1
|
Ruhoff VT, Leijnse N, Doostmohammadi A, Bendix PM. Filopodia: integrating cellular functions with theoretical models. Trends Cell Biol 2025; 35:129-140. [PMID: 38969554 DOI: 10.1016/j.tcb.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/07/2024]
Abstract
Filopodia, widely distributed on cell surfaces, are distinguished by their dynamic extensions, playing pivotal roles in a myriad of biological processes. Their functions span from mechanosensing and guidance to cell-cell communication during cellular organization in the early embryo. Filopodia have significant roles in pathogenic processes, such as cancer invasion and viral dissemination. Molecular mapping of the filopodome has revealed generic components essential for filopodia functions. In parallel, recent insights into biophysical mechanisms governing filopodia dynamics have provided the foundation for broader investigations of filopodia's biological functions. We highlight recent discoveries of engagement of filopodia in various stages of development and pathogenesis and present an overview of intricate molecular and physical features of these cellular structures across a spectrum of cellular activities.
Collapse
Affiliation(s)
| | - Natascha Leijnse
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | - Poul Martin Bendix
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark.
| |
Collapse
|
2
|
James EC, Tomaskovic‐Crook E, Crook JM. Engineering 3D Scaffold-Free Nanoparticle-Laden Stem Cell Constructs for Piezoelectric Enhancement of Human Neural Tissue Formation and Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310010. [PMID: 39049737 PMCID: PMC11516115 DOI: 10.1002/advs.202310010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/04/2024] [Indexed: 07/27/2024]
Abstract
Electrical stimulation (ES) of cellular systems can be utilized for biotechnological applications and electroceuticals (bioelectric medicine). Neural cell stimulation especially has a long history in neuroscience research and is increasingly applied for clinical therapies. Application of ES via conventional electrodes requires external connectors and power sources, hindering scientific and therapeutic applications. Here engineering novel 3D scaffold-free human neural stem cell constructs with integrated piezoelectric nanoparticles for enhanced neural tissue induction and function is described. Tetragonal barium titanate (BaTi03) nanoparticles are employed as piezoelectric stimulators prepared as cytocompatible dispersions, incorporated into 3D self-organizing neural spheroids, and activated wirelessly by ultrasound. Ultrasound delivery (low frequency; 40 kHz) is optimized for cell survival, and nanoparticle activation enabled ES throughout the spheroids during differentiation, tissue formation, and maturation. The resultant human neural tissues represent the first example of direct tissue loading with piezoelectric particles for ensuing 3D ultrasound-mediated piezoelectric enhancement of human neuronal induction from stem cells, including augmented neuritogenesis and synaptogenesis. It is anticipated that the platform described will facilitate advanced tissue engineering and in vitro modeling of human neural (and potentially non-neural) tissues, with modeling including tissue development and pathology, and applicable to preclinical testing and prototyping of both electroceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Emma Claire James
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
| | - Eva Tomaskovic‐Crook
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneyCamperdownNSW2006Australia
| | - Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAIIM FacilityUniversity of WollongongFairy MeadowNSW2519Australia
- Arto Hardy Family Biomedical Innovation HubChris O'Brien LifehouseCamperdownNSW2050Australia
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneyCamperdownNSW2006Australia
- Institute of Innovative MaterialsAIIM FacilityInnovation CampusFaculty of Engineering and Information SystemsUniversity of WollongongFairy MeadowNSW2519Australia
| |
Collapse
|
3
|
Heckman CA, Ademuyiwa OM, Cayer ML. How filopodia respond to calcium in the absence of a calcium-binding structural protein: non-channel functions of TRP. Cell Commun Signal 2022; 20:130. [PMID: 36028898 PMCID: PMC9414478 DOI: 10.1186/s12964-022-00927-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Background For many cell types, directional locomotion depends on their maintaining filopodia at the leading edge. Filopodia lack any Ca2+-binding structural protein but respond to store-operated Ca2+ entry (SOCE). Methods SOCE was induced by first replacing the medium with Ca2+-free salt solution with cyclopiazonic acid (CPA). This lowers Ca2+ in the ER and causes stromal interacting molecule (STIM) to be translocated to the cell surface. After this priming step, CPA was washed out, and Ca2+ influx restored by addition of extracellular Ca2+. Intracellular Ca2+ levels were measured by calcium orange fluorescence. Regulatory mechanisms were identified by pharmacological treatments. Proteins mediating SOCE were localized by immunofluorescence and analyzed after image processing. Results Depletion of the ER Ca2+ increased filopodia prevalence briefly, followed by a spontaneous decline that was blocked by inhibitors of endocytosis. Intracellular Ca2+ increased continuously for ~ 50 min. STIM and a transient receptor potential canonical (TRPC) protein were found in separate compartments, but an aquaporin unrelated to SOCE was present in both. STIM1- and TRPC1-bearing vesicles were trafficked on microtubules. During depletion, STIM1 migrated to the surface where it coincided with Orai in punctae, as expected. TRPC1 was partially colocalized with Vamp2, a rapidly releasable pool marker, and with phospholipases (PLCs). TRPC1 retreated to internal compartments during ER depletion. Replenishment of extracellular Ca2+ altered the STIM1 distribution, which came to resemble that of untreated cells. Vamp2 and TRPC1 underwent exocytosis and became homogeneously distributed on the cell surface. This was accompanied by an increased prevalence of filopodia, which was blocked by inhibitors of TRPC1/4/5 and endocytosis. Conclusions Because the media were devoid of ligands that activate receptors during depletion and Ca2+ replenishment, we could attribute filopodia extension to SOCE. We propose that the Orai current stimulates exocytosis of TRPC-bearing vesicles, and that Ca2+ influx through TRPC inhibits PLC activity. This allows regeneration of the substrate, phosphatidylinositol 4,5 bisphosphate (PIP2), a platform for assembling proteins, e. g. Enabled and IRSp53. TRPC contact with PLC is required but is broken by TRPC dissemination. This explains how STIM1 regulates the cell’s ability to orient itself in response to attractive or repulsive cues. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00927-y.
Collapse
Affiliation(s)
- C A Heckman
- Department of Biological Sciences, 217 Life Science Building, Bowling Green State University, Bowling Green, OH, 43403-0001, USA.
| | - O M Ademuyiwa
- Department of Biological Sciences, 217 Life Science Building, Bowling Green State University, Bowling Green, OH, 43403-0001, USA
| | - M L Cayer
- Center for Microscopy and Microanalysis, Bowling Green State University, Bowling Green, OH, 43403, USA
| |
Collapse
|
4
|
Filopodia rotate and coil by actively generating twist in their actin shaft. Nat Commun 2022; 13:1636. [PMID: 35347113 PMCID: PMC8960877 DOI: 10.1038/s41467-022-28961-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/10/2022] [Indexed: 12/19/2022] Open
Abstract
Filopodia are actin-rich structures, present on the surface of eukaryotic cells. These structures play a pivotal role by allowing cells to explore their environment, generate mechanical forces or perform chemical signaling. Their complex dynamics includes buckling, pulling, length and shape changes. We show that filopodia additionally explore their 3D extracellular space by combining growth and shrinking with axial twisting and buckling. Importantly, the actin core inside filopodia performs a twisting or spinning motion which is observed for a range of cell types spanning from earliest development to highly differentiated tissue cells. Non-equilibrium physical modeling of actin and myosin confirm that twist is an emergent phenomenon of active filaments confined in a narrow channel which is supported by measured traction forces and helical buckles that can be ascribed to accumulation of sufficient twist. These results lead us to conclude that activity induced twisting of the actin shaft is a general mechanism underlying fundamental functions of filopodia. The authors show how tubular surface structures in all cell types, have the ability to twist and perform rotary sweeping motion to explore the extracellular environment. This has implications for migration, sensing and cell communication.
Collapse
|
5
|
Park JS, Lee IB, Moon HM, Ryu JS, Kong SY, Hong SC, Cho M. Fluorescence-Combined Interferometric Scattering Imaging Reveals Nanoscale Dynamic Events of Single Nascent Adhesions in Living Cells. J Phys Chem Lett 2020; 11:10233-10241. [PMID: 33206530 DOI: 10.1021/acs.jpclett.0c02103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Focal adhesions (FAs) are dynamic protein nanostructures that form mechanical links between cytoskeletal actin fibers and the extracellular matrix. Here, we demonstrate that interferometric scattering (iSCAT) microscopy, a high-speed and time-unlimited imaging technique, can uncover the real-time dynamics of nanoscopic nascent adhesions (NAs). The high sensitivity and stability of the iSCAT signal enabled us to trace the whole life span of each NA spontaneously nucleated under a lamellipodium. Such high-throughput and long-term image data provide a unique opportunity for statistical analysis of adhesion dynamics. Moreover, we directly revealed that FAs play critical roles in both the extrusion of filopodia as nucleation sites on the leading edge and the one-dimensional transport of cargos along cytoskeletal fibers as fiber docking sites. These experimental results show that iSCAT is a sensitive tool for tracking real-time dynamics of nanoscopic objects involved in endogenous and exogenous biological processes in living cells.
Collapse
Affiliation(s)
- Jin-Sung Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea
| | - Il-Buem Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea
| | - Hyeon-Min Moon
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea
| | - Jin-Sun Ryu
- Center for Breast Cancer, National Cancer Center, Goyang 10408, Korea
| | - Sun-Young Kong
- Division of Translational Science, National Cancer Center, Goyang 10408, Korea
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea
- Department of Physics, Korea University, Seoul 02841, Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
6
|
Allard A, Valentino F, Sykes C, Betz T, Campillo C. Fluctuations of a membrane nanotube covered with an actin sleeve. Phys Rev E 2020; 102:052402. [PMID: 33327147 DOI: 10.1103/physreve.102.052402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/11/2020] [Indexed: 06/12/2023]
Abstract
Many biological functions rely on the reshaping of cell membranes, in particular into nanotubes, which are covered in vivo by dynamic actin networks. Nanotubes are subject to thermal fluctuations, but the effect of these on cell functions is unknown. Here, we form nanotubes from liposomes using an optically trapped bead adhering to the liposome membrane. From the power spectral density of this bead, we study the nanotube fluctuations in the range of membrane tensions measured in vivo. We show that an actin sleeve covering the nanotube damps its high-frequency fluctuations because of the network viscoelasticity. Our work paves the way for further studies of the effect of nanotube fluctuations on cellular functions.
Collapse
Affiliation(s)
- A Allard
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
- Sorbonne Université, UPMC, Paris 06, Paris, France
- LAMBE, Université d'Évry, CNRS, CEA, Université Paris-Saclay, 91025 Évry-Courcouronnes, France
| | - F Valentino
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
- Sorbonne Université, UPMC, Paris 06, Paris, France
| | - C Sykes
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France
- Sorbonne Université, UPMC, Paris 06, Paris, France
| | - T Betz
- Institute of Cell Biology, Cells in Motion Interfaculty Center, Centre for Molecular Biology of Inflammation, 48149 Münster, Germany
| | - C Campillo
- LAMBE, Université d'Évry, CNRS, CEA, Université Paris-Saclay, 91025 Évry-Courcouronnes, France
| |
Collapse
|
7
|
Padhi A, Singh K, Franco-Barraza J, Marston DJ, Cukierman E, Hahn KM, Kapania RK, Nain AS. Force-exerting perpendicular lateral protrusions in fibroblastic cell contraction. Commun Biol 2020; 3:390. [PMID: 32694539 PMCID: PMC7374753 DOI: 10.1038/s42003-020-01117-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Aligned extracellular matrix fibers enable fibroblasts to undergo myofibroblastic activation and achieve elongated shapes. Activated fibroblasts are able to contract, perpetuating the alignment of these fibers. This poorly understood feedback process is critical in chronic fibrosis conditions, including cancer. Here, using fiber networks that serve as force sensors, we identify "3D perpendicular lateral protrusions" (3D-PLPs) that evolve from lateral cell extensions named twines. Twines originate from stratification of cyclic-actin waves traversing the cell and swing freely in 3D to engage neighboring fibers. Once engaged, a lamellum forms and extends multiple secondary twines, which fill in to form a sheet-like PLP, in a force-entailing process that transitions focal adhesions to activated (i.e., pathological) 3D-adhesions. The specific morphology of PLPs enables cells to increase contractility and force on parallel fibers. Controlling geometry of extracellular networks confirms that anisotropic fibrous environments support 3D-PLP formation and function, suggesting an explanation for cancer-associated desmoplastic expansion.
Collapse
Affiliation(s)
- Abinash Padhi
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Karanpreet Singh
- Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Janusz Franco-Barraza
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniel J Marston
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Edna Cukierman
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA.
| | - Klaus M Hahn
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rakesh K Kapania
- Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
8
|
Dasbiswas K, Hu S, Bershadsky AD, Safran SA. Registry Kinetics of Myosin Motor Stacks Driven by Mechanical Force-Induced Actin Turnover. Biophys J 2019; 117:856-866. [PMID: 31427069 DOI: 10.1016/j.bpj.2019.07.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/13/2019] [Accepted: 07/23/2019] [Indexed: 01/26/2023] Open
Abstract
Actin filaments associated with myosin motors constitute the cytoskeletal force-generating machinery for many types of adherent cells. These actomyosin units are structurally ordered in muscle cells and, in particular, may be spatially registered across neighboring actin bundles. Such registry or stacking of myosin filaments have been recently observed in ordered actin bundles of even fibroblasts with super-resolution microscopy techniques. We introduce here a model for the dynamics of stacking arising from long-range mechanical interactions between actomyosin units through mutual contractile deformations of the intervening cytoskeletal network. The dynamics of registry involve two key processes: 1) polymerization and depolymerization of actin filaments and 2) remodeling of cross-linker-rich actin adhesion zones, both of which are, in principle, mechanosensitive. By calculating the elastic forces that drive registry and their effect on actin polymerization rates, we estimate a characteristic timescale of tens of minutes for registry to be established, in agreement with experimentally observed timescales for individual kinetic processes involved in myosin stack formation, which we track and quantify. This model elucidates the role of actin turnover dynamics in myosin stacking and explains the loss of stacks seen when actin assembly or disassembly and cross-linking is experimentally disrupted in fibroblasts.
Collapse
Affiliation(s)
- Kinjal Dasbiswas
- Department of Physics, University of California, Merced, California.
| | - Shiqiong Hu
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Samuel A Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Jünger F, Rohrbach A. Strong cytoskeleton activity on millisecond timescales upon particle binding revealed by ROCS microscopy. Cytoskeleton (Hoboken) 2018; 75:410-424. [PMID: 30019494 DOI: 10.1002/cm.21478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 01/09/2023]
Abstract
Cells change their shape within seconds, cellular protrusions even on subsecond timescales enabling various responses to stimuli of approaching bacteria, viruses or pharmaceutical drugs. Typical response patterns are governed by a complex reorganization of the actin cortex, where single filaments and molecules act on even faster timescales. These dynamics have remained mostly invisible due to a superposition of slow and fast motions, but also due to a lack of adequate imaging technology. Whereas fluorescence techniques require too long integration times, novel coherent techniques such as ROCS microscopy can achieve sufficiently high spatiotemporal resolution. ROCS uses rotating back-scattered laser light from cellular structures and generates a consistently high image contrast at 150 nm resolution and frame rates of 100 Hz-without fluorescence or bleaching. Here, we present an extension of ROCS microscopy that exploits the principles of dynamic light scattering for precise localization, visualization and quantification of the cytoskeleton activity of mouse macrophages. The locally observed structural reorganization processes, encoded by dynamic speckle patterns, occur upon distinct mechanical stimuli, such as soft contacts with optically trapped beads. We find that a substantial amount of the near-membrane cytoskeleton activity takes place on millisecond timescales, which is much faster than reported ever before.
Collapse
Affiliation(s)
- Felix Jünger
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Alexander Rohrbach
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| |
Collapse
|
10
|
Condon ND, Heddleston JM, Chew TL, Luo L, McPherson PS, Ioannou MS, Hodgson L, Stow JL, Wall AA. Macropinosome formation by tent pole ruffling in macrophages. J Cell Biol 2018; 217:3873-3885. [PMID: 30150290 PMCID: PMC6219714 DOI: 10.1083/jcb.201804137] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/01/2018] [Accepted: 08/13/2018] [Indexed: 12/26/2022] Open
Abstract
Condon et al. use lattice light-sheet microscopy to analyze live macrophages and
define a new model of macropinosome formation and closure through tent pole
ruffles. The ruffles, which are enhanced by LPS and regulated by Rab13, are
erected and supported by F-actin tent poles that cross over and twist to
constrict the forming macropinosomes. Pathogen-mediated activation of macrophages arms innate immune responses that
include enhanced surface ruffling and macropinocytosis for environmental
sampling and receptor internalization and signaling. Activation of macrophages
with bacterial lipopolysaccharide (LPS) generates prominent dorsal ruffles,
which are precursors for macropinosomes. Very rapid, high-resolution imaging of
live macrophages with lattice light sheet microscopy (LLSM) reveals new features
and actions of dorsal ruffles, which redefine the process of macropinosome
formation and closure. We offer a new model in which ruffles are erected and
supported by F-actin tent poles that cross over and twist to constrict the
forming macropinosomes. This process allows for formation of large
macropinosomes induced by LPS. We further describe the enrichment of active
Rab13 on tent pole ruffles and show that CRISPR deletion of Rab13 results in
aberrant tent pole ruffles and blocks the formation of large LPS-induced
macropinosomes. Based on the exquisite temporal and spatial resolution of LLSM,
we can redefine the ruffling and macropinosome processes that underpin innate
immune responses.
Collapse
Affiliation(s)
- Nicholas D Condon
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Australia
| | - John M Heddleston
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA
| | - Teng-Leong Chew
- Advanced Imaging Center, Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA
| | - Lin Luo
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Australia
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Maria S Ioannou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY
| | - Jennifer L Stow
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Australia
| | - Adam A Wall
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Australia
| |
Collapse
|
11
|
Byvalov AA, Kononenko VL, Konyshev IV. Single-Cell Force Spectroscopy of Interaction of Lipopolysaccharides from Yersinia pseudotuberculosis and Yersinia pestis with J774 Macrophage Membrane Using Optical Tweezers. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2018. [DOI: 10.1134/s1990747818020058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Jünger F, Kohler F, Meinel A, Meyer T, Nitschke R, Erhard B, Rohrbach A. Measuring Local Viscosities near Plasma Membranes of Living Cells with Photonic Force Microscopy. Biophys J 2016; 109:869-82. [PMID: 26331245 DOI: 10.1016/j.bpj.2015.07.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 07/08/2015] [Accepted: 07/17/2015] [Indexed: 11/24/2022] Open
Abstract
The molecular processes of particle binding and endocytosis are influenced by the locally changing mobility of the particle nearby the plasma membrane of a living cell. However, it is unclear how the particle's hydrodynamic drag and momentum vary locally and how they are mechanically transferred to the cell. We have measured the thermal fluctuations of a 1 μm-sized polystyrene sphere, which was placed in defined distances to plasma membranes of various cell types by using an optical trap and fast three-dimensional (3D) interferometric particle tracking. From the particle position fluctuations on a 30 μs timescale, we determined the distance-dependent change of the viscous drag in directions perpendicular and parallel to the cell membrane. Measurements on macrophages, adenocarcinoma cells, and epithelial cells revealed a significantly longer hydrodynamic coupling length of the particle to the membrane than those measured at giant unilamellar vesicles (GUVs) or a plane glass interface. In contrast to GUVs, there is also a strong increase in friction and in mean first passage time normal to the cell membrane. This hydrodynamic coupling transfers a different amount of momentum to the interior of living cells and might serve as an ultra-soft stimulus triggering further reactions.
Collapse
Affiliation(s)
- Felix Jünger
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering, University of Freiburg, Germany
| | - Felix Kohler
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering, University of Freiburg, Germany
| | - Andreas Meinel
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering, University of Freiburg, Germany
| | - Tim Meyer
- Macromolecular Modelling Group, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Roland Nitschke
- Life Imaging Center (LIC) and Center for Biological Systems Analysis (ZBSA), University of Freiburg, Freiburg, Germany
| | - Birgit Erhard
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering, University of Freiburg, Germany
| | - Alexander Rohrbach
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering, University of Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
13
|
Surfing along Filopodia: A Particle Transport Revealed by Molecular-Scale Fluctuation Analyses. Biophys J 2016; 108:2114-25. [PMID: 25954870 DOI: 10.1016/j.bpj.2015.02.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 02/13/2015] [Accepted: 02/23/2015] [Indexed: 01/08/2023] Open
Abstract
Filopodia perform cellular functions such as environmental sensing or cell motility, but they also grab for particles and withdraw them leading to an increased efficiency of phagocytic uptake. Remarkably, withdrawal of micron-sized particles is also possible without noticeable movements of the filopodia. Here, we demonstrate that polystyrene beads connected by optical tweezers to the ends of adherent filopodia of J774 macrophages, are transported discontinuously toward the cell body. After a typical resting time of 1-2 min, the cargo is moved with alternating velocities, force constants, and friction constants along the surface of the filopodia. This surfing-like behavior along the filopodium is recorded by feedback-controlled interferometric three-dimensional tracking of the bead motions at 10-100 kHz. We measured transport velocities of up to 120 nm/s and transport forces of ∼ 70 pN. Small changes in position, fluctuation width, and temporal correlation, which are invisible in conventional microscopy, indicate molecular reorganization of transport-relevant proteins in different phases of the entire transport process. A detailed analysis implicates a controlled particle transport with fingerprints of a nanoscale unbinding/binding behavior. The manipulation and analysis methods presented in our study may also be helpful in other fields of cellular biophysics.
Collapse
|
14
|
Leijnse N, Oddershede LB, Bendix PM. An updated look at actin dynamics in filopodia. Cytoskeleton (Hoboken) 2016; 72:71-9. [PMID: 25786787 DOI: 10.1002/cm.21216] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 11/10/2022]
Abstract
Cells dynamically interact with and probe their environment by growing finger-like structures named filopodia. The dynamics of filopodia are mainly caused by the actin rich core or shaft which sits inside the filopodial membrane and continuously undergoes changes like growth, shrinking, bending, and rotation. Recent experiments combining advanced imaging and manipulation tools have provided detailed quantitative data on the correlation between mechanical properties of filopodia, their molecular composition, and the dynamic architecture of the actin structure. These experiments have revealed how retrograde flow and twisting of the actin shaft within filopodia can generate traction on external substrates. Previously, the mechanism behind filopodial pulling was mainly attributed to retrograde flow of actin, but recent experiments have shown that rotational dynamics can also contribute to the traction force. Although force measurements have indicated a step-like behavior in filopodial pulling, no direct evidence has been provided to link this behavior to a molecular motor like myosin. Therefore, the underlying biochemical and mechanical mechanisms behind filopodial force generation still remain to be resolved.
Collapse
Affiliation(s)
- Natascha Leijnse
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark; Lundbeck Foundation Center for Biomembranes in Nanomedicine, University of Copenhagen, 2100, Copenhagen, Denmark
| | | | | |
Collapse
|
15
|
Orly G, Naoz M, Gov NS. Physical model for the geometry of actin-based cellular protrusions. Biophys J 2015; 107:576-587. [PMID: 25099797 DOI: 10.1016/j.bpj.2014.05.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/09/2014] [Accepted: 05/28/2014] [Indexed: 11/17/2022] Open
Abstract
Actin-based cellular protrusions are a ubiquitous feature of cell morphology, e.g., filopodia and microvilli, serving a huge variety of functions. Despite this, there is still no comprehensive model for the mechanisms that determine the geometry of these protrusions. We present here a detailed computational model that addresses a combination of multiple biochemical and physical processes involved in the dynamic regulation of the shape of these protrusions. We specifically explore the role of actin polymerization in determining both the height and width of the protrusions. Furthermore, we show that our generalized model can explain multiple morphological features of these systems, and account for the effects of specific proteins and mutations.
Collapse
Affiliation(s)
- G Orly
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - M Naoz
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - N S Gov
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
16
|
Leijnse N, Oddershede LB, Bendix PM. Dynamic buckling of actin within filopodia. Commun Integr Biol 2015; 8:e1022010. [PMID: 26479403 PMCID: PMC4594262 DOI: 10.1080/19420889.2015.1022010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 02/17/2015] [Indexed: 11/24/2022] Open
Abstract
Filopodia are active tubular structures protruding from the cell surface which allow the cell to sense and interact with the surrounding environment through repetitive elongation-retraction cycles. The mechanical behavior of filopodia has been studied by measuring the traction forces exerted on external substrates.1 These studies have revealed that internal actin flow can transduce a force across the cell surface through transmembrane linkers like integrins. In addition to the elongation-retraction behavior filopodia also exhibit a buckling and rotational behavior. Filopodial buckling in conjunction with rotation enables the cell to explore a much larger 3-dimensional space and allows for more complex, and possibly stronger, interactions with the external environment.2 Here we focus on how bending of the filopodial actin dynamically correlates with pulling on an optically trapped microsphere which acts like an external substrate attached to the filopodial tip. There is a clear correlation between presence of actin near the tip and exertion of a traction force, thus demonstrating that the traction force is transduced along the actin shaft inside the filopodium. By extending a filopodium and holding it while measuring the cellular response, we also monitor and analyze the waiting times for the first buckle observed in the fluorescently labeled actin shaft.
Collapse
Affiliation(s)
- Natascha Leijnse
- Niels Bohr Institute; University of Copenhagen ; Copenhagen, Denmark
| | - Lene B Oddershede
- Niels Bohr Institute; University of Copenhagen ; Copenhagen, Denmark
| | - Poul M Bendix
- Niels Bohr Institute; University of Copenhagen ; Copenhagen, Denmark
| |
Collapse
|
17
|
Pita-Thomas W, Steketee MB, Moysidis SN, Thakor K, Hampton B, Goldberg JL. Promoting filopodial elongation in neurons by membrane-bound magnetic nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:559-67. [PMID: 25596077 DOI: 10.1016/j.nano.2014.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/30/2014] [Accepted: 11/24/2014] [Indexed: 12/15/2022]
Abstract
Filopodia are 5-10 μm long processes that elongate by actin polymerization, and promote axon growth and guidance by exerting mechanical tension and by molecular signaling. Although axons elongate in response to mechanical tension, the structural and functional effects of tension specifically applied to growth cone filopodia are unknown. Here we developed a strategy to apply tension specifically to retinal ganglion cell (RGC) growth cone filopodia through surface-functionalized, membrane-targeted superparamagnetic iron oxide nanoparticles (SPIONs). When magnetic fields were applied to surface-bound SPIONs, RGC filopodia elongated directionally, contained polymerized actin filaments, and generated retrograde forces, behaving as bona fide filopodia. Data presented here support the premise that mechanical tension induces filopodia growth but counter the hypothesis that filopodial tension directly promotes growth cone advance. Future applications of these approaches may be used to induce sustained forces on multiple filopodia or other subcellular microstructures to study axon growth or cell migration. From the clinical editor: Mechanical tension to the tip of filopodia is known to promote axonal growth. In this article, the authors used superparamagnetic iron oxide nanoparticles (SPIONs) targeted specifically to membrane molecules, then applied external magnetic field to elicit filopodial elongation, which provided a tool to study the role of mechanical forces in filopodia dynamics and function.
Collapse
Affiliation(s)
- Wolfgang Pita-Thomas
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Anatomy and Neurobiology, Washington University, St. Louis, MO, USA
| | - Michael B Steketee
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Ophthalmology and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stavros N Moysidis
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kinjal Thakor
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Blake Hampton
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffrey L Goldberg
- Bascom Palmer Eye Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Ophthalmology, Shiley Eye Center, UC San Diego, San Diego, CA, USA.
| |
Collapse
|
18
|
Abstract
Cells can interact with their surroundings via filopodia, which are membrane protrusions that extend beyond the cell body. Filopodia are essential during dynamic cellular processes like motility, invasion, and cell-cell communication. Filopodia contain cross-linked actin filaments, attached to the surrounding cell membrane via protein linkers such as integrins. These actin filaments are thought to play a pivotal role in force transduction, bending, and rotation. We investigated whether, and how, actin within filopodia is responsible for filopodia dynamics by conducting simultaneous force spectroscopy and confocal imaging of F-actin in membrane protrusions. The actin shaft was observed to periodically undergo helical coiling and rotational motion, which occurred simultaneously with retrograde movement of actin inside the filopodium. The cells were found to retract beads attached to the filopodial tip, and retraction was found to correlate with rotation and coiling of the actin shaft. These results suggest a previously unidentified mechanism by which a cell can use rotation of the filopodial actin shaft to induce coiling and hence axial shortening of the filopodial actin bundle.
Collapse
|
19
|
Sackmann E, Smith AS. Physics of cell adhesion: some lessons from cell-mimetic systems. SOFT MATTER 2014; 10:1644-59. [PMID: 24651316 PMCID: PMC4028615 DOI: 10.1039/c3sm51910d] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cell adhesion is a paradigm of the ubiquitous interplay of cell signalling, modulation of material properties and biological functions of cells. It is controlled by competition of short range attractive forces, medium range repellant forces and the elastic stresses associated with local and global deformation of the composite cell envelopes. We review the basic physical rules governing the physics of cell adhesion learned by studying cell-mimetic systems and demonstrate the importance of these rules in the context of cellular systems. We review how adhesion induced micro-domains couple to the intracellular actin and microtubule networks allowing cells to generate strong forces with a minimum of attractive cell adhesion molecules (CAMs) and to manipulate other cells through filopodia over micrometer distances. The adhesion strength can be adapted to external force fluctuations within seconds by varying the density of attractive and repellant CAMs through exocytosis and endocytosis or protease-mediated dismantling of the CAM-cytoskeleton link. Adhesion domains form local end global biochemical reaction centres enabling the control of enzymes. Actin-microtubule crosstalk at adhesion foci facilitates the mechanical stabilization of polarized cell shapes. Axon growth in tissue is guided by attractive and repulsive clues controlled by antagonistic signalling pathways.
Collapse
Affiliation(s)
- Erich Sackmann
- Physics Department Technical University Munich, Germany
- Department of Physics, Ludwig-Maximillian University, Munich, Germany
| | - Ana-Sunčana Smith
- Institute for Theoretical Physics, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Institute Rud̷er Bošković, Zagreb, Croatia.
| |
Collapse
|
20
|
Bornschlögl T, Bassereau P. The sense is in the fingertips: The distal end controls filopodial mechanics and dynamics in response to external stimuli. Commun Integr Biol 2013; 6:e27341. [PMID: 24753790 PMCID: PMC3984293 DOI: 10.4161/cib.27341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 11/26/2013] [Indexed: 02/06/2023] Open
Abstract
Small hair-like cell protrusions, called filopodia, often establish adhesive contacts with the cellular surroundings with a subsequent build up of retraction force. This process seems to be important for cell migration, embryonic development, wound healing, and pathogenic infection pathways. We have shown that filopodial tips are able to sense adhesive contact and, as a consequence, locally reduce actin polymerization speed. This induces filopodial retraction via forces generated by the cell membrane tension and by the filopodial actin shaft that is constantly pulled rearwards via the retrograde flow of actin at the base. The tip is also the weakest point of actin-based force transduction. Forces higher than 15 pN can disconnect the actin shaft from the membrane, which increases actin polymerization at the tip. Together, this points toward the tip as a mechano-chemical sensing and steering unit for filopodia, and it calls for a better understanding of the molecular mechanisms involved.
Collapse
Affiliation(s)
- Thomas Bornschlögl
- Institut Curie; Centre de Recherche; Paris, France ; CNRS; UMR 168; Paris, France ; Université Pierre et Marie Curie; Paris, France ; CelTisPhyBioLabex and Paris Sciences et Lettres; Paris, France
| | - Patricia Bassereau
- Institut Curie; Centre de Recherche; Paris, France ; CNRS; UMR 168; Paris, France ; Université Pierre et Marie Curie; Paris, France ; CelTisPhyBioLabex and Paris Sciences et Lettres; Paris, France
| |
Collapse
|
21
|
Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip. Proc Natl Acad Sci U S A 2013; 110:18928-33. [PMID: 24198333 DOI: 10.1073/pnas.1316572110] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Filopodia are dynamic, finger-like plasma membrane protrusions that sense the mechanical and chemical surroundings of the cell. Here, we show in epithelial cells that the dynamics of filopodial extension and retraction are determined by the difference between the actin polymerization rate at the tip and the retrograde flow at the base of the filopodium. Adhesion of a bead to the filopodial tip locally reduces actin polymerization and leads to retraction via retrograde flow, reminiscent of a process used by pathogens to invade cells. Using optical tweezers, we show that filopodial retraction occurs at a constant speed against counteracting forces up to 50 pN. Our measurements point toward retrograde flow in the cortex together with frictional coupling between the filopodial and cortical actin networks as the main retraction-force generator for filopodia. The force exerted by filopodial retraction, however, is limited by the connection between filopodial actin filaments and the membrane at the tip. Upon mechanical rupture of the tip connection, filopodia exert a passive retraction force of 15 pN via their plasma membrane. Transient reconnection at the tip allows filopodia to continuously probe their surroundings in a load-and-fail manner within a well-defined force range.
Collapse
|
22
|
Bornschlögl T. How filopodia pull: what we know about the mechanics and dynamics of filopodia. Cytoskeleton (Hoboken) 2013; 70:590-603. [PMID: 23959922 DOI: 10.1002/cm.21130] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 01/04/2023]
Abstract
In recent years, the dynamic, hair-like cell protrusions called filopodia have attracted considerable attention. They have been found in a multitude of different cell types and are often called "sensory organelles," since they seem to sense the mechanical and chemical environment of a cell. Once formed, filopodia can exhibit complex behavior, they can grow and retract, push or pull, and transform into distinct structures. They are often found to make first adhesive contact with the extracellular matrix, pathogens or with adjacent cells, and to subsequently exert pulling forces. Much is known about the cytoskeletal players involved in filopodia formation, but only recently have we started to explore the mechanics of filopodia together with the related cytoskeletal dynamics. This review summarizes current advancements in our understanding of the mechanics and dynamics of filopodia, with a focus on the molecular mechanisms behind filopodial force exertion.
Collapse
Affiliation(s)
- Thomas Bornschlögl
- Institut Curie, Laboratoire, Physico-Chimie UMR CNRS, 168, 11 Rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
23
|
Lee D, Fong KP, King MR, Brass LF, Hammer DA. Differential dynamics of platelet contact and spreading. Biophys J 2012; 102:472-82. [PMID: 22325269 DOI: 10.1016/j.bpj.2011.10.056] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/19/2011] [Accepted: 10/18/2011] [Indexed: 11/27/2022] Open
Abstract
Platelet spreading is critical for hemostatic plug formation and thrombosis. However, the detailed dynamics of platelet spreading as a function of receptor-ligand adhesive interactions has not been thoroughly investigated. Using reflection interference contrast microscopy, we found that both adhesive interactions and PAR4 activation affect the dynamics of platelet membrane contact formation during spreading. The initial growth of close contact area during spreading was controlled by the combination of different immobilized ligands or PAR4 activation on fibrinogen, whereas the growth of the total area of spreading was independent of adhesion type and PAR4 signaling. We found that filopodia extend to their maximal length and then contract over time; and that filopodial protrusion and expansion were affected by PAR4 signaling. Upon PAR4 activation, the integrin α(IIb)β(3) mediated close contact to fibrinogen substrata and led to the formation of ringlike patterns in the platelet contact zone. A systematic study of platelet spreading of GPVI-, α(2)-, or β(3)-deficient platelets on collagen or fibrinogen suggests the integrin α(2) is indispensable for spreading on collagen. The platelet collagen receptors GPVI and α(2) regulate integrin α(IIb)β(3)-mediated platelet spreading on fibrinogen. This work elucidates quantitatively how receptor-ligand adhesion and biochemical signals synergistically control platelet spreading.
Collapse
Affiliation(s)
- Dooyoung Lee
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
24
|
Zhuravlev PI, Papoian GA. Protein fluxes along the filopodium as a framework for understanding the growth-retraction dynamics: the interplay between diffusion and active transport. Cell Adh Migr 2012; 5:448-56. [PMID: 21975554 DOI: 10.4161/cam.5.5.17868] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We present a picture of filopodial growth and retraction from physics perspective, where we emphasize the significance of the role played by protein fluxes due to spatially extended nature of the filopodium. We review a series of works, which used stochastic simulations and mean field analytical modeling to find the concentration profile of G-actin inside a filopodium, which, in turn, determines the stationary filopodial length. In addition to extensively reviewing the prior works, we also report some new results on the role of active transport in regulating the length of filopodia. We model a filopodium where delivery of actin monomers towards the tip can occur both through passive diffusion and active transport by myosin motors. We found that the concentration profile of G-actin along the filopodium is rather non-trivial, containing a narrow minimum near the base followed by a broad maximum. For efficient enough actin transport, this non-monotonous shape is expected to occur under a broad set of conditions. We also raise the issue of slow approach to the stationary length and the possibility of multiple steady state solutions.
Collapse
Affiliation(s)
- Pavel I Zhuravlev
- Department of Chemistry and Institute for Physical Science and Technology, University of Maryland, College Park, MD USA
| | | |
Collapse
|
25
|
Pontes B, Viana NB, Salgado LT, Farina M, Moura Neto V, Nussenzveig HM. Cell cytoskeleton and tether extraction. Biophys J 2011; 101:43-52. [PMID: 21723813 DOI: 10.1016/j.bpj.2011.05.044] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 04/29/2011] [Accepted: 05/17/2011] [Indexed: 11/18/2022] Open
Abstract
We perform a detailed investigation of the force × deformation curve in tether extraction from 3T3 cells by optical tweezers. Contrary to conventional wisdom about tethers extracted from cells, we find that actin filaments are present within them, so that a revised theory of tether pulling from cells is called for. We also measure steady and maximum tether force values significantly higher than previously published ones for 3T3 cells. Possible explanations for these differences are investigated. Further experimental support of the theory of force barriers for membrane tube extension is obtained. The potential of studies on tether pulling force × deformation for retrieving information on membrane-cytoskeleton interaction is emphasized.
Collapse
Affiliation(s)
- B Pontes
- Laboratório de Pinças Óticas da Coordenação de Programas de Estudos Avançados, Instituto de Ciências Biomédicas, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|