1
|
Barbotin A, Billaudeau C, Sezgin E, Carballido-López R. Quantification of membrane fluidity in bacteria using TIR-FCS. Biophys J 2024; 123:2484-2495. [PMID: 38877702 PMCID: PMC11365102 DOI: 10.1016/j.bpj.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Plasma membrane fluidity is an important phenotypic feature that regulates the diffusion, function, and folding of transmembrane and membrane-associated proteins. In bacterial cells, variations in membrane fluidity are known to affect respiration, transport, and antibiotic resistance. Membrane fluidity must therefore be tightly regulated to adapt to environmental variations and stresses such as temperature fluctuations or osmotic shocks. Quantitative investigation of bacterial membrane fluidity has been, however, limited due to the lack of available tools, primarily due to the small size and membrane curvature of bacteria that preclude most conventional analysis methods used in eukaryotes. Here, we develop an assay based on total internal reflection-fluorescence correlation spectroscopy (TIR-FCS) to directly measure membrane fluidity in live bacteria via the diffusivity of fluorescent membrane markers. With simulations validated by experiments, we could determine how the small size, high curvature, and geometry of bacteria affect diffusion measurements and correct subsequent measurements for unbiased diffusion coefficient estimation. We used this assay to quantify the fluidity of the cytoplasmic membranes of the Gram-positive bacteria Bacillus subtilis (rod-shaped) and Staphylococcus aureus (coccus) at high (37°C) and low (20°C) temperatures in a steady state and in response to a cold shock, caused by a shift from high to low temperature. The steady-state fluidity was lower at 20°C than at 37°C, yet differed between B. subtilis and S. aureus at 37°C. Upon cold shock, the membrane fluidity decreased further below the steady-state fluidity at 20°C and recovered within 30 min in both bacterial species. Our minimally invasive assay opens up exciting perspectives for the study of a wide range of phenomena affecting the bacterial membrane, from disruption by chemicals or antibiotics to viral infection or change in nutrient availability.
Collapse
Affiliation(s)
- Aurélien Barbotin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| | - Cyrille Billaudeau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Rut Carballido-López
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
2
|
Gerlach L, Gholami O, Schürmann N, Kleinschmidt JH. Folding of β-Barrel Membrane Proteins into Lipid Membranes by Site-Directed Fluorescence Spectroscopy. Methods Mol Biol 2020; 2003:465-492. [PMID: 31218630 DOI: 10.1007/978-1-4939-9512-7_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Protein-lipid interactions are important for folding and membrane insertion of integral membrane proteins that are composed either of α-helical or of β-barrel structure in their transmembrane domains. While α-helical transmembrane proteins fold co-translationally while they are synthesized by a ribosome, β-barrel transmembrane proteins (β-TMPs) fold and insert posttranslationally-in bacteria after translocation across the cytoplasmic membrane, in cell organelles of eukaryotes after import across the outer membrane of the organelle. β-TMPs can be unfolded in aqueous solutions of chaotropic denaturants like urea and spontaneously refold upon denaturant dilution in the presence of preformed lipid bilayers. This facilitates studies on lipid interactions during folding into lipid bilayers. For several β-TMPs, the kinetics of folding has been reported as strongly dependent on protein-lipid interactions. The kinetics of adsorption/insertion and folding of β-TMPs can be monitored by fluorescence spectroscopy. These fluorescence methods are even more powerful when combined with site-directed mutagenesis for the preparation of mutants of a β-TMP that are site-specifically labeled with a fluorophore or a fluorophore and fluorescence quencher or fluorescence resonance energy acceptor. Single tryptophan or single cysteine mutants of the β-TMP allow for the investigation of local protein-lipid interactions, at specific regions within the protein. To examine the structure formation of β-TMPs in a lipid environment, fluorescence spectroscopy has been used for double mutants of β-TMPs that contain a fluorescent tryptophan and a spin-label, covalently attached to a cysteine as a fluorescence quencher. The sites of mutation are selected so that the tryptophan is in close proximity to the quencher at the cysteine only when the β-TMP is folded. In a folding experiment, the evolution of fluorescence quenching as a function of time at specific sites within the protein can provide important information on the folding mechanism of the β-TMP. Here, we report protocols to examine membrane protein folding for two β-TMPs in a lipid environment, the outer membrane protein A from Escherichia coli, OmpA, and the voltage-dependent anion-selective channel, human isoform 1, hVDAC1, from mitochondria.
Collapse
Affiliation(s)
- Lisa Gerlach
- Department of Biophysics, Institute of Biology, FB 10 and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany
| | - Omkolsum Gholami
- Department of Biophysics, Institute of Biology, FB 10 and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany
| | - Nicole Schürmann
- Department of Biophysics, Institute of Biology, FB 10 and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany
| | - Jörg H Kleinschmidt
- Department of Biophysics, Institute of Biology, FB 10 and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany.
| |
Collapse
|
3
|
Huysmans GHM, Marx DC, Radford SE, Fleming KG. Determining the Free Energies of Outer Membrane Proteins in Lipid Bilayers. Methods Mol Biol 2020; 2168:217-232. [PMID: 33582994 DOI: 10.1007/978-1-0716-0724-4_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The thermodynamic stabilities of membrane proteins are of fundamental interest to provide a biophysical description of their structure-function relationships because energy determines conformational populations. In addition, structure-energy relationships can be exploited in membrane protein design and in synthetic biology. To determine the thermodynamic stability of a membrane protein, it is not sufficient to be able to unfold and refold the molecule: establishing path independence of this reaction is essential. Here we describe the procedures required to measure and verify path independence for the folding of outer membrane proteins in large unilamellar vesicles.
Collapse
Affiliation(s)
- Gerard H M Huysmans
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
| | - Dagan C Marx
- T C Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Karen G Fleming
- T C Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
4
|
Asamoto DK, Kang G, Kim JE. Folding of the β-Barrel Membrane Protein OmpA into Nanodiscs. Biophys J 2019; 118:403-414. [PMID: 31843264 DOI: 10.1016/j.bpj.2019.11.3381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 01/19/2023] Open
Abstract
Nanodiscs (NDs) are an excellent alternative to small unilamellar vesicles (SUVs) for studies of membrane protein structure, but it has not yet been shown that membrane proteins are able to spontaneously fold and insert into a solution of freely diffusing NDs. In this article, we present SDS-PAGE differential mobility studies combined with fluorescence, circular dichroism, and ultraviolet resonance Raman spectroscopy to confirm the spontaneous folding of outer membrane protein A (OmpA) into preformed NDs. Folded OmpA in NDs was incubated with Arg-C protease, resulting in the digestion of OmpA to membrane-protected fragments with an apparent molecular mass of ∼26 kDa (major component) and ∼24 kDa (minor component). The OmpA folding yields were greater than 88% in both NDs and SUVs. An OmpA adsorbed intermediate on NDs could be isolated at low temperature and induced to fold via an increase in temperature, analogous to the temperature-jump experiments on SUVs. The circular dichroism spectra of OmpA in NDs and SUVs were similar and indicated β-barrel secondary structure. Further evidence of OmpA folding into NDs was provided by ultraviolet resonance Raman spectroscopy, which revealed the intense 785 cm-1 structural marker for folded OmpA in NDs. The primary difference between folding in NDs and SUVs was the kinetics; the rate of folding was two- to threefold slower in NDs compared to in SUVs, and this decreased rate can tentatively be attributed to the properties of NDs. These data indicate that NDs may be an excellent alternative to SUVs for folding experiments and offer benefits of optical clarity, sample homogeneity, control of ND:protein ratios, and greater stability.
Collapse
Affiliation(s)
- DeeAnn K Asamoto
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Guipeun Kang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California
| | - Judy E Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California.
| |
Collapse
|
5
|
Gupta A, Mahalakshmi R. Reversible folding energetics of Yersinia Ail barrel reveals a hyperfluorescent intermediate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183097. [PMID: 31672545 DOI: 10.1016/j.bbamem.2019.183097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/01/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022]
Abstract
Deducing the molecular details of membrane protein folding has lately become an important area of research in biology. Using Ail, an outer membrane protein (OMP) from Yersina pestis as our model, we explore details of β-barrel folding, stability, and unfolding. Ail displays a simple transmembrane β-barrel topology. Here, we find that Ail follows a simple two-state mechanism in its folding and unfolding thermodynamics. Interestingly, Ail displays multi-step folding kinetics. The early kinetic intermediates in the folding pathway populate near the unfolded state (βT ≈ 0.20), and do not display detectable changes in the local environment of the two interface indoles. Interestingly, tryptophans regulate the late events of barrel rearrangement, and Ail thermodynamic stability. We show that W149 → Y/F/A substitution destabilizes Ail by ~0.13-1.7 kcal mol-1, but retains path-independent thermodynamic equilibrium of Ail. In surprising contrast, substituting W42 and retaining W149 shifts the thermodynamic equilibrium to an apparent kinetic retardation of only the unfolding process, which gives rise to an associated increase in scaffold stability by ~0.3-1.1 kcal mol-1. This is accompanied by the formation of an unusual hyperfluorescent state in the unfolding pathway that is more structured, and represents a conformationally dynamic unfolding intermediate with the interface W149 now lipid solvated. The defined role of each tryptophan and poorer folding efficiency of Trp mutants together presents compelling evidence for the importance of interface aromatics in the unique (un)folding pathway of Ail, and offers interesting insight on alternative pathways in generalized OMP assembly and unfolding mechanisms.
Collapse
Affiliation(s)
- Ankit Gupta
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066. India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066. India.
| |
Collapse
|
6
|
Kuhn J, Smirnov A, Criss AK, Columbus L. Quantifying Carcinoembryonic Antigen-like Cell Adhesion Molecule-Targeted Liposome Delivery Using Imaging Flow Cytometry. Mol Pharm 2019; 16:2354-2363. [PMID: 30995063 DOI: 10.1021/acs.molpharmaceut.8b01274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Carcinoembryonic antigen-like cell adhesion molecules (CEACAMs) are human cell-surface proteins that can exhibit increased expression on tumor cells and are thus a potential target for novel tumor-seeking therapeutic delivery methods. We hypothesize that engineered nanoparticles containing a known interaction partner of CEACAM, Neisseria gonorrhoeae outer membrane protein Opa, can be used to deliver cargo to specific cellular targets. In this study, the cell association and uptake of protein-free liposomes and Opa proteoliposomes into CEACAM-expressing cells were measured using imaging flow cytometry. A size-dependent internalization of liposomes into HeLa cells was observed through endocytic pathways. Opa-dependent, CEACAM1-mediated uptake of liposomes into HeLa cells was observed, with limited colocalization with endosomal and lysosomal trafficking compartments. Given the overexpression of CEACAM1 on several distinct cancers and interest in using CEACAM1 as a component in treatment strategies, these results support further pursuit of investigating Opa-dependent specificity and the internalization mechanism for therapeutic delivery.
Collapse
|
7
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
8
|
Kieber M, Ono T, Oliver RC, Nyenhuis SB, Tieleman DP, Columbus L. The Fluidity of Phosphocholine and Maltoside Micelles and the Effect of CHAPS. Biophys J 2019; 116:1682-1691. [PMID: 31023535 DOI: 10.1016/j.bpj.2019.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022] Open
Abstract
The dynamics of phosphocholine and maltoside micelles, detergents frequently used for membrane protein structure determination, were investigated using electron paramagnetic resonance of spin probes doped into the micelles. Specifically, phosphocholines are frequently used detergents in NMR studies, and maltosides are frequently used in x-ray crystallography structure determination. Beyond the structural and electrostatic differences, this study aimed to determine whether there are differences in the local chain dynamics (i.e., fluidity). The nitroxide probe rotational dynamics in longer chain detergents is more restricted than in shorter chain detergents, and maltoside micelles are more restricted than phosphocholine micelles. Furthermore, the micelle microviscosity can be modulated with mixtures, as demonstrated with mixtures of 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate with n-dodecylphosphocholine, n-tetradecylphosphocholine, n-decyl-β-D-maltoside, or n-dodecyl-β-D-maltoside. These results indicate that observed differences in membrane protein stability in these detergents could be due to fluidity in addition to the already determined structural differences.
Collapse
Affiliation(s)
- Marissa Kieber
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Tomihiro Ono
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Ryan C Oliver
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Sarah B Nyenhuis
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary, Alberta, Canada
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
9
|
Schüßler A, Herwig S, Kleinschmidt JH. Kinetics of Insertion and Folding of Outer Membrane Proteins by Gel Electrophoresis. Methods Mol Biol 2019; 2003:145-162. [PMID: 31218617 DOI: 10.1007/978-1-4939-9512-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
To examine the mechanisms of folding and insertion of TMPs into membranes, kinetic studies are instrumental, for example, for the analysis of folding steps and involved intermediates or for the determination of activation energies. For many β-barrel transmembrane proteins (β-TMPs) it has been shown that the folded, functional form can be separated from the unfolded form by a simple electrophoretic mobility assay. The only requirements for a separation by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) are that the folded form is sufficiently stable and that the samples are not heat-denatured before the electrophoresis is performed. Many folded β-TMPs resist the treatment with SDS at room temperature and are stable against forces during electrophoresis. On the other side, SDS also binds to unfolded forms of β-TMPs and prevents their folding into β-barrel structure. These observations have been used to develop a simple assay to monitor the kinetics of β-barrel tertiary structure formation in a membrane environment by electrophoresis. A folding reaction of a β-TMP is initiated by dilution of the denaturant in the presence of preformed lipid bilayers, proteoliposomes or membrane vesicles. At selected times, samples are taken from the reaction. In these samples, folding is stopped by addition of SDS. At the end of the entire folding reaction, all samples are analyzed by SDS-PAGE and the fractions of folded β-TMP that they contain are determined by densitometry.An advantage of this kinetic assay is that it not only allows a direct determination of fractions of folded and unfolded forms at a selected time during folding of the β-TMP into a membrane, but also facilitates the determination of the impact of folding factors (e.g., molecular chaperones) or folding machinery that most often have a different molecular mass and electrophoretic mobility. The assay has been very useful to examine how folding and insertion is affected by the structure of the phospholipids in the lipid bilayer and how folding machinery compensates for the presence of membrane lipids that retard folding and insertion of β-TMPs.
Collapse
Affiliation(s)
- Andre Schüßler
- Department of Biophysics, Institute of Biology, FB10 and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany
| | - Sascha Herwig
- Department of Biophysics, Institute of Biology, FB10 and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany
| | - Jörg H Kleinschmidt
- Department of Biophysics, Institute of Biology, FB10 and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany.
| |
Collapse
|
10
|
Krainer G, Hartmann A, Anandamurugan A, Gracia P, Keller S, Schlierf M. Ultrafast Protein Folding in Membrane-Mimetic Environments. J Mol Biol 2018; 430:554-564. [DOI: 10.1016/j.jmb.2017.10.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/12/2017] [Accepted: 10/27/2017] [Indexed: 01/06/2023]
|
11
|
Chaturvedi D, Mahalakshmi R. Transmembrane β-barrels: Evolution, folding and energetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2467-2482. [PMID: 28943271 DOI: 10.1016/j.bbamem.2017.09.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022]
Abstract
The biogenesis of transmembrane β-barrels (outer membrane proteins, or OMPs) is an elaborate multistep orchestration of the nascent polypeptide with translocases, barrel assembly machinery, and helper chaperone proteins. Several theories exist that describe the mechanism of chaperone-assisted OMP assembly in vivo and unassisted (spontaneous) folding in vitro. Structurally, OMPs of bacterial origin possess even-numbered strands, while mitochondrial β-barrels are even- and odd-stranded. Several underlying similarities between prokaryotic and eukaryotic β-barrels and their folding machinery are known; yet, the link in their evolutionary origin is unclear. While OMPs exhibit diversity in sequence and function, they share similar biophysical attributes and structure. Similarly, it is important to understand the intricate OMP assembly mechanism, particularly in eukaryotic β-barrels that have evolved to perform more complex functions. Here, we deliberate known facets of β-barrel evolution, folding, and stability, and attempt to highlight outstanding questions in β-barrel biogenesis and proteostasis.
Collapse
Affiliation(s)
- Deepti Chaturvedi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| |
Collapse
|
12
|
Martin JN, Ball LM, Solomon TL, Dewald AH, Criss AK, Columbus L. Neisserial Opa Protein-CEACAM Interactions: Competition for Receptors as a Means of Bacterial Invasion and Pathogenesis. Biochemistry 2016; 55:4286-94. [PMID: 27442026 DOI: 10.1021/acs.biochem.6b00124] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carcino-embryonic antigen-like cellular adhesion molecules (CEACAMs), members of the immunoglobulin superfamily, are responsible for cell-cell interactions and cellular signaling events. Extracellular interactions with CEACAMs have the potential to induce phagocytosis, as is the case with pathogenic Neisseria bacteria. Pathogenic Neisseria species express opacity-associated (Opa) proteins, which interact with a subset of CEACAMs on human cells, and initiate the engulfment of the bacterium. We demonstrate that recombinant Opa proteins reconstituted into liposomes retain the ability to recognize and interact with CEACAMs in vitro but do not maintain receptor specificity compared to that of Opa proteins natively expressed by Neisseria gonorrhoeae. We report that two Opa proteins interact with CEACAMs with nanomolar affinity, and we hypothesize that this high affinity is necessary to compete with the native CEACAM homo- and heterotypic interactions in the host. Understanding the mechanisms of Opa protein-receptor recognition and engulfment enhances our understanding of Neisserial pathogenesis. Additionally, these mechanisms provide insight into how human cells that are typically nonphagocytic can utilize CEACAM receptors to internalize exogenous matter, with implications for the targeted delivery of therapeutics and development of imaging agents.
Collapse
Affiliation(s)
- Jennifer N Martin
- Department of Chemistry and ‡Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, Virginia 22903, United States
| | - Louise M Ball
- Department of Chemistry and ‡Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, Virginia 22903, United States
| | - Tsega L Solomon
- Department of Chemistry and ‡Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, Virginia 22903, United States
| | - Alison H Dewald
- Department of Chemistry and ‡Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, Virginia 22903, United States
| | - Alison K Criss
- Department of Chemistry and ‡Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, Virginia 22903, United States
| | - Linda Columbus
- Department of Chemistry and ‡Department of Microbiology, Immunology, and Cancer Biology, University of Virginia , Charlottesville, Virginia 22903, United States
| |
Collapse
|
13
|
Modulating bilayer mechanical properties to promote the coupled folding and insertion of an integral membrane protein. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:503-12. [DOI: 10.1007/s00249-015-1032-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/23/2015] [Accepted: 05/05/2015] [Indexed: 12/17/2022]
|
14
|
Kleinschmidt JH. Folding of β-barrel membrane proteins in lipid bilayers - Unassisted and assisted folding and insertion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1927-43. [PMID: 25983306 DOI: 10.1016/j.bbamem.2015.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 01/08/2023]
Abstract
In cells, β-barrel membrane proteins are transported in unfolded form to an outer membrane into which they fold and insert. Model systems have been established to investigate the mechanisms of insertion and folding of these versatile proteins into detergent micelles, lipid bilayers and even synthetic amphipathic polymers. In these experiments, insertion into lipid membranes is initiated from unfolded forms that do not display residual β-sheet secondary structure. These studies therefore have allowed the investigation of membrane protein folding and insertion in great detail. Folding of β-barrel membrane proteins into lipid bilayers has been monitored from unfolded forms by dilution of chaotropic denaturants that keep the protein unfolded as well as from unfolded forms present in complexes with molecular chaperones from cells. This review is aimed to provide an overview of the principles and mechanisms observed for the folding of β-barrel transmembrane proteins into lipid bilayers, the importance of lipid-protein interactions and the function of molecular chaperones and folding assistants. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Jörg H Kleinschmidt
- Abteilung Biophysik, Institut für Biologie, FB 10, Universität Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Str. 40, D-34132 Kassel, Germany.
| |
Collapse
|
15
|
Strandberg E, Ulrich AS. AMPs and OMPs: Is the folding and bilayer insertion of β-stranded outer membrane proteins governed by the same biophysical principles as for α-helical antimicrobial peptides? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1944-54. [PMID: 25726906 DOI: 10.1016/j.bbamem.2015.02.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 11/24/2022]
Abstract
The folding and function of membrane proteins is controlled not only by specific but also by unspecific interactions with the constituent lipids. In this review, we focus on the influence of the spontaneous lipid curvature on the folding and insertion of peptides and proteins in membranes. Amphiphilic α-helical peptides, as represented by various antimicrobial sequences, are compared with β-barrel proteins, which are found in the outer membrane of Gram-negative bacteria. It has been shown that cationic amphiphilic peptides are always surface-bound in lipids with a negative spontaneous curvature like POPC, i.e. they are oriented parallel to the membrane plane. On the other hand, in lipids like DMPC with a positive curvature, these peptides can get tilted or completely inserted in a transmembrane state. Remarkably, the folding and spontaneous membrane insertion of β-barrel outer membrane proteins also proceeds more easily in lipids with a positive intrinsic curvature, while it is hampered by negative curvature. We therefore propose that a positive spontaneous curvature of the lipids promotes the ability of a surface-bound molecule to insert more deeply into the bilayer core, irrespective of the conformation, size, or shape of the peptide, protein, or folding intermediate. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Erik Strandberg
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O.B. 3640, 76021 Karlsruhe, Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O.B. 3640, 76021 Karlsruhe, Germany; KIT, Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| |
Collapse
|
16
|
Scott HL, Nguyen VP, Alves DS, Davis FL, Booth KR, Bryner J, Barrera FN. The negative charge of the membrane has opposite effects on the membrane entry and exit of pH-low insertion peptide. Biochemistry 2015; 54:1709-12. [PMID: 25692747 DOI: 10.1021/acs.biochem.5b00069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pH-low insertion peptide (pHLIP) targets acidic diseases such as cancer. The acidity of the environment causes key aspartic acids in pHLIP to become protonated, causing the peptide to insert into membranes. Here we investigate how the negative charge of the membrane influences how pHLIP enters and exits the lipid bilayer. We found that electrostatic repulsion affected differently the membrane entry and exit of pHLIP for negatively charged membranes. As a consequence, a large hysteresis was observed. We propose this is not a consequence of structural changes but results from local changes in the environment of aspartic acids, shifting their pK values.
Collapse
Affiliation(s)
- Haden L Scott
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | | | | | | | | | | | | |
Collapse
|
17
|
Gupta A, Iyer BR, Chaturvedi D, Maurya SR, Mahalakshmi R. Thermodynamic, structural and functional properties of membrane protein inclusion bodies are analogous to purified counterparts: case study from bacteria and humans. RSC Adv 2015. [DOI: 10.1039/c4ra11207e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purification-free transmembrane protein inclusion body preparations for rapid and cost-effective biophysical, functional and structural studies.
Collapse
Affiliation(s)
- Ankit Gupta
- Molecular Biophysics Laboratory
- Department of Biological Sciences
- Indian Institute of Science Education and Research
- Bhopal
- India
| | - Bharat Ramasubramanian Iyer
- Molecular Biophysics Laboratory
- Department of Biological Sciences
- Indian Institute of Science Education and Research
- Bhopal
- India
| | - Deepti Chaturvedi
- Molecular Biophysics Laboratory
- Department of Biological Sciences
- Indian Institute of Science Education and Research
- Bhopal
- India
| | - Svetlana Rajkumar Maurya
- Molecular Biophysics Laboratory
- Department of Biological Sciences
- Indian Institute of Science Education and Research
- Bhopal
- India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory
- Department of Biological Sciences
- Indian Institute of Science Education and Research
- Bhopal
- India
| |
Collapse
|
18
|
Reddy PM, Taha M, Sharma YVRK, Venkatesu P, Lee MJ. Quantifying the co-solvent effects on trypsin from the digestive system of carp Catla catla by biophysical techniques and molecular dynamics simulations. RSC Adv 2015. [DOI: 10.1039/c5ra01302j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Urea molecules locate within 0.5 nm of the surface of trypsin.
Collapse
Affiliation(s)
- P. Madhusudhana Reddy
- Department of Chemistry
- University of Delhi
- Delhi – 110 007
- India
- Department of Chemical Engineering
| | - M. Taha
- CICECO
- Departamento de Química
- Universidade de Aveiro
- 3810-193 Aveiro
- Portugal
| | | | | | - Ming-Jer Lee
- Department of Chemical Engineering
- National Taiwan University of Science & Technology
- Taipei 10607
- Taiwan
| |
Collapse
|
19
|
Folding membrane proteins in vitro: A table and some comments. Arch Biochem Biophys 2014; 564:314-26. [DOI: 10.1016/j.abb.2014.06.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/23/2022]
|
20
|
Broecker J, Fiedler S, Gimpl K, Keller S. Polar Interactions Trump Hydrophobicity in Stabilizing the Self-Inserting Membrane Protein Mistic. J Am Chem Soc 2014; 136:13761-8. [DOI: 10.1021/ja5064795] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jana Broecker
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Straβe 13, 67663 Kaiserslautern, Germany
| | - Sebastian Fiedler
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Straβe 13, 67663 Kaiserslautern, Germany
| | - Katharina Gimpl
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Straβe 13, 67663 Kaiserslautern, Germany
| | - Sandro Keller
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Straβe 13, 67663 Kaiserslautern, Germany
| |
Collapse
|
21
|
Bennett WFD, Sapay N, Tieleman DP. Atomistic simulations of pore formation and closure in lipid bilayers. Biophys J 2014; 106:210-9. [PMID: 24411253 DOI: 10.1016/j.bpj.2013.11.4486] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/13/2013] [Accepted: 11/25/2013] [Indexed: 10/25/2022] Open
Abstract
Cellular membranes separate distinct aqueous compartments, but can be breached by transient hydrophilic pores. A large energetic cost prevents pore formation, which is largely dependent on the composition and structure of the lipid bilayer. The softness of bilayers and the disordered structure of pores make their characterization difficult. We use molecular-dynamics simulations with atomistic detail to study the thermodynamics, kinetics, and mechanism of pore formation and closure in DLPC, DMPC, and DPPC bilayers, with pore formation free energies of 17, 45, and 78 kJ/mol, respectively. By using atomistic computer simulations, we are able to determine not only the free energy for pore formation, but also the enthalpy and entropy, which yields what is believed to be significant new insights in the molecular driving forces behind membrane defects. The free energy cost for pore formation is due to a large unfavorable entropic contribution and a favorable change in enthalpy. Changes in hydrogen bonding patterns occur, with increased lipid-water interactions, and fewer water-water hydrogen bonds, but the total number of overall hydrogen bonds is constant. Equilibrium pore formation is directly observed in the thin DLPC lipid bilayer. Multiple long timescale simulations of pore closure are used to predict pore lifetimes. Our results are important for biological applications, including the activity of antimicrobial peptides and a better understanding of membrane protein folding, and improve our understanding of the fundamental physicochemical nature of membranes.
Collapse
Affiliation(s)
- W F Drew Bennett
- University of Calgary, Department of Biological Sciences and Centre for Molecular Simulation, Calgary, Alberta, Canada
| | - Nicolas Sapay
- University of Calgary, Department of Biological Sciences and Centre for Molecular Simulation, Calgary, Alberta, Canada
| | - D Peter Tieleman
- University of Calgary, Department of Biological Sciences and Centre for Molecular Simulation, Calgary, Alberta, Canada.
| |
Collapse
|
22
|
Fox D, Larsson P, Lo RH, Kroncke BM, Kasson PM, Columbus L. Structure of the Neisserial outer membrane protein Opa₆₀: loop flexibility essential to receptor recognition and bacterial engulfment. J Am Chem Soc 2014; 136:9938-46. [PMID: 24813921 PMCID: PMC4105060 DOI: 10.1021/ja503093y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 03/27/2014] [Indexed: 12/27/2022]
Abstract
The structure and dynamics of Opa proteins, which we report herein, are responsible for the receptor-mediated engulfment of Neisseria gonorrheae or Neisseria meningitidis by human cells and can offer deep understanding into the molecular recognition of pathogen-host receptor interactions. Such interactions are vital to understanding bacterial pathogenesis as well as the mechanism of foreign body entry to a human cell, which may provide insights for the development of targeted pharmaceutical delivery systems. The size and dynamics of the extracellular loops of Opa60 required a hybrid refinement approach wherein membrane and distance restraints were used to generate an initial NMR structural ensemble, which was then further refined using molecular dynamics in a DMPC bilayer. The resulting ensemble revealed that the extracellular loops, which bind host receptors, occupy compact conformations, interact with each other weakly, and are dynamic on the nanosecond time scale. We predict that this conformational sampling is critical for enabling diverse Opa loop sequences to engage a common set of receptors.
Collapse
Affiliation(s)
- Daniel
A. Fox
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Per Larsson
- Center
for Membrane Biology and Department of Molecular Physiology and Biological
Physics, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Ryan H. Lo
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Brett M. Kroncke
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Peter M. Kasson
- Center
for Membrane Biology and Department of Molecular Physiology and Biological
Physics, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Linda Columbus
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- Center
for Membrane Biology and Department of Molecular Physiology and Biological
Physics, University of Virginia, Charlottesville, Virginia 22908, United States
| |
Collapse
|
23
|
Peter B, Fanucchi S, Dirr HW. A conserved cationic motif enhances membrane binding and insertion of the chloride intracellular channel protein 1 transmembrane domain. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:405-14. [DOI: 10.1007/s00249-014-0972-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/29/2014] [Accepted: 05/26/2014] [Indexed: 12/26/2022]
|
24
|
Methionine mutations of outer membrane protein X influence structural stability and beta-barrel unfolding. PLoS One 2013; 8:e79351. [PMID: 24265768 PMCID: PMC3827151 DOI: 10.1371/journal.pone.0079351] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/26/2013] [Indexed: 12/24/2022] Open
Abstract
We report the biochemical and biophysical characterization of outer membrane protein X (OmpX), an eight-stranded transmembrane β-barrel from E. coli, and compare the barrel behavior with a mutant devoid of methionine residues. Transmembrane outer membrane proteins of bacterial origin are known to display high tolerance to sequence rearrangements and mutations. Our studies with the triple mutant of OmpX that is devoid of all internal methionine residues (M18L; M21L; M118L) indicate that Met replacement has no influence on the refolding efficiency and structural characteristics of the protein. Surprisingly, the conserved substitution of Met→Leu leads to barrel destabilization and causes a lowering of the unfolding free energy by a factor of ∼8.5 kJ/mol, despite the mutations occurring at the loop regions. We report that the barrel destabilization is accompanied by a loss in cooperativity of unfolding in the presence of chemical denaturants. Furthermore, we are able to detect an unfolding intermediate in the Met-less barrel, whereas the parent protein exhibits a classic two-state unfolding. Thermal denaturation measurements also suggest a greater susceptibility of the OmpX barrel to heat, in the Met-less construct. Our studies reveal that even subtle variations in the extra-membrane region of rigid barrel structures such as OmpX, may bear severe implications on barrel stability. We propose that methionines contribute to efficient barrel structuring and protein-lipid interactions, and are therefore important elements of OmpX stability.
Collapse
|
25
|
Maurya SR, Chaturvedi D, Mahalakshmi R. Modulating lipid dynamics and membrane fluidity to drive rapid folding of a transmembrane barrel. Sci Rep 2013; 3:1989. [PMID: 23771099 PMCID: PMC3683699 DOI: 10.1038/srep01989] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/08/2013] [Indexed: 11/09/2022] Open
Abstract
Lipid-protein interactions, critical for the folding, stability and function of membrane proteins, can be both of mechanical and chemical nature. Mechanical properties of lipid systems can be suitably influenced by physical factors so as to facilitate membrane protein folding. We demonstrate here that by modulating lipid dynamics transiently using heat, rapid folding of two 8-stranded transmembrane β-barrel proteins OmpX and OmpA1–171, in micelles and vesicles, can be achieved within seconds. Folding kinetics using this ‘heat shock’ method shows a dramatic ten to several hundred folds increase in refolding rate along with ~100% folding efficiency. We establish that OmpX thus folded is highly thermostable even in detergent micelles, and retains structural characteristics comparable to the protein in bilayers.
Collapse
Affiliation(s)
- Svetlana Rajkumar Maurya
- Department of Biological Sciences, Indian Institute of Science Education and Research, Govindpura, Bhopal, India
| | | | | |
Collapse
|
26
|
Huysmans GHM, Guilvout I, Pugsley AP. Sequential steps in the assembly of the multimeric outer membrane secretin PulD. J Biol Chem 2013; 288:30700-30707. [PMID: 24019525 DOI: 10.1074/jbc.m113.489112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Investigations into protein folding are largely dominated by studies on monomeric proteins. However, the transmembrane domain of an important group of membrane proteins is only formed upon multimerization. Here, we use in vitro translation-coupled folding and insertion into artificial liposomes to investigate kinetic steps in the assembly of one such protein, the outer membrane secretin PulD of the bacterial type II secretion system. Analysis of the folding kinetics, measured by the acquisition of distinct determinants of the native state, provides unprecedented evidence for a sequential multistep process initiated by membrane-driven oligomerization. The effects of varying the lipid composition of the liposomes indicate that PulD first forms a "prepore" structure that attains the native state via a conformational switch.
Collapse
Affiliation(s)
- Gerard H M Huysmans
- From the Molecular Genetics Unit, Departments of Microbiology and Structural Biology and Chemistry, and CNRS ERL3526, Institut Pasteur, rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Ingrid Guilvout
- From the Molecular Genetics Unit, Departments of Microbiology and Structural Biology and Chemistry, and CNRS ERL3526, Institut Pasteur, rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Anthony P Pugsley
- From the Molecular Genetics Unit, Departments of Microbiology and Structural Biology and Chemistry, and CNRS ERL3526, Institut Pasteur, rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
27
|
Fox DA, Columbus L. Solution NMR resonance assignment strategies for β-barrel membrane proteins. Protein Sci 2013; 22:1133-40. [PMID: 23754333 DOI: 10.1002/pro.2291] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 12/23/2022]
Abstract
Membrane proteins in detergent micelles are large and dynamic complexes that present challenges for solution NMR investigations such as spectral overlap and line broadening. In this study, multiple methods are introduced to facilitate resonance assignment of β-barrel membrane proteins using Opa60 from Neisseria gonorrhoeae as a model system. Opa60 is an eight-stranded β-barrel with long extracellular loops (∼63% of the protein) that engage host receptors and induce engulfment of the bacterium. The NMR spectra of Opa60 in detergent micelles exhibits significant spectral overlap and resonances corresponding to the loop regions had variable line widths, which interfered with a complete assignment of the protein. To assign the β-barrel residues, trypsin cleavage was used to remove much of the extracellular loops while preserving the detergent solubilized β-barrel. The removal of the loop resonances significantly improved the assignment of the Opa60 β-barrel region (97% of the resonances corresponding to the β-barrel and periplasmic turns were assigned). For the loop resonance assignments, two strategies were implemented; modulating temperature and synthetic peptides. Lowering the temperature broadened many peaks beyond detection and simplified the spectra to only the most dynamic regions of the loops facilitating 27 loop resonances to be assigned. To further assign functionally important and unstructured regions of the extracellular loops, a synthetic 20 amino acid peptide was synthesized and had nearly complete spectral overlap with the full-length protein allowing 17 loop resonances to be assigned. Collectively, these strategies are effective tools that may accelerate solution NMR structure determination of β-barrel membrane proteins.
Collapse
Affiliation(s)
- Daniel A Fox
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, USA
| | | |
Collapse
|
28
|
Folding of outer membrane proteins. Arch Biochem Biophys 2013; 531:34-43. [DOI: 10.1016/j.abb.2012.10.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 10/11/2012] [Accepted: 10/19/2012] [Indexed: 11/18/2022]
|
29
|
Wang H, Andersen KK, Vad BS, Otzen DE. OmpA can form folded and unfolded oligomers. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:127-36. [PMID: 22982243 DOI: 10.1016/j.bbapap.2012.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/30/2012] [Accepted: 09/05/2012] [Indexed: 11/30/2022]
Abstract
The monomeric outer membrane protein OmpA from Escherichia coli has long served as a model protein for studying the folding and membrane insertion of β-barrel membrane proteins. Here we report that when OmpA is refolded in limiting amounts of surfactant (close to the cmc), it has a high propensity to form folded and unfolded oligomers. The oligomers exist both in a folded and (partially) unfolded form which both dissociate under denaturing conditions. Oligomerization does not require the involvement of the periplasmic domain and is not strongly affected by ionic strength. The folded dimers can be isolated and show native-like secondary structure; they are resistant to proteolytic attack and do not dissociate in high surfactant concentrations, indicating high kinetic stability once formed. Remarkably, OmpA also forms significant amounts of higher order structures when refolding in the presence of lipid vesicles. We suggest that oligomerization occurs by domain swapping favored by the high local concentration of OmpA molecules congregating on the same micelle or vesicle. In this model, the unfolded oligomer is stabilized by a small number of intermolecular β-strand contacts and subsequently folds to a more stable state where these intermolecular contacts are consolidated in a native-like fashion by contacts between complementary β-strands from different molecules. Our model is supported by the ability of complementary fragments to associate with each other in vitro. Oligomerization is probably avoided in the cell by the presence of cellular chaperones which maintain the protein in a monomeric state.
Collapse
Affiliation(s)
- H Wang
- Interdisciplinary Nanoscience Center (iNANO), Center for Insoluble Protein Structures (inSPIN), Department of Molecular Biology and Genetics, University of Aarhus, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
30
|
Cooper MD, Roberts MH, Barauskas OL, Jarvis GA. Secretory leukocyte protease inhibitor binds to Neisseria gonorrhoeae outer membrane opacity protein and is bactericidal. Am J Reprod Immunol 2012; 68:116-27. [PMID: 22537232 PMCID: PMC3395761 DOI: 10.1111/j.1600-0897.2012.01149.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/29/2012] [Indexed: 01/10/2023] Open
Abstract
PROBLEM Secretory leukocyte protease inhibitor (SLPI) is an innate immune peptide present on the genitourinary tract mucosa that has antimicrobial activity. In this study, we investigated the interaction of SLPI with Neisseria gonorrhoeae. METHOD OF STUDY ELISA and far-Western blots were used to analyze binding of SLPI to gonococci. The binding site for SLPI was identified by tryptic digests and mass spectrometry. Antimicrobial activity of SLPI for gonococci was determined using bactericidal assays. SLPI protein levels in cell supernatants were measured by ELISA, and SLPI mRNA levels were assessed by quantitative RT-PCR. RESULTS SLPI bound directly to the gonococcal Opa protein and was bactericidal. Epithelial cells from the reproductive tract constitutively expressed SLPI at different levels. Gonococcal infection of cells did not affect SLPI expression. CONCLUSION We conclude that SLPI is bactericidal for gonococci and is expressed by reproductive tract epithelial cells and thus is likely to play a role in the pathogenesis of gonococcal infection.
Collapse
Affiliation(s)
- Morris D Cooper
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University, Springfield, IL, USA
| | | | | | | |
Collapse
|
31
|
Huysmans GH, Radford SE, Baldwin SA, Brockwell DJ. Malleability of the folding mechanism of the outer membrane protein PagP: parallel pathways and the effect of membrane elasticity. J Mol Biol 2012; 416:453-64. [PMID: 22245579 PMCID: PMC3314998 DOI: 10.1016/j.jmb.2011.12.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 10/29/2022]
Abstract
Understanding the interactions between membrane proteins and the lipid bilayer is key to increasing our ability to predict and tailor the folding mechanism, structure and stability of membrane proteins. Here, we have investigated the effects of changing the membrane composition and the relative concentrations of protein and lipid on the folding mechanism of the bacterial outer membrane protein PagP. The folding pathway, monitored by tryptophan fluorescence, was found to be characterized by a burst phase, representing PagP adsorption to the liposome surface, followed by a time course that reflects the folding and insertion of the protein into the membrane. In 1,2-dilauroyl-sn-glycero-3-phosphocholine (diC(12:0)PC) liposomes, the post-adsorption time course fits well to a single exponential at high lipid-to-protein ratios (LPRs), but at low LPRs, a second exponential phase with a slower folding rate constant is observed. Interrupted refolding assays demonstrated that the two exponential phases reflect the presence of parallel folding pathways. Partitioning between these pathways was found to be modulated by the elastic properties of the membrane. Folding into mixed 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine:diC(12:0)PC liposomes resulted in a decrease in PagP adsorption to the liposomes and a switch to the slower folding pathway. By contrast, inclusion of 1,2-dilauroyl-sn-glycero-3-phosphoserine into diC(12:0)PC liposomes resulted in a decrease in the folding rate of the fast pathway. The results highlight the effect of lipid composition in tailoring the folding mechanism of a membrane protein, revealing that membrane proteins have access to multiple, competing folding routes to a unique native structure.
Collapse
Affiliation(s)
- Gerard H.M. Huysmans
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen A. Baldwin
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J. Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
32
|
Mitchell DC. Progress in understanding the role of lipids in membrane protein folding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:951-6. [PMID: 22236837 DOI: 10.1016/j.bbamem.2011.12.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 12/23/2011] [Accepted: 12/23/2011] [Indexed: 10/14/2022]
Abstract
Detailed investigations of membrane protein folding present a number of serious technical challenges. Most studies addressing this subject have emphasized aspects of protein amino acid sequence and structure. While it is generally accepted that the interplay between proteins and lipids plays an important role in membrane protein folding, the role(s) played by membrane lipids in this process have only recently been explored in any detail. This review is intended to summarize recent studies in which particular lipids or membrane physical properties have been shown to play a role in the folding of intact, functionally competent integral membrane proteins. This article is part of a Special Issue entitled: Protein Folding in Membranes.
Collapse
Affiliation(s)
- Drake C Mitchell
- Department of Physics, Portland State University, Portland, OR 97207, USA.
| |
Collapse
|