1
|
Rankelytė G, Gelzinis A, Robert B, Valkunas L, Chmeliov J. Environment-dependent chlorophyll-chlorophyll charge transfer states in Lhca4 pigment-protein complex. FRONTIERS IN PLANT SCIENCE 2024; 15:1412750. [PMID: 39170787 PMCID: PMC11335733 DOI: 10.3389/fpls.2024.1412750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/02/2024] [Indexed: 08/23/2024]
Abstract
Photosystem I (PSI) light-harvesting antenna complexes LHCI contain spectral forms that absorb and emit photons of lower energy than that of its primary electron donor, P700. The most red-shifted fluorescence is associated with the Lhca4 complex. It has been suggested that this red emission is related to the inter-chlorophyll charge transfer (CT) states. In this work we present a systematic quantum-chemical study of the CT states in Lhca4, accounting for the influence of the protein environment by estimating the electrostatic interactions. We show that significant energy shifts result from these interactions and propose that the emission of the Lhca4 complex is related not only to the previously proposed a603+-a608- state, but also to the a602+-a603- state. We also investigate how different protonation patterns of protein amino acids affect the energetics of the CT states.
Collapse
Affiliation(s)
- Gabrielė Rankelytė
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius, Lithuania
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Andrius Gelzinis
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius, Lithuania
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Bruno Robert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Leonas Valkunas
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Jevgenij Chmeliov
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius, Lithuania
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Vilnius, Lithuania
| |
Collapse
|
2
|
Gelzinis A, Chmeliov J, Tutkus M, Vitulskienė E, Franckevičius M, Büchel C, Robert B, Valkunas L. Fluorescence quenching in aggregates of fucoxanthin-chlorophyll protein complexes: Interplay of fluorescing and dark states. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149030. [PMID: 38163538 DOI: 10.1016/j.bbabio.2023.149030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Diatoms, a major group of algae, account for about a quarter of the global primary production on Earth. These photosynthetic organisms face significant challenges due to light intensity variations in their underwater habitat. To avoid photodamage, they have developed very efficient non-photochemical quenching (NPQ) mechanisms. These mechanisms originate in their light-harvesting antenna - the fucoxanthin-chlorophyll protein (FCP) complexes. Spectroscopic studies of NPQ in vivo are often hindered by strongly overlapping signals from the photosystems and their antennae. Fortunately, in vitro FCP aggregates constitute a useful model system to study fluorescence (FL) quenching in diatoms. In this work, we present streak-camera FL measurements on FCPa and FCPb complexes, isolated from a centric diatom Cyclotella meneghiniana, and their aggregates. We find that spectra of non-aggregated FCP are dominated by a single fluorescing species, but the FL spectra of FCP aggregates additionally contain contributions from a redshifted emissive state. We relate this red state to a charge transfer state between chlorophyll c and chlorophyll a molecules. The FL quenching, on the other hand, is due to an additional dark state that involves incoherent energy transfer to the fucoxanthin carotenoids. Overall, the global picture of energy transfer and quenching in FCP aggregates is very similar to that of major light-harvesting complexes in higher plants (LHCII), but microscopic details between FCPs and LHCIIs differ significantly.
Collapse
Affiliation(s)
- Andrius Gelzinis
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, 10257 Vilnius, Lithuania; Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Ave. 9-III, 10222 Vilnius, Lithuania
| | - Jevgenij Chmeliov
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, 10257 Vilnius, Lithuania; Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Ave. 9-III, 10222 Vilnius, Lithuania
| | - Marijonas Tutkus
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, 10257 Vilnius, Lithuania; Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio Ave. 7, 10257 Vilnius, Lithuania
| | - Ernesta Vitulskienė
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, 10257 Vilnius, Lithuania
| | - Marius Franckevičius
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, 10257 Vilnius, Lithuania
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt, Germany
| | - Bruno Robert
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Leonas Valkunas
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, 10257 Vilnius, Lithuania; Institute of Chemical Physics, Faculty of Physics, Vilnius University, Saulėtekio Ave. 9-III, 10222 Vilnius, Lithuania.
| |
Collapse
|
3
|
Sláma V, Cupellini L, Mascoli V, Liguori N, Croce R, Mennucci B. Origin of Low-Lying Red States in the Lhca4 Light-Harvesting Complex of Photosystem I. J Phys Chem Lett 2023; 14:8345-8352. [PMID: 37702053 PMCID: PMC10518868 DOI: 10.1021/acs.jpclett.3c02091] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
The antenna complexes of Photosystem I present low-lying states visible as red-shifted and broadened absorption and fluorescence bands. Among these, Lhca4 has the most evident features of these "red" states, with a fluorescence band shifted by more than 25 nm from typical LHC emission. This signal arises from a mixing of exciton and charge-transfer (CT) states within the excitonically coupled a603-a609 chlorophyll (Chl) dimer. Here we combine molecular dynamics, multiscale quantum chemical calculations, and spectral simulations to uncover the molecular mechanism for the formation and tuning of exciton-CT interactions in Lhca4. We show that the coupling between exciton and CT states is extremely sensitive to tiny variations in the Chl dimer arrangement, explaining both the red-shifted bands and the switch between conformations with blue and red emission observed in single-molecule spectroscopy. Finally, we show that mutating the axial ligand of a603 diminishes the exciton-CT coupling, removing any red-state fingerprint.
Collapse
Affiliation(s)
- Vladislav Sláma
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, 56124 Pisa, Italy
| | - Vincenzo Mascoli
- Department
of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1082 HV Amsterdam, Netherlands
| | - Nicoletta Liguori
- Department
of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1082 HV Amsterdam, Netherlands
| | - Roberta Croce
- Department
of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, 1082 HV Amsterdam, Netherlands
| | - Benedetta Mennucci
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, 56124 Pisa, Italy
| |
Collapse
|
4
|
Bos PR, Schiphorst C, Kercher I, Buis S, de Jong D, Vunderink I, Wientjes E. Spectral diversity of photosystem I from flowering plants. PHOTOSYNTHESIS RESEARCH 2023; 155:35-47. [PMID: 36260271 PMCID: PMC9792416 DOI: 10.1007/s11120-022-00971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Photosystem I and II (PSI and PSII) work together to convert solar energy into chemical energy. Whilst a lot of research has been done to unravel variability of PSII fluorescence in response to biotic and abiotic factors, the contribution of PSI to in vivo fluorescence measurements has often been neglected or considered to be constant. Furthermore, little is known about how the absorption and emission properties of PSI from different plant species differ. In this study, we have isolated PSI from five plant species and compared their characteristics using a combination of optical and biochemical techniques. Differences have been identified in the fluorescence emission spectra and at the protein level, whereas the absorption spectra were virtually the same in all cases. In addition, the emission spectrum of PSI depends on temperature over a physiologically relevant range from 280 to 298 K. Combined, our data show a critical comparison of the absorption and emission properties of PSI from various plant species.
Collapse
Affiliation(s)
- Peter R Bos
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen, The Netherlands
| | - Christo Schiphorst
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen, The Netherlands
| | - Ian Kercher
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen, The Netherlands
| | - Sieka Buis
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen, The Netherlands
| | - Djanick de Jong
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen, The Netherlands
| | - Igor Vunderink
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen, The Netherlands
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET, Wageningen, The Netherlands.
| |
Collapse
|
5
|
Schiphorst C, Achterberg L, Gómez R, Koehorst R, Bassi R, van Amerongen H, Dall’Osto L, Wientjes E. The role of light-harvesting complex I in excitation energy transfer from LHCII to photosystem I in Arabidopsis. PLANT PHYSIOLOGY 2022; 188:2241-2252. [PMID: 34893885 PMCID: PMC8968287 DOI: 10.1093/plphys/kiab579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/13/2021] [Indexed: 05/26/2023]
Abstract
Photosynthesis powers nearly all life on Earth. Light absorbed by photosystems drives the conversion of water and carbon dioxide into sugars. In plants, photosystem I (PSI) and photosystem II (PSII) work in series to drive the electron transport from water to NADP+. As both photosystems largely work in series, a balanced excitation pressure is required for optimal photosynthetic performance. Both photosystems are composed of a core and light-harvesting complexes (LHCI) for PSI and LHCII for PSII. When the light conditions favor the excitation of one photosystem over the other, a mobile pool of trimeric LHCII moves between both photosystems thus tuning their antenna cross-section in a process called state transitions. When PSII is overexcited multiple LHCIIs can associate with PSI. A trimeric LHCII binds to PSI at the PsaH/L/O site to form a well-characterized PSI-LHCI-LHCII supercomplex. The binding site(s) of the "additional" LHCII is still unclear, although a mediating role for LHCI has been proposed. In this work, we measured the PSI antenna size and trapping kinetics of photosynthetic membranes from Arabidopsis (Arabidopsis thaliana) plants. Membranes from wild-type (WT) plants were compared to those of the ΔLhca mutant that completely lacks the LHCI antenna. The results showed that "additional" LHCII complexes can transfer energy directly to the PSI core in the absence of LHCI. However, the transfer is about two times faster and therefore more efficient, when LHCI is present. This suggests LHCI mediates excitation energy transfer from loosely bound LHCII to PSI in WT plants.
Collapse
Affiliation(s)
- Christo Schiphorst
- Dipartimento di Biotecnologie, Università di Verona, 37134 Verona, Italy
- Laboratory of Biophysics, Wageningen University, 6700 ET Wageningen, The Netherlands
| | - Luuk Achterberg
- Laboratory of Biophysics, Wageningen University, 6700 ET Wageningen, The Netherlands
| | - Rodrigo Gómez
- Dipartimento di Biotecnologie, Università di Verona, 37134 Verona, Italy
| | - Rob Koehorst
- Laboratory of Biophysics, Wageningen University, 6700 ET Wageningen, The Netherlands
- MicroSpectroscopy Research Facility, Wageningen University, 6700 ET Wageningen, The Netherlands
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, 37134 Verona, Italy
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, 6700 ET Wageningen, The Netherlands
- MicroSpectroscopy Research Facility, Wageningen University, 6700 ET Wageningen, The Netherlands
| | - Luca Dall’Osto
- Dipartimento di Biotecnologie, Università di Verona, 37134 Verona, Italy
| | | |
Collapse
|
6
|
Photosynthetic Protein-Based Edible Quality Formation in Various Porphyra dentata Harvests Determined by Label-Free Proteomics Analysis. Cells 2022; 11:cells11071136. [PMID: 35406700 PMCID: PMC8997503 DOI: 10.3390/cells11071136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022] Open
Abstract
The influence of harvest time on the photosynthetic protein quality of the red alga Porphyra dentata was determined using label-free proteomics. Of 2716 differentially abundant proteins that were identified in this study, 478 were upregulated and 374 were downregulated. The top enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) pathways were metabolic processes and biosynthetic pathways such as photosynthesis, light harvesting, and carbon fixation in photosynthetic organisms. Nine important photosynthetic proteins were screened. Correlations among their expression levels were contrasted and verified by western blotting. PSII D1 and 44-kDa protein levels increased with later harvest time and increased light exposure. Specific photoprotective protein expression accelerated P. dentata growth and development. Biological processes such as photosynthesis and carbon cycling increased carbohydrate metabolism and decreased the total protein content. The results of the present study provide a scientific basis for the optimization of the culture and harvest of P. dentata.
Collapse
|
7
|
Russo M, Casazza AP, Cerullo G, Santabarbara S, Maiuri M. Direct Evidence for Excitation Energy Transfer Limitations Imposed by Low-Energy Chlorophylls in Photosystem I-Light Harvesting Complex I of Land Plants. J Phys Chem B 2021; 125:3566-3573. [PMID: 33788560 PMCID: PMC8154617 DOI: 10.1021/acs.jpcb.1c01498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The overall efficiency
of photosynthetic energy conversion depends
both on photochemical and excitation energy transfer processes from
extended light-harvesting antenna networks. Understanding the trade-offs
between increase in the antenna cross section and bandwidth and photochemical
conversion efficiency is of central importance both from a biological
perspective and for the design of biomimetic artificial photosynthetic
complexes. Here, we employ two-dimensional electronic spectroscopy
to spectrally resolve the excitation energy transfer dynamics and
directly correlate them with the initial site of excitation in photosystem
I–light harvesting complex I (PSI-LHCI) supercomplex of land
plants, which has both a large antenna dimension and a wide optical
bandwidth extending to energies lower than the peak of the reaction
center chlorophylls. Upon preferential excitation of the low-energy
chlorophylls (red forms), the average relaxation time in the bulk
supercomplex increases by a factor of 2–3 with respect to unselective
excitation at higher photon energies. This slowdown is interpreted
in terms of an excitation energy transfer limitation from low-energy
chlorophyll forms in the PSI-LHCI. These results aid in defining the
optimum balance between the extension of the antenna bandwidth to
the near-infrared region, which increases light-harvesting capacity,
and high photoconversion quantum efficiency.
Collapse
Affiliation(s)
- Mattia Russo
- Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Anna Paola Casazza
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133 Milano, Italy
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Stefano Santabarbara
- Photosynthesis Research Unit, Centro Studi sulla Biologia Cellulare e Molecolare delle Piante, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milano, Italy
| | - Margherita Maiuri
- Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
8
|
Giovagnetti V, Ruban AV. The mechanism of regulation of photosystem I cross-section in the pennate diatom Phaeodactylum tricornutum. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:561-575. [PMID: 33068431 DOI: 10.1093/jxb/eraa478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Photosystems possess distinct fluorescence emissions at low (77K) temperature. PSI emits in the long-wavelength region at ~710-740 nm. In diatoms, a successful clade of marine primary producers, the contribution of PSI-associated emission (710-717 nm) has been shown to be relatively small. However, in the pennate diatom Phaeodactylum tricornutum, the source of the long-wavelength emission at ~710 nm (F710) remains controversial. Here, we addressed the origin and modulation of F710 fluorescence in this alga grown under continuous and intermittent light. The latter condition led to a strong enhancement in F710. Biochemical and spectral properties of the photosynthetic complexes isolated from thylakoid membranes were investigated for both culture conditions. F710 emission appeared to be associated with PSI regardless of light acclimation. To further assess whether PSII could also contribute to this emission, we decreased the concentration of PSII reaction centres and core antenna by growing cells with lincomycin, a chloroplast protein synthesis inhibitor. The treatment did not diminish F710 fluorescence. Our data suggest that F710 emission originates from PSI under the conditions tested and is enhanced in intermittent light-grown cells due to increased energy flow from the FCP antenna to PSI.
Collapse
Affiliation(s)
- Vasco Giovagnetti
- Department of Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Alexander V Ruban
- Department of Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
9
|
Bag P, Chukhutsina V, Zhang Z, Paul S, Ivanov AG, Shutova T, Croce R, Holzwarth AR, Jansson S. Direct energy transfer from photosystem II to photosystem I confers winter sustainability in Scots Pine. Nat Commun 2020; 11:6388. [PMID: 33319777 PMCID: PMC7738668 DOI: 10.1038/s41467-020-20137-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022] Open
Abstract
Evergreen conifers in boreal forests can survive extremely cold (freezing) temperatures during long dark winter and fully recover during summer. A phenomenon called "sustained quenching" putatively provides photoprotection and enables their survival, but its precise molecular and physiological mechanisms are not understood. To unveil them, here we have analyzed seasonal adjustment of the photosynthetic machinery of Scots pine (Pinus sylvestris) trees by monitoring multi-year changes in weather, chlorophyll fluorescence, chloroplast ultrastructure, and changes in pigment-protein composition. Analysis of Photosystem II and Photosystem I performance parameters indicate that highly dynamic structural and functional seasonal rearrangements of the photosynthetic apparatus occur. Although several mechanisms might contribute to 'sustained quenching' of winter/early spring pine needles, time-resolved fluorescence analysis shows that extreme down-regulation of photosystem II activity along with direct energy transfer from photosystem II to photosystem I play a major role. This mechanism is enabled by extensive thylakoid destacking allowing for the mixing of PSII with PSI complexes. These two linked phenomena play crucial roles in winter acclimation and protection.
Collapse
Affiliation(s)
- Pushan Bag
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Volha Chukhutsina
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Life Sciences, Imperial College London, London, UK
| | - Zishan Zhang
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Shandong, China
| | - Suman Paul
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Alexander G Ivanov
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tatyana Shutova
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alfred R Holzwarth
- Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden.
| |
Collapse
|
10
|
Cherepanov DA, Shelaev IV, Gostev FE, Aybush AV, Mamedov MD, Shuvalov VA, Semenov AY, Nadtochenko VA. Generation of ion-radical chlorophyll states in the light-harvesting antenna and the reaction center of cyanobacterial photosystem I. PHOTOSYNTHESIS RESEARCH 2020; 146:55-73. [PMID: 32144697 DOI: 10.1007/s11120-020-00731-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/24/2020] [Indexed: 05/09/2023]
Abstract
The energy and charge-transfer processes in photosystem I (PS I) complexes isolated from cyanobacteria Thermosynechococcus elongatus and Synechocystis sp. PCC 6803 were investigated by pump-to-probe femtosecond spectroscopy. The formation of charge-transfer (CT) states in excitonically coupled chlorophyll a complexes (exciplexes) was monitored by measuring the electrochromic shift of β-carotene in the spectral range 500-510 nm. The excitation of high-energy chlorophyll in light-harvesting antenna of both species was not accompanied by immediate appearance of an electrochromic shift. In PS I from T. elongatus, the excitation of long-wavelength chlorophyll (LWC) caused a pronounced electrochromic effect at 502 nm assigned to the appearance of CT states of chlorophyll exciplexes. The formation of ion-radical pair P700+A1- at 40 ps was limited by energy transfer from LWC to the primary donor P700 and accompanied by carotenoid bleach at 498 nm. In PS I from Synechocystis 6803, the excitation at 720 nm produced an immediate bidentate bleach at 690/704 nm and synchronous carotenoid response at 508 nm. The bidentate bleach was assigned to the formation of primary ion-radical state PB+Chl2B-, where negative charge is localized predominantly at the accessory chlorophyll molecule in the branch B, Chl2B. The following decrease of carotenoid signal at ~ 5 ps was ascribed to electron transfer to the more distant molecule Chl3B. The reduction of phylloquinone in the sites A1A and A1B was accompanied by a synchronous blue-shift of the carotenoid response to 498 nm, pointing to fast redistribution of unpaired electron between two branches in favor of the state PB+A1A-.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.
| | - Ivan V Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Fedor E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Arseniy V Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Mahir D Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Kosygina st., 4, Moscow, Russia, 117991
| | - Vladimir A Shuvalov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Kosygina st., 4, Moscow, Russia, 117991
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Kosygina st., 4, Moscow, Russia, 117991
| | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Croce R, van Amerongen H. Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy. Science 2020; 369:369/6506/eaay2058. [PMID: 32820091 DOI: 10.1126/science.aay2058] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxygenic photosynthesis is the main process that drives life on earth. It starts with the harvesting of solar photons that, after transformation into electronic excitations, lead to charge separation in the reaction centers of photosystems I and II (PSI and PSII). These photosystems are large, modular pigment-protein complexes that work in series to fuel the formation of carbohydrates, concomitantly producing molecular oxygen. Recent advances in cryo-electron microscopy have enabled the determination of PSI and PSII structures in complex with light-harvesting components called "supercomplexes" from different organisms at near-atomic resolution. Here, we review the structural and spectroscopic aspects of PSI and PSII from plants and algae that directly relate to their light-harvesting properties, with special attention paid to the pathways and efficiency of excitation energy transfer and the regulatory aspects.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| | | |
Collapse
|
12
|
Chukhutsina VU, Liu X, Xu P, Croce R. Light-harvesting complex II is an antenna of photosystem I in dark-adapted plants. NATURE PLANTS 2020; 6:860-868. [PMID: 32572215 DOI: 10.1038/s41477-020-0693-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 05/14/2020] [Indexed: 05/19/2023]
Abstract
Photosystem I (PSI) is a major player in the light reactions of photosynthesis. In higher plants, it consists of a core complex and four external antennae, Lhca1-4 forming the PSI-light-harvesting complex I (LHCI) supercomplex. The protein and pigment composition as well as the spectroscopic properties of this complex are considered to be identical in different higher plant species. In addition to the four Lhca, a pool of mobile LHCII increases the antenna size of PSI under most light conditions. In this work, we have first investigated purified PSI complexes and then PSI in vivo upon long-term dark-adaptation of four well-studied plant species: Arabidopsis thaliana, Zea mays, Nicotiana tabacum and Hordeum vulgare. By performing time-resolved fluorescence measurements, we show that LHCII is associated with PSI also in a dark-adapted state in all the plant species investigated. The number of LHCII subunits per PSI is plant-dependent, varying between one and three. Furthermore, we show that the spectroscopic properties of PSI-LHCI supercomplexes differ in different plants.
Collapse
Affiliation(s)
- Volha U Chukhutsina
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, Amsterdam, the Netherlands
| | - Xin Liu
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, Amsterdam, the Netherlands
| | - Pengqi Xu
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, Amsterdam, the Netherlands
| | - Roberta Croce
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
13
|
Mascoli V, Gelzinis A, Chmeliov J, Valkunas L, Croce R. Light-harvesting complexes access analogue emissive states in different environments. Chem Sci 2020; 11:5697-5709. [PMID: 32874506 PMCID: PMC7441578 DOI: 10.1039/d0sc00781a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/17/2020] [Indexed: 11/21/2022] Open
Abstract
The light-harvesting complexes (LHCs) of plants can regulate the level of excitation in the photosynthetic membrane under fluctuating light by switching between different functional states with distinct fluorescence properties. One of the most fascinating yet obscure aspects of this regulation is how the vast conformational landscape of LHCs is modulated in different environments. Indeed, while in isolated antennae the highly fluorescent light-harvesting conformation dominates, LHC aggregates display strong fluorescence quenching, representing therefore a model system for the process of energy dissipation developed by plants to avoid photodamage in high light. This marked difference between the isolated and oligomeric conditions has led to the widespread belief that aggregation is the trigger for the photoprotective state of LHCs. Here, a detailed analysis of time-resolved fluorescence experiments performed on aggregates of CP29 - a minor LHC of plants - provides new insights into the heterogeneity of emissive states of this antenna. A comparison with the data on isolated CP29 reveals that, though aggregation can stabilize short-lived conformations to a certain extent, the massive quenching upon protein clustering is mainly achieved by energetic connectivity between complexes that maintain the same long-lived and dissipative states accessed in the isolated form. Our results also explain the typical far-red enhancement in the emission of antenna oligomers in terms of a sub-population of long-lived redshifted complexes competing with quenched complexes in the energy trapping. Finally, the role of selected chlorophylls in shaping the conformational landscape of the antenna is also addressed by studying mutants lacking specific pigments.
Collapse
Affiliation(s)
- Vincenzo Mascoli
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics , Faculty of Sciences , Vrije Universiteit Amsterdam , De Boelelaan 1081 , 1081 HV Amsterdam , The Netherlands .
| | - Andrius Gelzinis
- Institute of Chemical Physics , Faculty of Physics , Vilnius University , Sauletekio Ave. 9 , LT-10222 Vilnius , Lithuania
- Department of Molecular Compound Physics , Center for Physical Sciences and Technology , Sauletekio Ave. 3 , LT-10257 Vilnius , Lithuania
| | - Jevgenij Chmeliov
- Institute of Chemical Physics , Faculty of Physics , Vilnius University , Sauletekio Ave. 9 , LT-10222 Vilnius , Lithuania
- Department of Molecular Compound Physics , Center for Physical Sciences and Technology , Sauletekio Ave. 3 , LT-10257 Vilnius , Lithuania
| | - Leonas Valkunas
- Institute of Chemical Physics , Faculty of Physics , Vilnius University , Sauletekio Ave. 9 , LT-10222 Vilnius , Lithuania
- Department of Molecular Compound Physics , Center for Physical Sciences and Technology , Sauletekio Ave. 3 , LT-10257 Vilnius , Lithuania
| | - Roberta Croce
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics , Faculty of Sciences , Vrije Universiteit Amsterdam , De Boelelaan 1081 , 1081 HV Amsterdam , The Netherlands .
| |
Collapse
|
14
|
Does maximal entropy production play a role in the evolution of biological complexity? A biological point of view. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2020. [DOI: 10.1007/s12210-020-00909-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Crepin A, Kučerová Z, Kosta A, Durand E, Caffarri S. Isolation and characterization of a large photosystem I-light-harvesting complex II supercomplex with an additional Lhca1-a4 dimer in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:398-409. [PMID: 31811681 DOI: 10.1111/tpj.14634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 05/24/2023]
Abstract
The biological conversion of light energy into chemical energy is performed by a flexible photosynthetic machinery located in the thylakoid membranes. Photosystems I and II (PSI and PSII) are the two complexes able to harvest light. PSI is the last complex of the electron transport chain and is composed of multiple subunits: the proteins building the catalytic core complex that are well conserved between oxygenic photosynthetic organisms, and, in green organisms, the membrane light-harvesting complexes (Lhc) necessary to increase light absorption. In plants, four Lhca proteins (Lhca1-4) make up the antenna system of PSI, which can be further extended to optimize photosynthesis by reversible binding of LHCII, the main antenna complex of photosystem II. Here, we used biochemistry and electron microscopy in Arabidopsis to reveal a previously unknown supercomplex of PSI with LHCII that contains an additional Lhca1-a4 dimer bound on the PsaB-PsaI-PsaH side of the complex. This finding contradicts recent structural studies suggesting that the presence of an Lhca dimer at this position is an exclusive feature of algal PSI. We discuss the features of the additional Lhca dimer in the large plant PSI-LHCII supercomplex and the differences with the algal PSI. Our work provides further insights into the intricate structural plasticity of photosystems.
Collapse
Affiliation(s)
- Aurélie Crepin
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, 13009, Marseille, France
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, 379 81, Třeboň, Czech Republic
| | - Zuzana Kučerová
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, 13009, Marseille, France
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Artemis Kosta
- Microscopy Core Facility, Institut de Microbiologie de la Méditerranée (IMM), FR3479, CNRS, Aix-Marseille University, Marseille, France
| | - Eric Durand
- Aix-Marseille Université, CNRS, Institut de Microbiologie de la Méditerranée (IMM), Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), UMR 7255, 13402, Marseille cedex 09, France
| | - Stefano Caffarri
- Aix Marseille Université, CEA, CNRS, Biosciences and Biotechnologies Institute of Aix-Marseille (BIAM), Equipe de Luminy de Génétique et Biophysique des Plantes, 13009, Marseille, France
| |
Collapse
|
16
|
Szewczyk S, Abram M, Białek R, Haniewicz P, Karolczak J, Gapiński J, Kargul J, Gibasiewicz K. On the nature of uncoupled chlorophylls in the extremophilic photosystem I-light harvesting I supercomplex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148136. [PMID: 31825811 DOI: 10.1016/j.bbabio.2019.148136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/18/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023]
Abstract
Photosystem I core-light-harvesting antenna supercomplexes (PSI-LHCI) were isolated from the extremophilic red alga Cyanidioschyzon merolae and studied by three fluorescence techniques in order to characterize chlorophylls (Chls) energetically uncoupled from the PSI reaction center (RC). Such Chls are observed in virtually all optical experiments of any PSI core and PSI-LHCI supercomplex preparations across various species and may influence the operation of PSI-based solar cells and other biohybrid systems. However, the nature of the uncoupled Chls (uChls) has never been explored deeply before. In this work, the amount of uChls was controlled by stirring the solution of C. merolae PSI-LHCI supercomplex samples at elevated temperature (~303 K) and was found to increase from <2% in control samples up to 47% in solutions stirred for 3.5 h. The fluorescence spectrum of uChls was found to be blue-shifted by ~20 nm (to ~680 nm) relative to the fluorescence band from Chls that are well coupled to PSI RC. This effect indicates that mechanical stirring leads to disappearance of some red Chls (emitting at above ~700 nm) that are present in the intact LHCI antenna associated with the PSI core. Comparative diffusion studies of control and stirred samples by fluorescence correlation spectroscopy together with biochemical analysis by SDS-PAGE and BN-PAGE indicate that energetically uncoupled Lhcr subunits are likely to be still physically attached to the PSI core, albeit with altered three-dimensional organization due to the mechanical stress.
Collapse
Affiliation(s)
- Sebastian Szewczyk
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Mateusz Abram
- Solar Fuels Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland; Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Rafał Białek
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Patrycja Haniewicz
- Solar Fuels Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Jerzy Karolczak
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Jacek Gapiński
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Joanna Kargul
- Solar Fuels Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| | - Krzysztof Gibasiewicz
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland.
| |
Collapse
|
17
|
Bos P, Oosterwijk A, Koehorst R, Bader A, Philippi J, van Amerongen H, Wientjes E. Digitonin-sensitive LHCII enlarges the antenna of Photosystem I in stroma lamellae of Arabidopsis thaliana after far-red and blue-light treatment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:651-658. [PMID: 31299182 DOI: 10.1016/j.bbabio.2019.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 06/14/2019] [Accepted: 07/07/2019] [Indexed: 11/16/2022]
Abstract
Light drives photosynthesis. In plants it is absorbed by light-harvesting antenna complexes associated with Photosystem I (PSI) and photosystem II (PSII). As PSI and PSII work in series, it is important that the excitation pressure on the two photosystems is balanced. When plants are exposed to illumination that overexcites PSII, a special pool of the major light-harvesting complex LHCII is phosphorylated and moves from PSII to PSI (state 2). If instead PSI is over-excited the LHCII complex is dephosphorylated and moves back to PSII (state 1). Recent findings have suggested that LHCII might also transfer energy to PSI in state 1. In this work we used a combination of biochemistry and (time-resolved) fluorescence spectroscopy to investigate the PSI antenna size in state 1 and state 2 for Arabidopsis thaliana. Our data shows that 0.7 ± 0.1 unphosphorylated LHCII trimers per PSI are present in the stroma lamellae of state-1 plants. Upon transition to state 2 the antenna size of PSI in the stroma membrane increases with phosphorylated LHCIIs to a total of 1.2 ± 0.1 LHCII trimers per PSI. Both phosphorylated and unphosphorylated LHCII function as highly efficient PSI antenna.
Collapse
Affiliation(s)
- Peter Bos
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, the Netherlands
| | - Anniek Oosterwijk
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, the Netherlands
| | - Rob Koehorst
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, the Netherlands; MicroSpectroscopy Research Facility, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, the Netherlands
| | - Arjen Bader
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, the Netherlands; MicroSpectroscopy Research Facility, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, the Netherlands
| | - John Philippi
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, the Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, the Netherlands; MicroSpectroscopy Research Facility, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, the Netherlands
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, the Netherlands.
| |
Collapse
|
18
|
Cherubin A, Destefanis L, Bovi M, Perozeni F, Bargigia I, de la Cruz Valbuena G, D’Andrea C, Romeo A, Ballottari M, Perduca M. Encapsulation of Photosystem I in Organic Microparticles Increases Its Photochemical Activity and Stability for Ex Vivo Photocatalysis. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2019; 7:10435-10444. [PMID: 31372325 PMCID: PMC6662883 DOI: 10.1021/acssuschemeng.9b00738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/19/2019] [Indexed: 05/08/2023]
Abstract
Photosystem I (PSI) is a pigment binding multisubunit protein complex involved in the light phase of photosynthesis, catalyzing a light-dependent electron transfer reaction from plastocyanin to ferredoxin. PSI is characterized by a photochemical efficiency close to one, suggesting its possible application in light-dependent redox reaction in an extracellular context. The stability of PSI complexes isolated from plant cells is however limited if not embedded in a protective environment. Here we show an innovative solution for exploiting the photochemical properties of PSI, by encapsulation of isolated PSI complexes in PLGA (poly lactic-co-glycolic acid) organic microparticles. These encapsulated PSI complexes were able to catalyze light-dependent redox reactions with electron acceptors and donors outside the PLGA microparticles. Moreover, PSI complexes encapsulated in PLGA microparticles were characterized by a higher photochemical activity and stability compared with PSI complexes in detergent solution, suggesting their possible application for ex vivo photocatalysis.
Collapse
Affiliation(s)
- Arianna Cherubin
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Laura Destefanis
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Michele Bovi
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Federico Perozeni
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Ilaria Bargigia
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
- Georgia
Institute of Technology, School of Chemistry
and Biochemistry, 901
Atlantic Drive, Atlanta, Georgia 30332-0400, United States
| | - Gabriel de la Cruz Valbuena
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
- Department
of Physics, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy
| | - Cosimo D’Andrea
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
- Department
of Physics, Politecnico di Milano, P.za L. da Vinci 32, 20133 Milano, Italy
| | - Alessandro Romeo
- Department
of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Matteo Ballottari
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Massimiliano Perduca
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
19
|
Chukhutsina VU, Holzwarth AR, Croce R. Time-resolved fluorescence measurements on leaves: principles and recent developments. PHOTOSYNTHESIS RESEARCH 2019; 140:355-369. [PMID: 30478711 PMCID: PMC6509100 DOI: 10.1007/s11120-018-0607-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/15/2018] [Indexed: 05/03/2023]
Abstract
Photosynthesis starts when a pigment in the photosynthetic antennae absorbs a photon. The electronic excitation energy is then transferred through the network of light-harvesting pigments to special chlorophyll (Chl) molecules in the reaction centres, where electron transfer is initiated. Energy transfer and primary electron transfer processes take place on timescales ranging from femtoseconds to nanoseconds, and can be monitored in real time via time-resolved fluorescence spectroscopy. This method is widely used for measurements on unicellular photosynthetic organisms, isolated photosynthetic membranes, and individual complexes. Measurements on intact leaves remain a challenge due to their high structural heterogeneity, high scattering, and high optical density, which can lead to optical artefacts. However, detailed information on the dynamics of these early steps, and the underlying structure-function relationships, is highly informative and urgently required in order to get deeper insights into the physiological regulation mechanisms of primary photosynthesis. Here, we describe a current methodology of time-resolved fluorescence measurements on intact leaves in the picosecond to nanosecond time range. Principles of fluorescence measurements on intact leaves, possible sources of alterations of fluorescence kinetics and the ways to overcome them are addressed. We also describe how our understanding of the organisation and function of photosynthetic proteins and energy flow dynamics in intact leaves can be enriched through the application of time-resolved fluorescence spectroscopy on leaves. For that, an example of a measurement on Zea mays leaves is presented.
Collapse
Affiliation(s)
- Volha U Chukhutsina
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Alfred R Holzwarth
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Roberta Croce
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Fan M, Sun X, Liao Z, Wang J, Li Y, Xu N. Comparative proteomic analysis of Ulva prolifera response to high temperature stress. Proteome Sci 2018; 16:17. [PMID: 30386183 PMCID: PMC6204280 DOI: 10.1186/s12953-018-0145-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/07/2018] [Indexed: 11/10/2022] Open
Abstract
Background Ulva prolifera belongs to green macroalgae and is the dominant species of green tide. It is distributed worldwide and is therefore subject to high-temperature stress during the growth process. However, the adaptation mechanisms of the response of U. prolifera to high temperatures have not been clearly investigated yet. Methods In this study, isobaric tags for relative and absolute quantitation (iTRAQ) labelling was applied in combination with the liquid chromatography-tandem mass spectrometry (LC-MS/MS) to conduct comparative proteomic analysis of the response of U. prolifera to high-temperature stress and to elucidate the involvement of this response in adaptation mechanisms. Differentially expressed proteins (DEPs) of U. prolifera under high temperature (denote UpHT) compared with the control (UpC) were identified. Bioinformatic analyses including GO analysis, pathway analysis, and pathway enrichment analysis was performed to analyse the key metabolic pathways that underlie the thermal tolerance mechanism through protein networks. Quantitative real-time PCR and western blot were performed to validate selected proteins. Results In the present study, 1223 DEPs were identified under high temperature compared with the control, which included 790 up-regulated and 433 down-regulated proteins. The high-temperature stimulus mainly induced the expression of glutathione S-transferase, heat shock protein, ascorbate peroxidase, manganese superoxide dismutase, ubiquitin-related protein, lhcSR, rubisco activase, serine/threonine protein kinase 2, adenylate kinase, Ca2+-dependent protein kinase (CDPK), disease resistance protein EDS1, metacaspase type II, NDPK2a, 26S proteasome regulatory subunit, ubiquinone oxidoreductase, ATP synthase subunit, SnRK2s, and cytochrome P450. The down-regulated proteins were photosynthesis-related proteins, glutathione reductase, catalase-peroxidase, thioredoxin, thioredoxin peroxidase, PP2C, and carbon fixation-related proteins. Furthermore, biological index analysis indicated that protein content and SOD activity decreased; the value of Fv/Fm dropped to the lowest point after culture for 96 h. However, APX activity and MDA content increased under high temperature. Conclusion The present study implied an increase in proteins that were associated with the stress response, oxidative phosphorylation, the cytokinin signal transduction pathway, the abscisic acid signal transduction pathway, and the glutathione metabolism pathway. Proteins that were associated with photosynthesis, carbon fixation in photosynthesis organisms, and the photosynthesis antenna protein pathway were decreased. These pathways played a pivotal role in high temperature regulation. These novel proteins provide a good starting point for further research into their functions using genetic or other approaches. These findings significantly improve the understanding of the molecular mechanisms involved in the tolerance of algae to high-temperature stress. Electronic supplementary material The online version of this article (10.1186/s12953-018-0145-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Meihua Fan
- 1Marine Sciences and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316000 China
| | - Xue Sun
- 2Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211 China
| | - Zhi Liao
- 1Marine Sciences and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316000 China
| | - Jianxin Wang
- 1Marine Sciences and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang, 316000 China
| | - Yahe Li
- 2Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211 China
| | - Nianjun Xu
- 2Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211 China
| |
Collapse
|
21
|
Pan X, Ma J, Su X, Cao P, Chang W, Liu Z, Zhang X, Li M. Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. Science 2018; 360:1109-1113. [PMID: 29880686 DOI: 10.1126/science.aat1156] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/16/2018] [Indexed: 01/15/2023]
Abstract
Plants regulate photosynthetic light harvesting to maintain balanced energy flux into photosystems I and II (PSI and PSII). Under light conditions favoring PSII excitation, the PSII antenna, light-harvesting complex II (LHCII), is phosphorylated and forms a supercomplex with PSI core and the PSI antenna, light-harvesting complex I (LHCI). Both LHCI and LHCII then transfer excitation energy to the PSI core. We report the structure of maize PSI-LHCI-LHCII solved by cryo-electron microscopy, revealing the recognition site between LHCII and PSI. The PSI subunits PsaN and PsaO are observed at the PSI-LHCI interface and the PSI-LHCII interface, respectively. Each subunit relays excitation to PSI core through a pair of chlorophyll molecules, thus revealing previously unseen paths for energy transfer between the antennas and the PSI core.
Collapse
Affiliation(s)
- Xiaowei Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Jun Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xiaodong Su
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Peng Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Wenrui Chang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhenfeng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P.R. China.,Center for Biological Imaging, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China.
| |
Collapse
|
22
|
Akhtar P, Zhang C, Liu Z, Tan HS, Lambrev PH. Excitation transfer and trapping kinetics in plant photosystem I probed by two-dimensional electronic spectroscopy. PHOTOSYNTHESIS RESEARCH 2018; 135:239-250. [PMID: 28808836 DOI: 10.1007/s11120-017-0427-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/01/2017] [Indexed: 05/24/2023]
Abstract
Photosystem I is a robust and highly efficient biological solar engine. Its capacity to utilize virtually every absorbed photon's energy in a photochemical reaction generates great interest in the kinetics and mechanisms of excitation energy transfer and charge separation. In this work, we have employed room-temperature coherent two-dimensional electronic spectroscopy and time-resolved fluorescence spectroscopy to follow exciton equilibration and excitation trapping in intact Photosystem I complexes as well as core complexes isolated from Pisum sativum. We performed two-dimensional electronic spectroscopy measurements with low excitation pulse energies to record excited-state kinetics free from singlet-singlet annihilation. Global lifetime analysis resolved energy transfer and trapping lifetimes closely matches the time-correlated single-photon counting data. Exciton energy equilibration in the core antenna occurred on a timescale of 0.5 ps. We further observed spectral equilibration component in the core complex with a 3-4 ps lifetime between the bulk Chl states and a state absorbing at 700 nm. Trapping in the core complex occurred with a 20 ps lifetime, which in the supercomplex split into two lifetimes, 16 ps and 67-75 ps. The experimental data could be modelled with two alternative models resulting in equally good fits-a transfer-to-trap-limited model and a trap-limited model. However, the former model is only possible if the 3-4 ps component is ascribed to equilibration with a "red" core antenna pool absorbing at 700 nm. Conversely, if these low-energy states are identified with the P700 reaction centre, the transfer-to-trap-model is ruled out in favour of a trap-limited model.
Collapse
Affiliation(s)
- Parveen Akhtar
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Cheng Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Zhengtang Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Howe-Siang Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| | - Petar H Lambrev
- Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, 6726, Hungary.
| |
Collapse
|
23
|
Jennings RC, Belgio E, Zucchelli G. Photosystem I, when excited in the chlorophyll Q y absorption band, feeds on negative entropy. Biophys Chem 2017; 233:36-46. [PMID: 29287184 DOI: 10.1016/j.bpc.2017.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/10/2017] [Accepted: 12/16/2017] [Indexed: 11/27/2022]
Abstract
It is often suggested that Life may lay outside the normal laws of Physics and particularly of Thermodynamics, though this point of view is refuted by many. As the Living State may be thought of as an open system, often far from equilibrium, most attempts at placing Life under the umbrella of the laws of Physics have been based, particularly in recent years, on non-equilibrium Thermodynamics and particularly the Maximum Entropy Production Principle. In this view it is the dissipation of entropy (heat) which permits the ever increasing complexity of Living Systems in biological evolution and the maintenance of this complexity. However, these studies usually consider such biological entities as whole cells, organs, whole organisms and even Life itself at the entire terrestrial level. This requires making assumptions concerning the Living State, which are often not soundly based on observation and lack a defined model structure. The present study is based on an entirely different approach, in which a classical thermodynamic analysis of a well-defined biological nanoparticle, plant Photosystem I, is performed. This photosynthetic structure, which absorbs light and performs primary and secondary charge separation, operates with a quantum efficiency close to one. It is demonstrated that when monochromatic light is absorbed by the lowest lying electronic transition, the chlorophyll Qy transition, entropy production in the system bath plus entropy changes internal to the system are numerically less than the entropy decrease of the light field. A Second Law violation is therefore suggested for these experimental conditions. This conclusion, while at first sight is supportive of the famous and much discussed statement of Schroedinger, that "Life feeds on negentropy", is analysed and the conditions in which this statement may be considered valid for a Plant Photosystem are defined and delimited. The remarkably high quantum efficiency, leading to minimal entropy production (energy wastage), seems to suggest that evolution of Photosystem I has gone down the road of maximal energy efficiency as distinct from maximal entropy production. Photosystem I cannot be considered a maximum entropy dissipation structure.
Collapse
Affiliation(s)
- Robert C Jennings
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, sede di Milano, via Giovanni Celoria 26, 20133 Milano, Italy; Dipartimento di Bioscienze, Università degli Studi di Milano, via Giovanni Celoria 26, 20133 Milano, Italy.
| | - Erica Belgio
- Institute of Microbiology, CAS, Centre Algatech, Novohradska 237, Opatovický mlýn, Trebon 379 81, Czech Republic
| | - Giuseppe Zucchelli
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, sede di Milano, via Giovanni Celoria 26, 20133 Milano, Italy; Dipartimento di Bioscienze, Università degli Studi di Milano, via Giovanni Celoria 26, 20133 Milano, Italy
| |
Collapse
|
24
|
Mascia F, Girolomoni L, Alcocer MJP, Bargigia I, Perozeni F, Cazzaniga S, Cerullo G, D'Andrea C, Ballottari M. Functional analysis of photosynthetic pigment binding complexes in the green alga Haematococcus pluvialis reveals distribution of astaxanthin in Photosystems. Sci Rep 2017; 7:16319. [PMID: 29176710 PMCID: PMC5701160 DOI: 10.1038/s41598-017-16641-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/15/2017] [Indexed: 11/09/2022] Open
Abstract
Astaxanthin is a ketocarotenoid produced by photosynthetic microalgae. It is a pigment of high industrial interest in acquaculture, cosmetics, and nutraceutics due to its strong antioxidant power. Haematococcus pluvialis, a fresh-water microalga, accumulates high levels of astaxanthin upon oxidative stress, reaching values up to 5% per dry weight. H. pluvialis accumulates astaxanthin in oil droplets in the cytoplasm, while the chloroplast volume is reduced. In this work, we investigate the biochemical and spectroscopic properties of the H. pluvialis pigment binding complexes responsible for light harvesting and energy conversion. Our findings demonstrate that the main features of chlorophyll and carotenoid binding complexes previously reported for higher plants or Chlamydomonas reinhardtii are preserved under control conditions. Transition to astaxanthin rich cysts however leads to destabilization of the Photosystems. Surprisingly, astaxanthin was found to be bound to both Photosystem I and II, partially substituting β-carotene, and thus demonstrating possible astaxanthin biosynthesis in the plastids or transport from the cytoplasm to the chloroplast. Astaxanthin binding to Photosystems does not however improve their photoprotection, but rather reduces the efficiency of excitation energy transfer to the reaction centers. We thus propose that astaxanthin binding partially destabilizes Photosystem I and II.
Collapse
Affiliation(s)
- Francesco Mascia
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I-37134, Verona, Italy
| | - Laura Girolomoni
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I-37134, Verona, Italy
| | - Marcelo J P Alcocer
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133, Milano, Italy
| | - Ilaria Bargigia
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133, Milano, Italy
| | - Federico Perozeni
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I-37134, Verona, Italy
| | - Stefano Cazzaniga
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I-37134, Verona, Italy
| | - Giulio Cerullo
- IFN-CNR, Department of Physics, Politecnico di Milano, P.za L. da Vinci 32, 20133, Milano, Italy
| | - Cosimo D'Andrea
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133, Milano, Italy.,IFN-CNR, Department of Physics, Politecnico di Milano, P.za L. da Vinci 32, 20133, Milano, Italy
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I-37134, Verona, Italy.
| |
Collapse
|
25
|
Molotokaite E, Remelli W, Casazza AP, Zucchelli G, Polli D, Cerullo G, Santabarbara S. Trapping Dynamics in Photosystem I-Light Harvesting Complex I of Higher Plants Is Governed by the Competition Between Excited State Diffusion from Low Energy States and Photochemical Charge Separation. J Phys Chem B 2017; 121:9816-9830. [DOI: 10.1021/acs.jpcb.7b07064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Egle Molotokaite
- Centro
Studi sulla Biologia Cellulare e Molecolare delle Piante, CNR, Via Celoria 26, 20133 Milan, Italy
| | - William Remelli
- Centro
Studi sulla Biologia Cellulare e Molecolare delle Piante, CNR, Via Celoria 26, 20133 Milan, Italy
| | - Anna Paola Casazza
- Istituto
di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15a, 20133 Milano, Italy
| | - Giuseppe Zucchelli
- Centro
Studi sulla Biologia Cellulare e Molecolare delle Piante, CNR, Via Celoria 26, 20133 Milan, Italy
| | - Dario Polli
- Istituto di Fotonica e Nanotecnologie del CNR, Dipartimento di Fisica, Politecnico di Milano, P.zza Leonardo
da Vinci 32, 20133 Milano, Italy
- Center
for Nano Science and Technology at Polimi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milano, Italy
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie del CNR, Dipartimento di Fisica, Politecnico di Milano, P.zza Leonardo
da Vinci 32, 20133 Milano, Italy
| | - Stefano Santabarbara
- Centro
Studi sulla Biologia Cellulare e Molecolare delle Piante, CNR, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
26
|
Mazor Y, Borovikova A, Caspy I, Nelson N. Structure of the plant photosystem I supercomplex at 2.6 Å resolution. NATURE PLANTS 2017; 3:17014. [PMID: 28248295 DOI: 10.1038/nplants.2017.14] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/25/2017] [Indexed: 05/21/2023]
Abstract
Four elaborate membrane complexes carry out the light reaction of oxygenic photosynthesis. Photosystem I (PSI) is one of two large reaction centres responsible for converting light photons into the chemical energy needed to sustain life. In the thylakoid membranes of plants, PSI is found together with its integral light-harvesting antenna, light-harvesting complex I (LHCI), in a membrane supercomplex containing hundreds of light-harvesting pigments. Here, we report the crystal structure of plant PSI-LHCI at 2.6 Å resolution. The structure reveals the configuration of PsaK, a core subunit important for state transitions in plants, a conserved network of water molecules surrounding the electron transfer centres and an elaborate structure of lipids bridging PSI and its LHCI antenna. We discuss the implications of the structure for energy transfer and the evolution of PSI.
Collapse
Affiliation(s)
- Yuval Mazor
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anna Borovikova
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ido Caspy
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nathan Nelson
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
27
|
Bos I, Bland KM, Tian L, Croce R, Frankel LK, van Amerongen H, Bricker TM, Wientjes E. Multiple LHCII antennae can transfer energy efficiently to a single Photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:371-378. [PMID: 28237494 DOI: 10.1016/j.bbabio.2017.02.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/31/2023]
Abstract
Photosystems I and II (PSI and PSII) work in series to drive oxygenic photosynthesis. The two photosystems have different absorption spectra, therefore changes in light quality can lead to imbalanced excitation of the photosystems and a loss in photosynthetic efficiency. In a short-term adaptation response termed state transitions, excitation energy is directed to the light-limited photosystem. In higher plants a special pool of LHCII antennae, which can be associated with either PSI or PSII, participates in these state transitions. It is known that one LHCII antenna can associate with the PsaH site of PSI. However, membrane fractions were recently isolated in which multiple LHCII antennae appear to transfer energy to PSI. We have used time-resolved fluorescence-streak camera measurements to investigate the energy transfer rates and efficiency in these membrane fractions. Our data show that energy transfer from LHCII to PSI is relatively slow. Nevertheless, the trapping efficiency in supercomplexes of PSI with ~2.4 LHCIIs attached is 94%. The absorption cross section of PSI can thus be increased with ~65% without having significant loss in quantum efficiency. Comparison of the fluorescence dynamics of PSI-LHCII complexes, isolated in a detergent or located in their native membrane environment, indicates that the environment influences the excitation energy transfer rates in these complexes. This demonstrates the importance of studying membrane protein complexes in their natural environment.
Collapse
Affiliation(s)
- Inge Bos
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, The Netherlands
| | - Kaitlyn M Bland
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Lijin Tian
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Laurie K Frankel
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, The Netherlands; MicroSpectroscopy Centre, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, The Netherlands
| | - Terry M Bricker
- Department of Biological Sciences, Biochemistry and Molecular Biology Section, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, P.O. Box 8128, 6700 ET Wageningen, The Netherlands.
| |
Collapse
|
28
|
High photochemical trapping efficiency in Photosystem I from the red clade algae Chromera velia and Phaeodactylum tricornutum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:56-63. [DOI: 10.1016/j.bbabio.2016.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 11/23/2022]
|
29
|
Alboresi A, Le Quiniou C, Yadav SKN, Scholz M, Meneghesso A, Gerotto C, Simionato D, Hippler M, Boekema EJ, Croce R, Morosinotto T. Conservation of core complex subunits shaped the structure and function of photosystem I in the secondary endosymbiont alga Nannochloropsis gaditana. THE NEW PHYTOLOGIST 2017; 213:714-726. [PMID: 27620972 PMCID: PMC5216901 DOI: 10.1111/nph.14156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/13/2016] [Indexed: 05/03/2023]
Abstract
Photosystem I (PSI) is a pigment protein complex catalyzing the light-driven electron transport from plastocyanin to ferredoxin in oxygenic photosynthetic organisms. Several PSI subunits are highly conserved in cyanobacteria, algae and plants, whereas others are distributed differentially in the various organisms. Here we characterized the structural and functional properties of PSI purified from the heterokont alga Nannochloropsis gaditana, showing that it is organized as a supercomplex including a core complex and an outer antenna, as in plants and other eukaryotic algae. Differently from all known organisms, the N. gaditana PSI supercomplex contains five peripheral antenna proteins, identified by proteome analysis as type-R light-harvesting complexes (LHCr4-8). Two antenna subunits are bound in a conserved position, as in PSI in plants, whereas three additional antennae are associated with the core on the other side. This peculiar antenna association correlates with the presence of PsaF/J and the absence of PsaH, G and K in the N. gaditana genome and proteome. Excitation energy transfer in the supercomplex is highly efficient, leading to a very high trapping efficiency as observed in all other PSI eukaryotes, showing that although the supramolecular organization of PSI changed during evolution, fundamental functional properties such as trapping efficiency were maintained.
Collapse
Affiliation(s)
- Alessandro Alboresi
- Dipartimento di BiologiaUniversità di PadovaVia U. Bassi 58/B35121PadovaItaly
| | - Clotilde Le Quiniou
- Department of Physics and Astronomy and Institute for Lasers, Life and BiophotonicsFaculty of SciencesVU University AmsterdamDe Boelelaan 10811081 HVAmsterdamthe Netherlands
| | - Sathish K. N. Yadav
- Electron Microscopy GroupGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 79747 AGGroningenthe Netherlands
| | - Martin Scholz
- Institute of Plant Biology and BiotechnologyUniversity of MünsterMünster48143Germany
| | - Andrea Meneghesso
- Dipartimento di BiologiaUniversità di PadovaVia U. Bassi 58/B35121PadovaItaly
| | - Caterina Gerotto
- Dipartimento di BiologiaUniversità di PadovaVia U. Bassi 58/B35121PadovaItaly
| | - Diana Simionato
- Dipartimento di BiologiaUniversità di PadovaVia U. Bassi 58/B35121PadovaItaly
| | - Michael Hippler
- Institute of Plant Biology and BiotechnologyUniversity of MünsterMünster48143Germany
| | - Egbert J. Boekema
- Electron Microscopy GroupGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenNijenborgh 79747 AGGroningenthe Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy and Institute for Lasers, Life and BiophotonicsFaculty of SciencesVU University AmsterdamDe Boelelaan 10811081 HVAmsterdamthe Netherlands
| | - Tomas Morosinotto
- Dipartimento di BiologiaUniversità di PadovaVia U. Bassi 58/B35121PadovaItaly
| |
Collapse
|
30
|
Polukhina I, Fristedt R, Dinc E, Cardol P, Croce R. Carbon Supply and Photoacclimation Cross Talk in the Green Alga Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2016; 172:1494-1505. [PMID: 27637747 PMCID: PMC5100783 DOI: 10.1104/pp.16.01310] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/12/2016] [Indexed: 05/03/2023]
Abstract
Photosynthetic organisms are exposed to drastic changes in light conditions, which can affect their photosynthetic efficiency and induce photodamage. To face these changes, they have developed a series of acclimation mechanisms. In this work, we have studied the acclimation strategies of Chlamydomonas reinhardtii, a model green alga that can grow using various carbon sources and is thus an excellent system in which to study photosynthesis. Like other photosynthetic algae, it has evolved inducible mechanisms to adapt to conditions where carbon supply is limiting. We have analyzed how the carbon availability influences the composition and organization of the photosynthetic apparatus and the capacity of the cells to acclimate to different light conditions. Using electron microscopy, biochemical, and fluorescence measurements, we show that differences in CO2 availability not only have a strong effect on the induction of the carbon-concentrating mechanisms but also change the acclimation strategy of the cells to light. For example, while cells in limiting CO2 maintain a large antenna even in high light and switch on energy-dissipative mechanisms, cells in high CO2 reduce the amount of pigments per cell and the antenna size. Our results show the high plasticity of the photosynthetic apparatus of C. reinhardtii This alga is able to use various photoacclimation strategies, and the choice of which to activate strongly depends on the carbon availability.
Collapse
Affiliation(s)
- Iryna Polukhina
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands (I.P., R.F., E.D., R.C.); and
- Genetics and Physiology of Microalgae, Institut de Botanique, Université de Liège, 4000 Liege, Belgium (P.C.)
| | - Rikard Fristedt
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands (I.P., R.F., E.D., R.C.); and
- Genetics and Physiology of Microalgae, Institut de Botanique, Université de Liège, 4000 Liege, Belgium (P.C.)
| | - Emine Dinc
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands (I.P., R.F., E.D., R.C.); and
- Genetics and Physiology of Microalgae, Institut de Botanique, Université de Liège, 4000 Liege, Belgium (P.C.)
| | - Pierre Cardol
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands (I.P., R.F., E.D., R.C.); and
- Genetics and Physiology of Microalgae, Institut de Botanique, Université de Liège, 4000 Liege, Belgium (P.C.)
| | - Roberta Croce
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands (I.P., R.F., E.D., R.C.); and
- Genetics and Physiology of Microalgae, Institut de Botanique, Université de Liège, 4000 Liege, Belgium (P.C.)
| |
Collapse
|
31
|
Akhtar P, Lingvay M, Kiss T, Deák R, Bóta A, Ughy B, Garab G, Lambrev PH. Excitation energy transfer between Light-harvesting complex II and Photosystem I in reconstituted membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:462-72. [DOI: 10.1016/j.bbabio.2016.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 12/01/2022]
|
32
|
Novoderezhkin VI, Croce R, Wahadoszamen M, Polukhina I, Romero E, van Grondelle R. Mixing of exciton and charge-transfer states in light-harvesting complex Lhca4. Phys Chem Chem Phys 2016; 18:19368-77. [DOI: 10.1039/c6cp02225a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structure-based modeling of spectra of the wild-type Lhca4 and NH mutant enables us to build the exciton model of the complex that includes a charge-transfer state mixed with the excited-state manifold.
Collapse
Affiliation(s)
| | - Roberta Croce
- Department of Biophysics
- Faculty of Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
- The Netherlands
| | - Md. Wahadoszamen
- Department of Biophysics
- Faculty of Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
- The Netherlands
| | - Iryna Polukhina
- Department of Biophysics
- Faculty of Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
- The Netherlands
| | - Elisabet Romero
- Department of Biophysics
- Faculty of Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
- The Netherlands
| | - Rienk van Grondelle
- Department of Biophysics
- Faculty of Sciences
- VU University Amsterdam
- 1081 HV Amsterdam
- The Netherlands
| |
Collapse
|
33
|
Hasni I, Msilini N, Hamdani S, Tajmir-Riahi HA, Carpentier R. Characterization of the structural changes and photochemical activity of photosystem I under Al(3+) effect. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 149:292-9. [PMID: 26123191 DOI: 10.1016/j.jphotobiol.2015.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/08/2015] [Accepted: 06/14/2015] [Indexed: 11/27/2022]
Abstract
The photochemical activity of photosystem I (PSI) as affected by Al(3+) was investigated in thylakoid membranes and PSI submembrane fractions isolated from spinach. Biophysical and biochemical techniques such as oxygen uptake, light induced absorbance changes at 820nm, chlorophyll fluorescence emission, SDS-polyacrylamide gel electrophoresis, and FTIR spectroscopy have been used to analyze the sites and action modes of this cation on the PSI complex. Our results showed that Al(3+) above 3mM induces changes in the redox state of P700 reflected by an increase of P700 photooxidation phase and a delay of the slower rate of P700 re-reduction which reveals that Al(3+) exerted an inhibitory action at the donor side of PSI especially at plastocyanin (PC). Furthermore, results of P700 photooxidation monitored in the presence of DCMU with or without MV suggested that the same range of Al(3+) concentrations impairs the photochemical reaction centers (RC) of PSI, as shown by the decline in the amount of active population of P700, and disrupts the charge separation between P700 and the primary electron acceptor A0 leading to the inhibition of electron transfer at the acceptor side of PSI. These inhibitory actions were also accompanied by an impairment of the energy transfer from light harvesting complex (LHCI) to RC of PSI, following the disconnection of LHCI antenna as illustrated by an enhancement of chlorophyll fluorescence emission spectra at low temperature (77K). The above results coincided with FTIR measurements that indicated a conformational change of the protein secondary structures in PSI complex where 25% of α-helix was converted into β-sheet, β-antiparallel and turn structures. These structural changes in PSI complex proteins are closely related with the alteration photochemical activity of PSI including the inhibition of the electron transport through both acceptor and donor sides of PSI.
Collapse
Affiliation(s)
- Imed Hasni
- Groupe de Recherche en Biologie Végétale, Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Trois-Rivières, Qc G9A 5H7, Canada
| | - Najoua Msilini
- Laboratory of Physiology and Biochemistry of Salt Tolerance in Plants, Faculty of Sciences of Tunis, Campus University, 1060, Tunisia
| | - Saber Hamdani
- Plant Systems Biology Group, Partner Institute of Computational Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Heidar-Ali Tajmir-Riahi
- Groupe de Recherche en Biologie Végétale, Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Trois-Rivières, Qc G9A 5H7, Canada
| | - Robert Carpentier
- Groupe de Recherche en Biologie Végétale, Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Trois-Rivières, Qc G9A 5H7, Canada.
| |
Collapse
|
34
|
Abstract
Oxygenic photosynthesis is the principal converter of sunlight into chemical energy on Earth. Cyanobacteria and plants provide the oxygen, food, fuel, fibers, and platform chemicals for life on Earth. The conversion of solar energy into chemical energy is catalyzed by two multisubunit membrane protein complexes, photosystem I (PSI) and photosystem II (PSII). Light is absorbed by the pigment cofactors, and excitation energy is transferred among the antennae pigments and converted into chemical energy at very high efficiency. Oxygenic photosynthesis has existed for more than three billion years, during which its molecular machinery was perfected to minimize wasteful reactions. Light excitation transfer and singlet trapping won over fluorescence, radiation-less decay, and triplet formation. Photosynthetic reaction centers operate in organisms ranging from bacteria to higher plants. They are all evolutionarily linked. The crystal structure determination of photosynthetic protein complexes sheds light on the various partial reactions and explains how they are protected against wasteful pathways and why their function is robust. This review discusses the efficiency of photosynthetic solar energy conversion.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel;
| | | |
Collapse
|
35
|
Jennings RC, Zucchelli G. Antenna entropy in plant photosystems does not reduce the free energy for primary charge separation. Biophys Chem 2014; 195:16-21. [PMID: 25190479 DOI: 10.1016/j.bpc.2014.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 11/17/2022]
Abstract
We have investigated the concept of the so-called "antenna entropy" of higher plant photosystems. Several interesting points emerge: 1. In the case of a photosystemwhich harbours an excited state, the “antenna entropy” is equivalent to the configurational (mixing) entropy of a thermodynamic canonical ensemble. The energy associated with this parameter has been calculated for a hypothetical isoenergetic photosystem, photosystem I and photosystem II, and comes out in the range of 3.5 - 8% of the photon energy considering 680 nm. 2. The “antenna entropy” seems to be a rather unique thermodynamic phenomenon, in as much as it does not modify the free energy available for primary photochemistry, as has been previously suggested. 3. It is underlined that this configurational (mixing) entropy, unlike heat dispersal in a thermal system, does not involve energy dilution. This points out an important difference between thermal and electronic energy dispersal.
Collapse
Affiliation(s)
- Robert C Jennings
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, sede di Milano, via Giovanni Celoria 26, 20133 Milan, Italy; Dipartimento di Bioscienze, Università degli Studi di Milano, via Giovanni Celoria 26, 20133 Milan, Italy.
| | - Giuseppe Zucchelli
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, sede di Milano, via Giovanni Celoria 26, 20133 Milan, Italy; Dipartimento di Bioscienze, Università degli Studi di Milano, via Giovanni Celoria 26, 20133 Milan, Italy
| |
Collapse
|
36
|
Abstract
In oxygenic photosynthetic eukaryotes, the hydroxylated carotenoid zeaxanthin is produced from preexisting violaxanthin upon exposure to excess light conditions. Zeaxanthin binding to components of the photosystem II (PSII) antenna system has been investigated thoroughly and shown to help in the dissipation of excess chlorophyll-excited states and scavenging of oxygen radicals. However, the functional consequences of the accumulation of the light-harvesting complex I (LHCI) proteins in the photosystem I (PSI) antenna have remained unclarified so far. In this work we investigated the effect of zeaxanthin binding on photoprotection of PSI-LHCI by comparing preparations isolated from wild-type Arabidopsis thaliana (i.e., with violaxanthin) and those isolated from the A. thaliana nonphotochemical quenching 2 mutant, in which violaxanthin is replaced by zeaxanthin. Time-resolved fluorescence measurements showed that zeaxanthin binding leads to a previously unrecognized quenching effect on PSI-LHCI fluorescence. The efficiency of energy transfer from the LHCI moiety of the complex to the PSI reaction center was down-regulated, and an enhanced PSI resistance to photoinhibition was observed both in vitro and in vivo. Thus, zeaxanthin was shown to be effective in inducing dissipative states in PSI, similar to its well-known effect on PSII. We propose that, upon acclimation to high light, PSI-LHCI changes its light-harvesting efficiency by a zeaxanthin-dependent quenching of the absorbed excitation energy, whereas in PSII the stoichiometry of LHC antenna proteins per reaction center is reduced directly.
Collapse
|
37
|
Croce R, van Amerongen H. Light-harvesting in photosystem I. PHOTOSYNTHESIS RESEARCH 2013; 116:153-66. [PMID: 23645376 PMCID: PMC3825136 DOI: 10.1007/s11120-013-9838-x] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/23/2013] [Indexed: 05/18/2023]
Abstract
This review focuses on the light-harvesting properties of photosystem I (PSI) and its LHCI outer antenna. LHCI consists of different chlorophyll a/b binding proteins called Lhca's, surrounding the core of PSI. In total, the PSI-LHCI complex of higher plants contains 173 chlorophyll molecules, most of which are there to harvest sunlight energy and to transfer the created excitation energy to the reaction center (RC) where it is used for charge separation. The efficiency of the complex is based on the capacity to deliver this energy to the RC as fast as possible, to minimize energy losses. The performance of PSI in this respect is remarkable: on average it takes around 50 ps for the excitation to reach the RC in plants, without being quenched in the meantime. This means that the internal quantum efficiency is close to 100% which makes PSI the most efficient energy converter in nature. In this review, we describe the light-harvesting properties of the complex in relation to protein and pigment organization/composition, and we discuss the important parameters that assure its very high quantum efficiency. Excitation energy transfer and trapping in the core and/or Lhcas, as well as in the supercomplexes PSI-LHCI and PSI-LHCI-LHCII are described in detail with the aim of giving an overview of the functional behavior of these complexes.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands,
| | | |
Collapse
|
38
|
Photochemical trapping heterogeneity as a function of wavelength, in plant photosystem I (PSI–LHCI). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:779-85. [DOI: 10.1016/j.bbabio.2013.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/12/2013] [Accepted: 03/20/2013] [Indexed: 11/18/2022]
|
39
|
LHCII is an antenna of both photosystems after long-term acclimation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:420-6. [DOI: 10.1016/j.bbabio.2012.12.009] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 11/25/2012] [Accepted: 12/27/2012] [Indexed: 11/17/2022]
|
40
|
Holzwarth AR, Lenk D, Jahns P. On the analysis of non-photochemical chlorophyll fluorescence quenching curves: I. Theoretical considerations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:786-92. [PMID: 23458431 DOI: 10.1016/j.bbabio.2013.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 02/11/2013] [Accepted: 02/16/2013] [Indexed: 10/27/2022]
Abstract
Non-photochemical quenching (NPQ) protects photosynthetic organisms against photodamage by high light. One of the key measuring parameters for characterizing NPQ is the high-light induced decrease in chlorophyll fluorescence. The originally measured data are maximal fluorescence (Fm') signals as a function of actinic illumination time (Fm'(t)). Usually these original data are converted into the so-called Stern-Volmer quenching function, NPQSV(t), which is then analyzed and interpreted in terms of various NPQ mechanisms and kinetics. However, the interpretation of this analysis essentially depends on the assumption that NPQ follows indeed a Stern-Volmer relationship. Here, we question this commonly assumed relationship, which surprisingly has never been proven. We demonstrate by simulation of quenching data that particularly the conversion of time-dependent quenching curves like Fm'(t) into NPQSV(t) is (mathematically) not "innocent" in terms of its effects. It distorts the kinetic quenching information contained in the originally measured function Fm'(t), leading to a severe (often sigmoidal) distortion of the time-dependence of quenching and has negative impact on the ability to uncover the underlying quenching mechanisms and their contribution to the quenching kinetics. We conclude that the commonly applied analysis of time-dependent NPQ in NPQSV(t) space should be reconsidered. First, there exists no sound theoretical basis for this common practice. Second, there occurs no loss of information whatsoever when analyzing and interpreting the originally measured Fm'(t) data directly. Consequently, the analysis of Fm'(t) data has a much higher potential to provide correct mechanistic answers when trying to correlate quenching data with other biochemical information related to quenching.
Collapse
Affiliation(s)
- Alfred R Holzwarth
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim a.d. Ruhr, Germany.
| | | | | |
Collapse
|
41
|
Tian L, Farooq S, van Amerongen H. Probing the picosecond kinetics of the photosystem II core complex in vivo. Phys Chem Chem Phys 2013; 15:3146-54. [DOI: 10.1039/c3cp43813a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Strümpfer J, Schulten K. Open Quantum Dynamics Calculations with the Hierarchy Equations of Motion on Parallel Computers. J Chem Theory Comput 2012; 8:2808-2816. [PMID: 23105920 PMCID: PMC3480185 DOI: 10.1021/ct3003833] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Calculating the evolution of an open quantum system, i.e., a system in contact with a thermal environment, has presented a theoretical and computational challenge for many years. With the advent of supercomputers containing large amounts of memory and many processors, the computational challenge posed by the previously intractable theoretical models can now be addressed. The hierarchy equations of motion present one such model and offer a powerful method that remained under-utilized so far due to its considerable computational expense. By exploiting concurrent processing on parallel computers the hierarchy equations of motion can be applied to biological-scale systems. Herein we introduce the quantum dynamics software PHI, that solves the hierarchical equations of motion. We describe the integrator employed by PHI and demonstrate PHI's scaling and efficiency running on large parallel computers by applying the software to the calculation of inter-complex excitation transfer between the light harvesting complexes 1 and 2 of purple photosynthetic bacteria, a 50 pigment system.
Collapse
Affiliation(s)
- Johan Strümpfer
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign
| | - Klaus Schulten
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign
| |
Collapse
|
43
|
Galka P, Santabarbara S, Khuong TTH, Degand H, Morsomme P, Jennings RC, Boekema EJ, Caffarri S. Functional analyses of the plant photosystem I-light-harvesting complex II supercomplex reveal that light-harvesting complex II loosely bound to photosystem II is a very efficient antenna for photosystem I in state II. THE PLANT CELL 2012; 24:2963-78. [PMID: 22822202 PMCID: PMC3426126 DOI: 10.1105/tpc.112.100339] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/20/2012] [Accepted: 07/02/2012] [Indexed: 05/19/2023]
Abstract
State transitions are an important photosynthetic short-term response that allows energy distribution balancing between photosystems I (PSI) and II (PSII). In plants when PSII is preferentially excited compared with PSI (State II), part of the major light-harvesting complex LHCII migrates to PSI to form a PSI-LHCII supercomplex. So far, little is known about this complex, mainly due to purification problems. Here, a stable PSI-LHCII supercomplex is purified from Arabidopsis thaliana and maize (Zea mays) plants. It is demonstrated that LHCIIs loosely bound to PSII in State I are the trimers mainly involved in state transitions and become strongly bound to PSI in State II. Specific Lhcb1-3 isoforms are differently represented in the mobile LHCII compared with S and M trimers. Fluorescence analyses indicate that excitation energy migration from mobile LHCII to PSI is rapid and efficient, and the quantum yield of photochemical conversion of PSI-LHCII is substantially unaffected with respect to PSI, despite a sizable increase of the antenna size. An updated PSI-LHCII structural model suggests that the low-energy chlorophylls 611 and 612 in LHCII interact with the chlorophyll 11145 at the interface of PSI. In contrast with the common opinion, we suggest that the mobile pool of LHCII may be considered an intimate part of the PSI antenna system that is displaced to PSII in State I.
Collapse
Affiliation(s)
- Pierre Galka
- Aix Marseille Université, Biologie Végétale et Microbiologie Environnementales, Laboratoire de Génétique et Biophysique des Plantes, 13288 Marseille, France
- Commissariat à l’Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, 13288 Marseille, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale et Microbiologie Environnementales, 13288 Marseille, France
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Stefano Santabarbara
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, 20133 Milan, Italy
- Dipartimento di Biologia, Università degli Studi di Milano, 20133 Milan, Italy
| | - Thi Thu Huong Khuong
- Aix Marseille Université, Biologie Végétale et Microbiologie Environnementales, Laboratoire de Génétique et Biophysique des Plantes, 13288 Marseille, France
- Commissariat à l’Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, 13288 Marseille, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale et Microbiologie Environnementales, 13288 Marseille, France
| | - Hervé Degand
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Pierre Morsomme
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Robert C. Jennings
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, 20133 Milan, Italy
- Dipartimento di Biologia, Università degli Studi di Milano, 20133 Milan, Italy
| | - Egbert J. Boekema
- Groningen University, Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute, 9747 AG Groningen, The Netherlands
| | - Stefano Caffarri
- Aix Marseille Université, Biologie Végétale et Microbiologie Environnementales, Laboratoire de Génétique et Biophysique des Plantes, 13288 Marseille, France
- Commissariat à l’Energie Atomique, Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, 13288 Marseille, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7265 Biologie Végétale et Microbiologie Environnementales, 13288 Marseille, France
| |
Collapse
|
44
|
From red to blue to far-red in Lhca4: How does the protein modulate the spectral properties of the pigments? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:711-7. [DOI: 10.1016/j.bbabio.2012.02.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/22/2012] [Accepted: 02/23/2012] [Indexed: 10/28/2022]
|
45
|
The role of the individual Lhcas in photosystem I excitation energy trapping. Biophys J 2011; 101:745-54. [PMID: 21806943 DOI: 10.1016/j.bpj.2011.06.045] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 11/20/2022] Open
Abstract
In this work, we have investigated the role of the individual antenna complexes and of the low-energy forms in excitation energy transfer and trapping in Photosystem I of higher plants. To this aim, a series of Photosystem I (sub)complexes with different antenna size/composition/absorption have been studied by picosecond fluorescence spectroscopy. The data show that Lhca3 and Lhca4, which harbor the most red forms, have similar emission spectra (λ(max) = 715-720 nm) and transfer excitation energy to the core with a relative slow rate of ∼25/ns. Differently, the energy transfer from Lhca1 and Lhca2, the "blue" antenna complexes, occurs about four times faster. In contrast to what is often assumed, it is shown that energy transfer from the Lhca1/4 and the Lhca2/3 dimer to the core occurs on a faster timescale than energy equilibration within these dimers. Furthermore, it is shown that all four monomers contribute almost equally to the transfer to the core and that the red forms slow down the overall trapping rate by about two times. Combining all the data allows the construction of a comprehensive picture of the excitation-energy transfer routes and rates in Photosystem I.
Collapse
|
46
|
Conformational switching explains the intrinsic multifunctionality of plant light-harvesting complexes. Proc Natl Acad Sci U S A 2011; 108:13516-21. [PMID: 21808044 DOI: 10.1073/pnas.1105411108] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The light-harvesting complexes of photosystem I and II (Lhcas and Lhcbs) of plants display a high structural homology and similar pigment content and organization. Yet, the spectroscopic properties of these complexes, and accordingly their functionality, differ substantially. This difference is primarily due to the charge-transfer (CT) character of a chlorophyll dimer in all Lhcas, which mixes with the excitonic states of these complexes, whereas this CT character is generally absent in Lhcbs. By means of single-molecule spectroscopy near room temperature, we demonstrate that the presence or absence of such a CT state in Lhcas and Lhcbs can occasionally be reversed; i.e., these complexes are able to interconvert conformationally to quasi-stable spectral states that resemble the Lhcs of the other photosystem. The high structural similarity of all the Lhca and Lhcb proteins suggests that the stable conformational states that give rise to the mixed CT-excitonic state are similar for all these proteins, and similarly for the conformations that involve no CT state. This indicates that the specific functions related to Lhca and Lhcb complexes are realized by different stable conformations of a single generic protein structure. We propose that this functionality is modulated and controlled by the protein environment.
Collapse
|