. Maintaining a stable stress asymmetry has many applications, and we give two examples: (i) connecting monolayer stress to lipid number asymmetry in order to directly measure the monolayer area modulus and (ii) finding its strain-dependent higher-order correction by monitoring the equilibrium bilayer area.
Collapse
Affiliation(s)
- Samuel Foley
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
31
|
Vázquez RF, Ovalle-García E, Antillón A, Ortega-Blake I, Bakás LS, Muñoz-Garay C, Maté SM. Asymmetric bilayers mimicking membrane rafts prepared by lipid exchange: Nanoscale characterization using AFM-Force spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183467. [PMID: 32871116 DOI: 10.1016/j.bbamem.2020.183467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 01/03/2023]
Abstract
Sphingolipids-enriched rafts domains are proposed to occur in plasma membranes and to mediate important cellular functions. Notwithstanding, the asymmetric transbilayer distribution of phospholipids that exists in the membrane confers the two leaflets different potentials to form lateral domains as next to no sphingolipids are present in the inner leaflet. How the physical properties of one leaflet can influence the properties of the other and its importance on signal transduction across the membrane are questions still unresolved. In this work, we combined AFM imaging and Force spectroscopy measurements to assess domain formation and to study the nanomechanical properties of asymmetric supported lipid bilayers (SLBs) mimicking membrane rafts. Asymmetric SLBs were formed by incorporating N-palmitoyl-sphingomyelin (16:0SM) into the outer leaflet of preformed 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC)/Cholesterol SLBs through methyl-β-cyclodextrin-mediated lipid exchange. Lipid domains were detected after incorporation of 16:0SM though their phase state varied from gel to liquid ordered (Lo) phase if the procedure was performed at 24 or 37 °C, respectively. When comparing symmetric and asymmetric Lo domains, differences in size and morphology were observed, with asymmetric domains being smaller and more interconnected. Both types of Lo domains showed similar mechanical stability in terms of rupture forces and Young's moduli. Notably, force curves in asymmetric domains presented two rupture events that could be attributed to the sequential rupture of a liquid disordered (Ld) and a Lo phase. Interleaflet coupling in asymmetric Lo domains could also be inferred from those measurements. The experimental approach outlined here would significantly enhance the applicability of membrane models.
Collapse
Affiliation(s)
- Romina F Vázquez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina; Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata, Argentina.
| | - Erasmo Ovalle-García
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, México
| | - Armando Antillón
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, México
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, México
| | - Laura S Bakás
- Centro de Investigación en Proteínas Vegetales (CIProVe), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900 La Plata, Argentina
| | - Carlos Muñoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, México
| | - Sabina M Maté
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT- La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina.
| |
Collapse
|
32
|
Lipid asymmetry of a model mitochondrial outer membrane affects Bax-dependent permeabilization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183241. [DOI: 10.1016/j.bbamem.2020.183241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 11/24/2022]
|
33
|
Lorent JH, Levental KR, Ganesan L, Rivera-Longsworth G, Sezgin E, Doktorova M, Lyman E, Levental I. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat Chem Biol 2020; 16:644-652. [PMID: 32367017 DOI: 10.1101/698837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 03/27/2020] [Indexed: 05/26/2023]
Abstract
A fundamental feature of cellular plasma membranes (PMs) is an asymmetric lipid distribution between the bilayer leaflets. However, neither the detailed, comprehensive compositions of individual PM leaflets nor how these contribute to structural membrane asymmetries have been defined. We report the distinct lipidomes and biophysical properties of both monolayers in living mammalian PMs. Phospholipid unsaturation is dramatically asymmetric, with the cytoplasmic leaflet being approximately twofold more unsaturated than the exoplasmic leaflet. Atomistic simulations and spectroscopy of leaflet-selective fluorescent probes reveal that the outer PM leaflet is more packed and less diffusive than the inner leaflet, with this biophysical asymmetry maintained in the endocytic system. The structural asymmetry of the PM is reflected in the asymmetric structures of protein transmembrane domains. These structural asymmetries are conserved throughout Eukaryota, suggesting fundamental cellular design principles.
Collapse
Affiliation(s)
- J H Lorent
- McGovern Medical School, Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - K R Levental
- McGovern Medical School, Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - L Ganesan
- McGovern Medical School, Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - E Sezgin
- John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- SciLifeLab, Karolinska Institute, Stockholm, Sweden
| | - M Doktorova
- McGovern Medical School, Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - E Lyman
- Department of Physics and Astronomy and Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - I Levental
- McGovern Medical School, Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
34
|
Hossein A, Deserno M. Spontaneous Curvature, Differential Stress, and Bending Modulus of Asymmetric Lipid Membranes. Biophys J 2019; 118:624-642. [PMID: 31954503 DOI: 10.1016/j.bpj.2019.11.3398] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 12/24/2022] Open
Abstract
Lipid bilayers can exhibit asymmetric states, in which the physical characteristics of one leaflet differ from those of the other. This most visibly manifests in a different lipid composition, but it can also involve opposing lateral stresses in each leaflet that combine to an overall vanishing membrane tension. Here, we use theoretical modeling and coarse-grained simulation to explore the interplay between a compositional asymmetry and a nonvanishing differential stress. Minimizing the total elastic energy leads to a preferred spontaneous curvature that balances torques due to both bending moments and differential stress, with sometimes unexpected consequences. For instance, asymmetric flat bilayers, whose specific areas in each leaflet are matched to those of corresponding tensionless symmetric flat membranes, still exhibit a residual differential stress because the conditions of vanishing area strain and vanishing bending moment differ. We also measure the curvature rigidity of asymmetric bilayers and find that a sufficiently strong differential stress, but not compositional asymmetry alone, can increase the bending modulus. The likely cause is a stiffening of the compressed leaflet, which appears to be related to its gel transition but not identical with it. We finally show that the impact of cholesterol on differential stress depends on the relative strength of elastic and thermodynamic driving forces: if cholesterol solvates equally well in both leaflets, it will redistribute to cancel both leaflet tensions almost completely, but if its partitioning free energy prefers one leaflet over the other, the resulting distribution bias may even create differential stress. Because cells keep most of their lipid bilayers in an asymmetric nonequilibrium steady state, our findings suggest that biomembranes are elastically more complex than previously thought: besides a spontaneous curvature, they might also exhibit significant differential stress, which could strongly affect their curvature energetics.
Collapse
Affiliation(s)
- Amirali Hossein
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
35
|
Lyman E, Sodt AJ. Differential or Curvature Stress? Modus Vivendi. Biophys J 2019; 118:535-537. [PMID: 32023440 DOI: 10.1016/j.bpj.2019.11.3399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 11/15/2022] Open
Affiliation(s)
- Edward Lyman
- Departments of Physics and Astronomy and Chemistry and Biochemistry, University of Delaware, Newark, Delaware.
| | - Alexander J Sodt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
36
|
Li G, Kakuda S, Suresh P, Canals D, Salamone S, London E. Replacing plasma membrane outer leaflet lipids with exogenous lipid without damaging membrane integrity. PLoS One 2019; 14:e0223572. [PMID: 31589646 PMCID: PMC6779269 DOI: 10.1371/journal.pone.0223572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/20/2019] [Indexed: 12/24/2022] Open
Abstract
We recently introduced a MαCD-based method to efficiently replace virtually the entire population of plasma membrane outer leaflet phospholipids and sphingolipids of cultured mammalian cells with exogenous lipids (Li et al, (2016) Proc. Natl. Acad. Sci USA 113:14025–14030). Here, we show if the lipid-to- MαCD ratio is too high or low, cells can round up and develop membrane leakiness. We found that this cell damage can be reversed/prevented if cells are allowed to recover from the exchange step by incubation in complete growth medium. After exchange and transfer to complete growth medium cell growth was similar to that of untreated cells. In some cases, cell damage was also prevented by carrying out exchange at close to room temperature (rather than at 37°C). Exchange with lipids that do (sphingomyelin) or do not (unsaturated phosphatidylcholine) support a high level of membrane order in lipid vesicles had the analogous effect on plasma membrane order, confirming exogenous lipid localization in the plasma membrane. Importantly, changes in lipid composition and plasma membrane properties after exchange and recovery persisted for several hours. Thus, it should be possible to use lipid exchange to investigate the effect of plasma membrane lipid composition upon several aspects of membrane structure and function.
Collapse
Affiliation(s)
- Guangtao Li
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
| | - Shinako Kakuda
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
| | - Pavana Suresh
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
| | - Daniel Canals
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Silvia Salamone
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Erwin London
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States of America
- * E-mail:
| |
Collapse
|
37
|
Heerklotz H, London E. Kiss and Run Asymmetric Vesicles to Investigate Coupling. Biophys J 2019; 117:1009-1011. [PMID: 31477242 DOI: 10.1016/j.bpj.2019.07.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022] Open
Affiliation(s)
- Heiko Heerklotz
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Signalling Research Centers BIOSS and CIBSS, Freiburg, Germany.
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York.
| |
Collapse
|
38
|
Danylchuk DI, Moon S, Xu K, Klymchenko AS. Switchable Solvatochromic Probes for Live-Cell Super-resolution Imaging of Plasma Membrane Organization. Angew Chem Int Ed Engl 2019; 58:14920-14924. [PMID: 31392763 DOI: 10.1002/anie.201907690] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/01/2019] [Indexed: 12/25/2022]
Abstract
Visualization of the nanoscale organization of cell membranes remains challenging because of the lack of appropriate fluorescent probes. Herein, we introduce a new design concept for super-resolution microscopy probes that combines specific membrane targeting, on/off switching, and environment sensing functions. A functionalization strategy for solvatochromic dye Nile Red that improves its photostability is presented. The dye is grafted to a newly developed membrane-targeting moiety composed of a sulfonate group and an alkyl chain of varied lengths. While the long-chain probe with strong membrane binding, NR12A, is suitable for conventional microscopy, the short-chain probe NR4A, owing to the reversible binding, enables first nanoscale cartography of the lipid order exclusively at the surface of live cells. The latter probe reveals the presence of nanoscopic protrusions and invaginations of lower lipid order in plasma membranes, suggesting a subtle connection between membrane morphology and lipid organization.
Collapse
Affiliation(s)
- Dmytro I Danylchuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch, France
| | - Seonah Moon
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch, France
| |
Collapse
|
39
|
Switchable Solvatochromic Probes for Live‐Cell Super‐resolution Imaging of Plasma Membrane Organization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907690] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
40
|
Helicobacter pylori lipids can form ordered membrane domains (rafts). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183050. [PMID: 31449801 DOI: 10.1016/j.bbamem.2019.183050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Ordered lipid domains (rafts) are generally considered to be features of eukaryotic cells, but ordered lipid domains formed by cholesterol lipids have been identified in bacteria from the genus Borrelia, and similar cholesterol lipids exist in the bacterium Helicobacter pylori. To determine whether H. pylori lipids could form ordered membrane domains, we investigated domain formation in aqueous dispersions of H. pylori whole lipid extracts, individual H. pylori lipids, or defined mixtures of H. pylori lipids and other membrane-forming lipids. DPH (1,6-diphenyl-1,3,5-hexatriene) anisotropy measurements were used to assay membrane order and FRET (Förster resonance energy transfer) was used to detect the presence of co-existing ordered and disordered domains. We found that H. pylori membrane lipid extracts spontaneously formed lipid domains. Domain formation was more stable when lipids were extracted from H. pylori cells grown in the presence of cholesterol. Certain isolated H. pylori lipids (by themselves or when mixed with other lipids) also had the ability to form ordered domains. To be specific, H. pylori cholesteryl-6-O-tetradecanoyl-α-D-glucopyranoside (CAG) and cholesterol-6-O-phosphatidyl-α-D-glucopyranoside (CPG) had the ability to form and/or stabilize ordered domain formation, while H. pylori phosphatidylethanolamine did not, behaving similarly to unsaturated phosphatidylethanolamines. We conclude that specific H. pylori cholesterol lipids have a marked ability to form ordered lipid domains.
Collapse
|
41
|
Enoki TA, Feigenson GW. Asymmetric Bilayers by Hemifusion: Method and Leaflet Behaviors. Biophys J 2019; 117:1037-1050. [PMID: 31493862 DOI: 10.1016/j.bpj.2019.07.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/13/2019] [Accepted: 07/08/2019] [Indexed: 01/03/2023] Open
Abstract
We describe a new method to prepare asymmetric giant unilamellar vesicles (aGUVs) via hemifusion. Hemifusion of giant unilamellar vesicles and a supported lipid bilayer, triggered by calcium, promotes the lipid exchange of the fused outer leaflets mediated by lipid diffusion. We used different fluorescent dyes to monitor the inner and the outer leaflets of the unsupported aGUVs. We confirmed that almost all newly exchanged lipids in the aGUVs are found in the outer leaflet of these asymmetric vesicles. In addition, we test the stability of the aGUVs formed by hemifusion in preserving their contents during the procedure. For aGUVs prepared from the hemifusion of giant unilamellar vesicles composed of 1,2-distearoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phosphocholine/cholesterol = 0.39/0.39/0.22 and a supported lipid bilayer of 1,2-dioleoyl-sn-glycero-3-phosphocholine/cholesterol = 0.8/0.2, we observed the exchanged lipids to alter the bilayer properties. To access the physical and chemical properties of the asymmetric bilayer, we monitored the dye partition coefficients of individual leaflets and the generalized polarization of the fluorescence probe 6-dodecanoyl-2-[ N-methyl-N-(carboxymethyl)amino] naphthalene, a sensor for the lipid packing/order of its surroundings. For a high percentage of lipid exchange (>70%), the dye partition indicates induced-disordered and induced-ordered domains. The induced domains have distinct lipid packing/order compared to the symmetric liquid-disordered and liquid-ordered domains.
Collapse
Affiliation(s)
- Thais A Enoki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York.
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| |
Collapse
|
42
|
Abstract
The lipid bilayer, together with embedded proteins, is the central structure in biomembranes. While artificial lipid bilayers are useful to model natural membranes, they are generally symmetric, with the same membrane lipid composition in each lipid monolayer (leaflet). In contrast, natural membranes are often asymmetric, with different lipids in each leaflet. To prepare asymmetric lipid vesicles, we developed cyclodextrin-catalyzed phospholipid exchange procedures. The basic method is that an excess of vesicles with one set of lipids (the donor vesicles) is mixed with a second set of vesicles (acceptor vesicles) with a different set of lipids. Cyclodextrin is introduced into the external aqueous solution, so that lipids in the outer leaflet of the vesicles bind to it and are shuttled between the vesicles. At equilibrium, the lipids in the outer leaflet of the acceptor vesicles are replaced by those from the donor vesicles. The exchanged acceptor vesicles are then isolated. Asymmetric vesicles are versatile in terms of vesicle sizes and lipid compositions that can be prepared. Measuring asymmetry is often difficult. A variety of assays can be used to measure the extent of asymmetry, but most are specific for one particular membrane lipid type or class, and there are none that can be used in all situations. Studies using asymmetric vesicles have begun to explore how asymmetry influences lipid movement across the bilayer, the formation of ordered lipid domains, coupling between the physical properties in each leaflet, and membrane protein conformation. Lipid domain formation stands out as one of the most important properties in which asymmetry is likely to be crucial. Lipid bilayers can exist in both liquidlike and solid/ordered-like states depending on lipid structure, and in lipid vesicles with a mixture of lipids highly ordered and disordered domains can coexist. However, until very recently, such studies only had been carried out in symmetric artificial membranes. Whether ordered domains (often called lipid rafts) and disordered lipid domains coexist in asymmetric cell membranes remains controversial partly because lipids favoring the formation of an ordered state are largely restricted to the leaflet facing the external environment. Studies using asymmetric vesicles have recently shown that each leaflet can influence the physical behavior of the other, i.e., that the domain forming properties in each leaflet tend to be coupled, with consequences highly dependent upon the details of lipid structure. Future studies investigating the dependence of coupling and properties upon the details of lipid composition should clarify the potential of natural membranes to form lipid domains. In addition, we recently extended the exchange method to living mammalian cells, using exchange to efficiently replace virtually the entire phospholipid and sphingolipid population of the plasma membrane outer leaflet with exogenous lipids without harming cells. This should allow detailed studies of the functional impact of lipid structure, asymmetry, domain organization, and interactions with membrane proteins in living cells.
Collapse
Affiliation(s)
- Erwin London
- Department of Biochemistry and Cell Biology and Department of Chemistry Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
43
|
Miettinen MS, Lipowsky R. Bilayer Membranes with Frequent Flip-Flops Have Tensionless Leaflets. NANO LETTERS 2019; 19:5011-5016. [PMID: 31056917 PMCID: PMC6750870 DOI: 10.1021/acs.nanolett.9b01239] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/03/2019] [Indexed: 05/28/2023]
Abstract
Biomembranes are built up from lipid bilayers with two leaflets that typically differ in their lipid composition. Each lipid molecule stays within one leaflet of the bilayer before it undergoes a transition, or flip-flop, to the other leaflet. The corresponding flip-flop times are very different for different lipid species and vary over several orders of magnitude. Here, we use molecular dynamics simulations to elucidate the consequences of this separation of time scales for compositionally asymmetric bilayers. We first study bilayers with two lipid components that do not undergo flip-flops on the accessible time scales. In such a situation, one must distinguish a bilayer state in which both leaflets have the same preferred area from another state in which each leaflet is tensionless. However, when we add a third lipid component that undergoes frequent flip-flops, the bilayer relaxes toward the state with tensionless leaflets, not to the state with equal preferred leaflet areas. Furthermore, we show that bilayers with compositional asymmetry acquire a significant spontaneous curvature even if both leaflets are tensionless. Our results can be extended to lipid bilayers with a large number of lipid components provided at least one of these components undergoes frequent flip-flops. For cellular membranes containing lipid pumps, the leaflet tensions also depend on the rates of protein-induced flip-flops.
Collapse
|
44
|
Pinkwart K, Schneider F, Lukoseviciute M, Sauka-Spengler T, Lyman E, Eggeling C, Sezgin E. Nanoscale dynamics of cholesterol in the cell membrane. J Biol Chem 2019; 294:12599-12609. [PMID: 31270209 PMCID: PMC6709632 DOI: 10.1074/jbc.ra119.009683] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/26/2019] [Indexed: 12/22/2022] Open
Abstract
Cholesterol constitutes ∼30-40% of the mammalian plasma membrane, a larger fraction than of any other single component. It is a major player in numerous signaling processes as well as in shaping molecular membrane architecture. However, our knowledge of the dynamics of cholesterol in the plasma membrane is limited, restricting our understanding of the mechanisms regulating its involvement in cell signaling. Here, we applied advanced fluorescence imaging and spectroscopy approaches on in vitro (model membranes) and in vivo (live cells and embryos) membranes as well as in silico analysis to systematically study the nanoscale dynamics of cholesterol in biological membranes. Our results indicate that cholesterol diffuses faster than phospholipids in live membranes, but not in model membranes. Interestingly, a detailed statistical diffusion analysis suggested two-component diffusion for cholesterol in the plasma membrane of live cells. One of these components was similar to a freely diffusing phospholipid analogue, whereas the other one was significantly faster. When a cholesterol analogue was localized to the outer leaflet only, the fast diffusion of cholesterol disappeared, and it diffused similarly to phospholipids. Overall, our results suggest that cholesterol diffusion in the cell membrane is heterogeneous and that this diffusional heterogeneity is due to cholesterol's nanoscale interactions and localization in the membrane.
Collapse
Affiliation(s)
- Kerstin Pinkwart
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Falk Schneider
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Martyna Lukoseviciute
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Edward Lyman
- Departments of Physics and Astronomy and Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| | - Christian Eggeling
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany.,Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
45
|
Abstract
Freely suspended liposomes are widely used as model membranes for studying lipid-lipid and protein-lipid interactions. Liposomes prepared by conventional methods have chemically identical bilayer leaflets. By contrast, living cells actively maintain different lipid compositions in the two leaflets of the plasma membrane, resulting in asymmetric membrane properties that are critical for normal cell function. Here, we present a protocol for the preparation of unilamellar asymmetric phospholipid vesicles that better mimic biological membranes. Asymmetry is generated by methyl-β-cyclodextrin-catalyzed exchange of the outer leaflet lipids between vesicle pools of differing lipid composition. Lipid destined for the outer leaflet of the asymmetric vesicles is provided by heavy-donor multilamellar vesicles containing a dense sucrose core. Donor lipid is exchanged into extruded unilamellar acceptor vesicles that lack the sucrose core, facilitating the post-exchange separation of the donor and acceptor pools by centrifugation because of differences in vesicle size and density. We present two complementary assays allowing quantification of each leaflet's lipid composition: the overall lipid composition is determined by gas chromatography-mass spectrometry, whereas the lipid distribution between the two leaflets is determined by NMR, using the lanthanide shift reagent Pr3+. The preparation protocol and the chromatographic assay can be applied to any type of phospholipid bilayer, whereas the NMR assay is specific to lipids with choline-containing headgroups, such as phosphatidylcholine and sphingomyelin. In ~12 h, the protocol can produce a large yield of asymmetric vesicles (up to 20 mg) suitable for a wide range of biophysical studies.
Collapse
|
46
|
Effect of sterol structure on ordered membrane domain (raft) stability in symmetric and asymmetric vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1112-1122. [PMID: 30904407 DOI: 10.1016/j.bbamem.2019.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
Abstract
Sterol structure influences liquid ordered domains in membranes, and the dependence of biological functions on sterol structure can help identify processes dependent on ordered domains. In this study we compared the effect of sterol structure on ordered domain formation in symmetric vesicles composed of mixtures of sphingomyelin, 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol, and in asymmetric vesicles in which sphingomyelin was introduced into the outer leaflet of vesicles composed of DOPC and cholesterol. In most cases, sterol behavior was similar in symmetric and asymmetric vesicles, with ordered domains most strongly stabilized by 7-dehydrocholesterol (7DHC) and cholesterol, stabilized to a moderate degree by lanosterol, epicholesterol and desmosterol, and very little if at all by 4-cholesten-3-one. However, in asymmetric vesicles desmosterol stabilized ordered domain almost as well as cholesterol, and to a much greater degree than epicholesterol, so that the ability to support ordered domains decreased in the order 7-DHC > cholesterol > desmosterol > lanosterol > epicholesterol > 4-cholesten-3-one. This contrasts with values for intermediate stabilizing sterols in symmetric vesicles in which the ranking was cholesterol > lanosterol ~ desmosterol ~ epicholesterol or prior studies in which the ranking was cholesterol ~ epicholesterol > lanosterol ~ desmosterol. The reasons for these differences are discussed. Based on these results, we re-evaluated our prior studies in cells and conclude that endocytosis levels and bacterial uptake are even more closely correlated with the ability of sterols to form ordered domains than previously thought, and do not necessarily require that a sterol have a 3β-OH group.
Collapse
|
47
|
Covino R, Hummer G, Ernst R. Integrated Functions of Membrane Property Sensors and a Hidden Side of the Unfolded Protein Response. Mol Cell 2019; 71:458-467. [PMID: 30075144 DOI: 10.1016/j.molcel.2018.07.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 12/26/2022]
Abstract
Eukaryotic cells face the challenge of maintaining the complex composition of several coexisting organelles. The molecular mechanisms underlying the homeostasis of subcellular membranes and their adaptation during stress are only now starting to emerge. Here, we discuss three membrane property sensors of the endoplasmic reticulum (ER), namely OPI1, MGA2, and IRE1, each controlling a large cellular program impacting the lipid metabolic network. OPI1 coordinates the production of membrane and storage lipids, MGA2 regulates the production of unsaturated fatty acids required for membrane biogenesis, and IRE1 controls the unfolded protein response (UPR) to adjust ER size, protein folding, and the secretory capacity of the cell. Although these proteins use remarkably distinct sensing mechanisms, they are functionally connected via the ER membrane and cooperate to maintain membrane homeostasis. As a rationalization of the recently described mechanism of UPR activation by lipid bilayer stress, we propose that IRE1 can sense the protein-to-lipid ratio in the ER membrane to ensure a balanced production of membrane proteins and lipids.
Collapse
Affiliation(s)
- Roberto Covino
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt am Main, Germany; Institute of Biophysics, Goethe University, 60438 Frankfurt am Main, Germany
| | - Robert Ernst
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Kirrberger Str. 100, Gebäude 61.4, 66421 Homburg, Germany.
| |
Collapse
|
48
|
Arriaga LR, Huang Y, Kim SH, Aragones JL, Ziblat R, Koehler SA, Weitz DA. Single-step assembly of asymmetric vesicles. LAB ON A CHIP 2019; 19:749-756. [PMID: 30672918 DOI: 10.1039/c8lc00882e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Asymmetric vesicles are membranes in which amphiphiles are asymmetrically distributed between each membrane leaflet. This asymmetry dictates chemical and physical properties of these vesicles, enabling their use as more realistic models of biological cell membranes, which also are asymmetric, and improves their potential for drug delivery and cosmetic applications. However, their fabrication is difficult as the self-assembly of amphiphiles always leads to symmetric vesicles. Here, we report the use of water-in-oil-in-oil-in-water triple emulsion drops to direct the assembly of the two leaflets to form asymmetric vesicles. Different compositions of amphiphiles are dissolved in each of the two oil shells of the triple emulsion; the amphiphiles diffuse to the interfaces and adsorb differentially at each of the two oil/water interfaces of the triple emulsion. These middle oil phases dewet from the innermost water cores of the triple emulsion drops, leading to the formation of membranes with degrees of asymmetry up to 70%. The triple emulsion drops are fabricated using capillary microfluidics, enabling production of highly monodisperse drops at rates as high as 300 Hz. Vesicles produced by this method can very efficiently encapsulate many different ingredients; this further enhances the utility of asymmetric vesicles as artificial cells, bioreactors and delivery vehicles.
Collapse
Affiliation(s)
- Laura R Arriaga
- School of Engineering and Applied Science and Department of Physics, Harvard University, 02138 Cambridge, MA, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Accurate In Silico Modeling of Asymmetric Bilayers Based on Biophysical Principles. Biophys J 2018; 115:1638-1643. [PMID: 30297133 DOI: 10.1016/j.bpj.2018.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 12/24/2022] Open
Abstract
Technological advances in the last decade have enabled the study of ever more complex and physiologically relevant model membranes to help dispel the mystery surrounding the role of plasma membrane asymmetry in various cellular processes. The slowly accumulating body of experimental data is fueling renewed interest in and the need for computational methods to support interpretations and address a wide range of problems that are still not amenable to direct experimental study. The specific appeal of molecular dynamics simulations for this purpose lies in their ability to access information at atomic resolution, which is useful for the formulation of testable mechanistic hypotheses. But, the range of questions that can be addressed reliably with such simulations is determined by the appropriate construction and simulation of asymmetric bilayer models. One essential way to achieve this goal is to follow rigorous biophysical criteria and principles. In this context, we show that the requirement for a robust comparison between the properties of simulated asymmetric and symmetric model membranes is for the tension in each bilayer leaflet to be zero. Commonly used methods for constructing asymmetric bilayers, including matching the average areas of the leaflets from the corresponding symmetric systems, do not ensure zero leaflet tension, thus precluding physically realistic changes in the areas of the two leaflets. We present, to our knowledge, a new method for identifying the ideal lipid packing in bilayers with different leaflet compositions that achieves the zero-tension goal, and discuss the basic principles underlying the biophysically correct computational study of asymmetric membranes.
Collapse
|
50
|
Methods of reconstitution to investigate membrane protein function. Methods 2018; 147:126-141. [DOI: 10.1016/j.ymeth.2018.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
|