1
|
Biziaev N, Shuvalov A, Salman A, Egorova T, Shuvalova E, Alkalaeva E. The impact of mRNA poly(A) tail length on eukaryotic translation stages. Nucleic Acids Res 2024; 52:7792-7808. [PMID: 38874498 PMCID: PMC11260481 DOI: 10.1093/nar/gkae510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
The poly(A) tail plays an important role in maintaining mRNA stability and influences translation efficiency via binding with PABP. However, the impact of poly(A) tail length on mRNA translation remains incompletely understood. This study explores the effects of poly(A) tail length on human translation. We determined the translation rates in cell lysates using mRNAs with different poly(A) tails. Cap-dependent translation was stimulated by the poly(A) tail, however, it was largely independent of poly(A) tail length, with an exception observed in the case of the 75 nt poly(A) tail. Conversely, cap-independent translation displayed a positive correlation with poly(A) tail length. Examination of translation stages uncovered the dependence of initiation and termination on the presence of the poly(A) tail, but the efficiency of initiation remained unaffected by poly(A) tail extension. Further study unveiled that increased binding of eRFs to the ribosome with the poly(A) tail extension induced more efficient hydrolysis of peptidyl-tRNA. Building upon these findings, we propose a crucial role for the 75 nt poly(A) tail in orchestrating the formation of a double closed-loop mRNA structure within human cells which couples the initiation and termination phases of translation.
Collapse
Affiliation(s)
- Nikita Biziaev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Shuvalov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ali Salman
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Tatiana Egorova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina Shuvalova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
2
|
Jeong KB, Kim JS, Dhanasekar NN, Lee MK, Chi SW. Application of nanopore sensors for biomolecular interactions and drug discovery. Chem Asian J 2022; 17:e202200679. [PMID: 35929410 DOI: 10.1002/asia.202200679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Indexed: 11/07/2022]
Abstract
Biomolecular interactions, including protein-protein, protein-nucleic acid, and protein/nucleic acid-ligand interactions, play crucial roles in various cellular signaling and biological processes, and offer attractive therapeutic targets in numerous human diseases. Currently, drug discovery is limited by the low efficiency and high cost of conventional ensemble-averaging-based techniques for biomolecular interaction analysis and high-throughput drug screening. Nanopores are an emerging technology for single-molecule sensing of biomolecules. Owing to the robust advantages of single-molecule sensing, nanopore sensors have contributed tremendously to nucleic acid sequencing and disease diagnostics. In this minireview, we summarize the recent developments and outlooks in single-molecule sensing of various biomolecular interactions for drug discovery applications using biological and solid-state nanopore sensors.
Collapse
Affiliation(s)
- Ki-Baek Jeong
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
| | - Jin-Sik Kim
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
| | - Naresh Niranjan Dhanasekar
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
| | - Mi-Kyung Lee
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, 34113, Daejeon, Republic of Korea
| | - Seung-Wook Chi
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, 34113, Daejeon, Republic of Korea
| |
Collapse
|
3
|
Perzanowska O, Smietanski M, Jemielity J, Kowalska J. Chemically Modified Poly(A) Analogs Targeting PABP: Structure Activity Relationship and Translation Inhibitory Properties. Chemistry 2022; 28:e202201115. [PMID: 35575378 PMCID: PMC9400960 DOI: 10.1002/chem.202201115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 11/13/2022]
Abstract
Poly(A)‐binding protein (PABP) is an essential element of cellular translational machinery. Recent studies have revealed that poly(A) tail modifications can modulate mRNA stability and translational potential, and that oligoadenylate‐derived PABP ligands can act as effective translational inhibitors with potential applications in pain management. Although extensive research has focused on protein‐RNA and protein‐protein interactions involving PABPs, further studies are required to examine the ligand specificity of PABP. In this study, we developed a microscale thermophoresis‐based assay to probe the interactions between PABP and oligoadenylate analogs containing different chemical modifications. Using this method, we evaluated oligoadenylate analogs modified with nucleobase, ribose, and phosphate moieties to identify modification hotspots. In addition, we determined the susceptibility of the modified oligos to CNOT7 to identify those with the potential for increased cellular stability. Consequently, we selected two enzymatically stable oligoadenylate analogs that inhibit translation in rabbit reticulocyte lysates with a higher potency than a previously reported PABP ligand. We believe that the results presented in this study and the implemented methodology can be capitalized upon in the future development of RNA‐based biological tools.
Collapse
Affiliation(s)
- Olga Perzanowska
- Division of Biophysics Faculty of Physics University of Warsaw Ludwika Pasteura 5 02-093 Warsaw Poland
- Centre of New Technologies University of Warsaw Stefana Banacha 2c 02-097 Warsaw Poland
| | - Miroslaw Smietanski
- Centre of New Technologies University of Warsaw Stefana Banacha 2c 02-097 Warsaw Poland
| | - Jacek Jemielity
- Centre of New Technologies University of Warsaw Stefana Banacha 2c 02-097 Warsaw Poland
| | - Joanna Kowalska
- Division of Biophysics Faculty of Physics University of Warsaw Ludwika Pasteura 5 02-093 Warsaw Poland
| |
Collapse
|
4
|
Kim B, Park Y, Hwang HJ, Chang J, Kim YK, Lee JB. Single polysome analysis of mRNP. Biochem Biophys Res Commun 2022; 618:73-78. [PMID: 35716598 DOI: 10.1016/j.bbrc.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Eukaryotic translation is a complex process that involves the interplay of various translation factors to convert genetic information into a specific amino acid chain. According to an elegant model of eukaryotic translation initiation, the 3' poly(A) tail of an mRNA, which is occupied by poly(A)-binding proteins (PABPs), communicates with the 5'-cap bound by eIF4E to enhance translation. Although the circularization of mRNA resulting from the communication is widely understood, it has yet to be directly observed. To explore mRNA circularization in translation, we analyzed the level of colocalization of eIF4E, eIF4G, and PABP on individual mRNAs in polysomal and subpolysomal fractions using single polysome analysis. Our results show that the three tested proteins barely coexist in mRNA in either polysomal or subpolysomal fractions, implying that the closed-loop structure generated by the communication between eIF4E, eIF4G, and PAPB may be transient during translation.
Collapse
Affiliation(s)
- Byungju Kim
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang, 37673, South Korea
| | - Yeonkyoung Park
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, 02841, South Korea; School of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Hyun Jung Hwang
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, 02841, South Korea; School of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Jeeyoon Chang
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, 02841, South Korea; School of Life Sciences, Korea University, Seoul, 02841, South Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul, 02841, South Korea; School of Life Sciences, Korea University, Seoul, 02841, South Korea.
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang, 37673, South Korea; School of Interdisciplinary Bioscience & Bioengineering, POSTECH, Pohang, 37673, South Korea.
| |
Collapse
|
5
|
Gu S, Jeon HM, Nam SW, Hong KY, Rahman MS, Lee JB, Kim Y, Jang SK. The flip-flop configuration of the PABP-dimer leads to switching of the translation function. Nucleic Acids Res 2021; 50:306-321. [PMID: 34904669 PMCID: PMC8754640 DOI: 10.1093/nar/gkab1205] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/14/2022] Open
Abstract
Poly(A)-binding protein (PABP) is a translation initiation factor that interacts with the poly(A) tail of mRNAs. PABP bound to poly(A) stimulates translation by interacting with the eukaryotic initiation factor 4G (eIF4G), which brings the 3′ end of an mRNA close to its 5′ m7G cap structure through consecutive interactions of the 3′-poly(A)–PABP-eIF4G-eIF4E-5′ m7G cap. PABP is a highly abundant translation factor present in considerably larger quantities than mRNA and eIF4G in cells. However, it has not been elucidated how eIF4G, present in limited cellular concentrations, is not sequestered by mRNA-free PABP, present at high cellular concentrations, but associates with PABP complexed with the poly(A) tail of an mRNA. Here, we report that RNA-free PABPs dimerize with a head-to-head type configuration of PABP, which interferes in the interaction between PABP and eIF4G. We identified the domains of PABP responsible for PABP–PABP interaction. Poly(A) RNA was shown to convert the PABP–PABP complex into a poly(A)–PABP complex, with a head-to-tail-type configuration of PABP that facilitates the interaction between PABP and eIF4G. Lastly, we showed that the transition from the PABP dimer to the poly(A)–PABP complex is necessary for the translational activation function.
Collapse
Affiliation(s)
- Sohyun Gu
- Department of Life Sciences, Pohang University of Science and Technology, Nam-gu, Pohang 37673, Republic of Korea
| | - Hyung-Min Jeon
- Department of Life Sciences, Pohang University of Science and Technology, Nam-gu, Pohang 37673, Republic of Korea
| | - Seung Woo Nam
- Department of Life Sciences, Pohang University of Science and Technology, Nam-gu, Pohang 37673, Republic of Korea
| | - Ka Young Hong
- Department of Life Sciences, Pohang University of Science and Technology, Nam-gu, Pohang 37673, Republic of Korea
| | - Md Shafiqur Rahman
- Department of Life Sciences, Pohang University of Science and Technology, Nam-gu, Pohang 37673, Republic of Korea
| | - Jong-Bong Lee
- School of Interdisciplinary Bioscience & Bioengineering, Pohang University of Science and Technology, Nam-gu, Pohang 37673, Republic of Korea.,Department of Physices, Pohang University of Science and Technology, Nam-gu, Pohang 37673, Republic of Korea
| | - Youngjin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Nam-gu, Pohang 37673, Republic of Korea
| | - Sung Key Jang
- Department of Life Sciences, Pohang University of Science and Technology, Nam-gu, Pohang 37673, Republic of Korea.,School of Interdisciplinary Bioscience & Bioengineering, Pohang University of Science and Technology, Nam-gu, Pohang 37673, Republic of Korea
| |
Collapse
|
6
|
Xiang K, Bartel DP. The molecular basis of coupling between poly(A)-tail length and translational efficiency. eLife 2021; 10:66493. [PMID: 34213414 PMCID: PMC8253595 DOI: 10.7554/elife.66493] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/21/2021] [Indexed: 01/10/2023] Open
Abstract
In animal oocytes and early embryos, mRNA poly(A)-tail length strongly influences translational efficiency (TE), but later in development this coupling between tail length and TE disappears. Here, we elucidate how this coupling is first established and why it disappears. Overexpressing cytoplasmic poly(A)-binding protein (PABPC) in Xenopus oocytes specifically improved translation of short-tailed mRNAs, thereby diminishing coupling between tail length and TE. Thus, strong coupling requires limiting PABPC, implying that in coupled systems longer-tail mRNAs better compete for limiting PABPC. In addition to expressing excess PABPC, post-embryonic mammalian cell lines had two other properties that prevented strong coupling: terminal-uridylation-dependent destabilization of mRNAs lacking bound PABPC, and a regulatory regime wherein PABPC contributes minimally to TE. Thus, these results revealed three fundamental mechanistic requirements for coupling and defined the context-dependent functions for PABPC, which promotes TE but not mRNA stability in coupled systems and mRNA stability but not TE in uncoupled systems. Cells are microscopic biological factories that are constantly creating new proteins. To do so, a cell must first convert its master genetic blueprint, the DNA, into strands of messenger RNA or mRNA. These strands are subsequently translated to make proteins. Cells have two ways to adjust the number of proteins they generate so they do not produce too many or too few: by changing how many mRNA molecules are available for translation, and by regulating how efficiently they translate these mRNA molecules into proteins. In animals, both unfertilized eggs and early-stage embryos lack the ability to create or destroy mRNAs, and consequently cannot adjust the number of mRNA molecules available for translation. These cells can therefore only regulate how efficiently each mRNA is translated. They do this by changing the length of the so-called poly(A) tail at the end of each mRNA molecule, which is made up of a long stretch of repeating adenosine nucleotides. The mRNAs with longer poly(A) tails are translated more efficiently than those with shorter poly(A) tails. However, this difference disappears in older embryos, when both long and short poly(A) tails are translated with equal efficiency, and it is largely unknown why. To find out more, Xiang and Bartel studied frog eggs, and discovered that artificially raising levels of a protein that binds poly(A) tails, also known as PABPC, improved the translation of short-tailed mRNAs to create a situation in which both short- and long-tailed mRNAs were translated with near-equal efficiency. This suggested that short- and long-tailed mRNAs compete for limited amounts of the translation-enhancing PABPC, and that long-tailed mRNAs are better at it than short-tailed mRNAs. Further investigation revealed that eggs also had to establish the right conditions for PABPC to enhance translation and had to protect mRNAs not associated with PABPC from being destroyed before they could be translated. Overall, Xiang and Bartel found that in eggs and early embryos, PABPC and poly(A) tails enhanced the translation of mRNAs but did not influence their stability, whereas later in development, they enhanced mRNA stability but not translation. This research provides new insights into how protein production is controlled at different stages of animal development, from unfertilized eggs to older embryos. Understanding how this process is regulated during normal development is crucial for gaining insights into how it can become dysfunctional and cause disease. These findings may therefore have important implications for research into areas such as infertility, reproductive medicine and rare genetic diseases.
Collapse
Affiliation(s)
- Kehui Xiang
- Howard Hughes Medical Institute, Cambridge, United States.,Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, United States.,Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
7
|
Kenny A, Morgan MB, Macdonald PM. Different roles for the adjoining and structurally similar A-rich and poly(A) domains of oskar mRNA: Only the A-rich domain is required for oskar noncoding RNA function, which includes MTOC positioning. Dev Biol 2021; 476:117-127. [PMID: 33798537 DOI: 10.1016/j.ydbio.2021.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022]
Abstract
Drosophila oskar (osk) mRNA has both coding and noncoding functions, with the latter required for progression through oogenesis. Noncoding activity is mediated by the osk 3' UTR. Three types of cis elements act most directly and are clustered within the final ~120 nucleotides of the 3' UTR: multiple binding sites for the Bru1 protein, a short highly conserved region, and A-rich sequences abutting the poly(A) tail. Here we extend the characterization of these elements and their functions, providing new insights into osk noncoding RNA function and the makeup of the cis elements. We show that all three elements are required for correct positioning of the microtubule organizing center (MTOC), a defect not previously reported for any osk mutant. Normally, the MTOC is located at the posterior of the oocyte during previtellogenic stages of oogenesis, and this distribution underlies the strong posterior enrichment of many mRNAs transported into the oocyte from the nurse cells. When osk noncoding function was disrupted the MTOC was dispersed in the oocyte and osk mRNA failed to be enriched at the posterior, although transport to the oocyte was not affected. A previous study did not detect loss of posterior enrichment for certain osk mutants lacking noncoding activity (Kanke et al., 2015). This discrepancy may be due to use of imaging aimed at monitoring transport to the oocyte rather than posterior enrichment. Involvement in MTOC positioning suggests that the osk noncoding function may act in conjunction with genes whose loss has similar effects, and that osk function may extend to other processes requiring those genes. Further characterization of the cis elements required for osk noncoding function included completion of saturation mutagenesis of the most highly conserved region, providing critical information for evaluating the possible contribution of candidate binding factors. The 3'-most cis element is a cluster of A-rich sequences, the ARS. The close juxtaposition and structural similarity of the ARS and poly(A) tail raised the possibility that they comprise an extended A-rich element required for osk noncoding function. We found that absence of the poly(A) tail did not mimic the effects of mutation of the ARS, causing neither arrest of oogenesis nor mispositioning of osk mRNA in previtellogenic stage oocytes. Thus, the ARS and the poly(A) tail are not interchangeable for osk noncoding RNA function, suggesting that the role of the ARS is not in recruitment of Poly(A) binding protein (PABP), the protein that binds the poly(A) tail. Furthermore, although PABP has been implicated in transport of osk mRNA from the nurse cells to the oocyte, mutation of the ARS in combination with loss of the poly(A) tail did not disrupt transport of osk mRNA into the oocyte. We conclude that PABP acts indirectly in osk mRNA transport, or is associated with osk mRNA independent of an A-rich binding site. Although the poly(A) tail was not required for osk mRNA transport into the oocyte, its absence was associated with a novel osk mRNA localization defect later in oogenesis, potentially revealing a previously unrecognized step in the localization process.
Collapse
Affiliation(s)
- Andrew Kenny
- Department of Molecular Biosciences, The University of Texas at Austin, United States
| | - Miles B Morgan
- Department of Molecular Biosciences, The University of Texas at Austin, United States
| | - Paul M Macdonald
- Department of Molecular Biosciences, The University of Texas at Austin, United States.
| |
Collapse
|
8
|
de Rozières CM, Joseph S. Influenza A Virus NS1 Protein Binds as a Dimer to RNA-Free PABP1 but Not to the PABP1·Poly(A) RNA Complex. Biochemistry 2020; 59:4439-4448. [PMID: 33172261 DOI: 10.1021/acs.biochem.0c00666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Influenza A virus (IAV) is a highly contagious human pathogen that is responsible for tens of thousands of deaths each year. Non-structural protein 1 (NS1) is a crucial protein expressed by IAV to evade the host immune system. Additionally, NS1 has been proposed to stimulate translation because of its ability to bind poly(A) binding protein 1 (PABP1) and eukaryotic initiation factor 4G. We analyzed the interaction of NS1 with PABP1 using quantitative techniques. Our studies show that NS1 binds as a homodimer to PABP1, and this interaction is conserved across different IAV strains. Unexpectedly, NS1 does not bind to PABP1 that is bound to poly(A) RNA. Instead, NS1 binds only to PABP1 free of RNA, suggesting that stimulation of translation does not occur by NS1 interacting with the PABP1 molecule attached to the mRNA 3'-poly(A) tail. These results suggest that the function of the NS1·PABP1 complex appears to be distinct from the classical role of PABP1 in translation initiation, when it is bound to the 3'-poly(A) tail of mRNA.
Collapse
Affiliation(s)
- Cyrus M de Rozières
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0314, United States
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0314, United States
| |
Collapse
|
9
|
Zhao T, Huan Q, Sun J, Liu C, Hou X, Yu X, Silverman IM, Zhang Y, Gregory BD, Liu CM, Qian W, Cao X. Impact of poly(A)-tail G-content on Arabidopsis PAB binding and their role in enhancing translational efficiency. Genome Biol 2019; 20:189. [PMID: 31481099 PMCID: PMC6724284 DOI: 10.1186/s13059-019-1799-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 08/22/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Polyadenylation plays a key role in producing mature mRNAs in eukaryotes. It is widely believed that the poly(A)-binding proteins (PABs) uniformly bind to poly(A)-tailed mRNAs, regulating their stability and translational efficiency. RESULTS We observe that the homozygous triple mutant of broadly expressed Arabidopsis thaliana PABs, AtPAB2, AtPAB4, and AtPAB8, is embryonic lethal. To understand the molecular basis, we characterize the RNA-binding landscape of these PABs. The AtPAB-binding efficiency varies over one order of magnitude among genes. To identify the sequences accounting for the variation, we perform poly(A)-seq that directly sequences the full-length poly(A) tails. More than 10% of poly(A) tails contain at least one guanosine (G); among them, the G-content varies from 0.8 to 28%. These guanosines frequently divide poly(A) tails into interspersed A-tracts and therefore cause the variation in the AtPAB-binding efficiency among genes. Ribo-seq and genome-wide RNA stability assays show that AtPAB-binding efficiency of a gene is positively correlated with translational efficiency rather than mRNA stability. Consistently, genes with stronger AtPAB binding exhibit a greater reduction in translational efficiency when AtPAB is depleted. CONCLUSIONS Our study provides a new mechanism that translational efficiency of a gene can be regulated through the G-content-dependent PAB binding, paving the way for a better understanding of poly(A) tail-associated regulation of gene expression.
Collapse
Affiliation(s)
- Taolan Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Huan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiuli Hou
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiang Yu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ian M Silverman
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yi Zhang
- Laboratory for Genome Regulation and Human Health and Center for Genome Analysis, ABLife Inc, Wuhan, 430075, Hubei, China
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chun-Ming Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Cressiot B, Greive SJ, Mojtabavi M, Antson AA, Wanunu M. Thermostable virus portal proteins as reprogrammable adapters for solid-state nanopore sensors. Nat Commun 2018; 9:4652. [PMID: 30405123 PMCID: PMC6220183 DOI: 10.1038/s41467-018-07116-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/12/2018] [Indexed: 11/09/2022] Open
Abstract
Nanopore-based sensors are advancing the sensitivity and selectivity of single-molecule detection in molecular medicine and biotechnology. Current electrical sensing devices are based on either membrane protein pores supported in planar lipid bilayers or solid-state (SS) pores fabricated in thin metallic membranes. While both types of nanosensors have been used in a variety of applications, each has inherent disadvantages that limit its use. Hybrid nanopores, consisting of a protein pore supported within a SS membrane, combine the robust nature of SS membranes with the precise and simple engineering of protein nanopores. We demonstrate here a novel lipid-free hybrid nanopore comprising a natural DNA pore from a thermostable virus, electrokinetically inserted into a larger nanopore supported in a silicon nitride membrane. The hybrid pore is stable and easy to fabricate, and, most importantly, exhibits low peripheral leakage allowing sensing and discrimination among different types of biomolecules.
Collapse
Affiliation(s)
- Benjamin Cressiot
- Department of Physics, Northeastern University, Boston, MA, 02115, USA.,Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.,LAMBE, Université d'Evry Val d'Essonne, Université de Cergy Pontoise, CNRS, CEA, Université Paris-Saclay, Evry, F-91025, France
| | - Sandra J Greive
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Mehrnaz Mojtabavi
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK.
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, MA, 02115, USA. .,Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Böhm BB, Fehrl Y, Janczi T, Schneider N, Burkhardt H. Cell adhesion-induced transient interaction of ADAM15 with poly(A) binding protein at the cell membrane colocalizes with mRNA translation. PLoS One 2018; 13:e0203847. [PMID: 30265671 PMCID: PMC6161846 DOI: 10.1371/journal.pone.0203847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Abstract
The regulation of temporo-spatial compartmentalization of protein synthesis is of crucial importance for a variety of physiologic cellular functions. Here, we demonstrate that the cell membrane-anchored disintegrin metalloproteinase ADAM15, upregulated in a variety of aggressively growing tumor cells, in the hyperproliferative synovial membrane of inflamed joints as well as in osteoarthritic chondrocytes, transiently binds to poly(A) binding protein 1 (PABP) in cells undergoing adhesion. The cytoplasmic domain of ADAM15 was shown to selectively interact with the proline-rich linker of PABP. Immunostainings of adhesion-triggered cells demonstrate an ADAM15-dependent recruitment of PABP to cell membrane foci coinciding with ongoing mRNA translation as visualized by the detection of puromycin-terminated polypeptides. Moreover, the increase in cell membrane-associated neosynthesis of puromycylated proteins upon induction of cell adhesion was proven linked to ADAM15 expression in HeLa and ADAM15-transfected chondrocytic cells. Thus, down regulation of ADAM15 by siRNA and/or the use of a cell line transfected with a mutant ADAM15-construct lacking the cytoplasmic tail resulted in a considerable reduction in the amount of cell membrane-associated puromycylated proteins formed during induced cell adhesion. These results provide first direct evidence for a regulatory role of ADAM15 on mRNA translation at the cell membrane that transiently emerges in response to triggering cell adhesion and might have potential implications under pathologic conditions of matrix remodeling associated with ADAM15 upregulation.
Collapse
Affiliation(s)
- Beate B. Böhm
- Division of Rheumatology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Yuliya Fehrl
- Division of Rheumatology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Tomasz Janczi
- Division of Rheumatology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Nadine Schneider
- Project Group Translational Medicine & Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
| | - Harald Burkhardt
- Division of Rheumatology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
- Project Group Translational Medicine & Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
12
|
de Melo Neto OP, da Costa Lima TDC, Merlo KC, Romão TP, Rocha PO, Assis LA, Nascimento LM, Xavier CC, Rezende AM, Reis CRS, Papadopoulou B. Phosphorylation and interactions associated with the control of the Leishmania Poly-A Binding Protein 1 (PABP1) function during translation initiation. RNA Biol 2018; 15:739-755. [PMID: 29569995 DOI: 10.1080/15476286.2018.1445958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Poly-A Binding Protein (PABP) is a conserved eukaryotic polypeptide involved in many aspects of mRNA metabolism. During translation initiation, PABP interacts with the translation initiation complex eIF4F and enhances the translation of polyadenylated mRNAs. Schematically, most PABPs can be divided into an N-terminal RNA-binding region, a non-conserved linker segment and the C-terminal MLLE domain. In pathogenic Leishmania protozoans, three PABP homologues have been identified, with the first one (PABP1) targeted by phosphorylation and shown to co-immunoprecipitate with an eIF4F-like complex (EIF4E4/EIF4G3) implicated in translation initiation. Here, PABP1 phosphorylation was shown to be linked to logarithmic cell growth, reminiscent of EIF4E4 phosphorylation, and coincides with polysomal association. Phosphorylation targets multiple serine-proline (SP) or threonine-proline (TP) residues within the PABP1 linker region. This is an essential protein, but phosphorylation is not needed for its association with polysomes or cell viability. Mutations which do impair PABP1 polysomal association and are required for viability do not prevent phosphorylation, although further mutations lead to a presumed inactive protein largely lacking phosphorylated isoforms. Co-immunoprecipitation experiments were carried out to investigate PABP1 function further, identifying several novel protein partners and the EIF4E4/EIF4G3 complex, but no other eIF4F-like complex or subunit. A novel, direct interaction between PABP1 and EIF4E4 was also investigated and found to be mediated by the PABP1 MLLE binding to PABP Interacting Motifs (PAM2) within the EIF4E4 N-terminus. The results shown here are consistent with phosphorylation of PABP1 being part of a novel pathway controlling its function and possibly translation in Leishmania.
Collapse
Affiliation(s)
| | | | - Kleison C Merlo
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | - Tatiany P Romão
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | | | - Ludmila A Assis
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | | | - Camila C Xavier
- a Instituto Aggeu Magalhães - FIOCRUZ , Recife , PE , Brazil
| | | | | | - Barbara Papadopoulou
- c CHU de Quebec Research Center and Department of Microbiology-Infectious Disease and Immunology , Laval University , Quebec , QC , Canada
| |
Collapse
|
13
|
Rissland OS, Subtelny AO, Wang M, Lugowski A, Nicholson B, Laver JD, Sidhu SS, Smibert CA, Lipshitz HD, Bartel DP. The influence of microRNAs and poly(A) tail length on endogenous mRNA-protein complexes. Genome Biol 2017; 18:211. [PMID: 29089021 PMCID: PMC5664449 DOI: 10.1186/s13059-017-1330-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND All mRNAs are bound in vivo by proteins to form mRNA-protein complexes (mRNPs), but changes in the composition of mRNPs during posttranscriptional regulation remain largely unexplored. Here, we have analyzed, on a transcriptome-wide scale, how microRNA-mediated repression modulates the associations of the core mRNP components eIF4E, eIF4G, and PABP and of the decay factor DDX6 in human cells. RESULTS Despite the transient nature of repressed intermediates, we detect significant changes in mRNP composition, marked by dissociation of eIF4G and PABP, and by recruitment of DDX6. Furthermore, although poly(A)-tail length has been considered critical in post-transcriptional regulation, differences in steady-state tail length explain little of the variation in either PABP association or mRNP organization more generally. Instead, relative occupancy of core components correlates best with gene expression. CONCLUSIONS These results indicate that posttranscriptional regulatory factors, such as microRNAs, influence the associations of PABP and other core factors, and do so without substantially affecting steady-state tail length.
Collapse
Affiliation(s)
- Olivia S Rissland
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Present address: Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| | - Alexander O Subtelny
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Miranda Wang
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Andrew Lugowski
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Beth Nicholson
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - John D Laver
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sachdev S Sidhu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - David P Bartel
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
14
|
Squires AH, Gilboa T, Torfstein C, Varongchayakul N, Meller A. Single-Molecule Characterization of DNA-Protein Interactions Using Nanopore Biosensors. Methods Enzymol 2016; 582:353-385. [PMID: 28062042 DOI: 10.1016/bs.mie.2016.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Detection and characterization of nucleic acid-protein interactions, particularly those involving DNA and proteins such as transcription factors, enzymes, and DNA packaging proteins, remain significant barriers to our understanding of genetic regulation. Nanopores are an extremely sensitive and versatile sensing platform for label-free detection of single biomolecules. Analyte molecules are drawn to and through a nanoscale aperture by an electrophoretic force, which acts upon their native charge while in the sensing region of the pore. When the nanopore's diameter is only slightly larger than the biopolymer's cross section (typically a few nm); the latter must translocate through the pore in a linear fashion due to the constricted geometry in this region. These features allow nanopores to interrogate protein-nucleic acids in multiple sensing modes: first, by scanning and mapping the locations of binding sites along an analyte molecule, and second, by probing the strength of the bond between a protein and nucleic acid, using the native charge of the nucleic acid to apply an electrophoretic force to the complex while the protein is geometrically prevented from passing through the nanopore. In this chapter, we describe progress toward nanopore sensing of protein-nucleic acid complexes in the context of both mapping binding sites and performing force spectroscopy to determine the strength of interactions. We conclude by reviewing the strengths and challenges of the nanopore technique in the context of studying DNA-protein interactions.
Collapse
Affiliation(s)
- A H Squires
- Stanford University, Stanford, CA, United States
| | | | | | | | - A Meller
- The Technion, Haifa, Israel; Boston University, Boston, MA, United States.
| |
Collapse
|
15
|
The molecular choreography of protein synthesis: translational control, regulation, and pathways. Q Rev Biophys 2016; 49:e11. [PMID: 27658712 DOI: 10.1017/s0033583516000056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation of proteins by the ribosome regulates gene expression, with recent results underscoring the importance of translational control. Misregulation of translation underlies many diseases, including cancer and many genetic diseases. Decades of biochemical and structural studies have delineated many of the mechanistic details in prokaryotic translation, and sketched the outlines of eukaryotic translation. However, translation may not proceed linearly through a single mechanistic pathway, but likely involves multiple pathways and branchpoints. The stochastic nature of biological processes would allow different pathways to occur during translation that are biased by the interaction of the ribosome with other translation factors, with many of the steps kinetically controlled. These multiple pathways and branchpoints are potential regulatory nexus, allowing gene expression to be tuned at the translational level. As research focus shifts toward eukaryotic translation, certain themes will be echoed from studies on prokaryotic translation. This review provides a general overview of the dynamic data related to prokaryotic and eukaryotic translation, in particular recent findings with single-molecule methods, complemented by biochemical, kinetic, and structural findings. We will underscore the importance of viewing the process through the viewpoints of regulation, translational control, and heterogeneous pathways.
Collapse
|
16
|
Stupfler B, Birck C, Séraphin B, Mauxion F. BTG2 bridges PABPC1 RNA-binding domains and CAF1 deadenylase to control cell proliferation. Nat Commun 2016; 7:10811. [PMID: 26912148 PMCID: PMC4773420 DOI: 10.1038/ncomms10811] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/24/2016] [Indexed: 12/12/2022] Open
Abstract
While BTG2 plays an important role in cellular differentiation and cancer, its precise molecular function remains unclear. BTG2 interacts with CAF1 deadenylase through its APRO domain, a defining feature of BTG/Tob factors. Our previous experiments revealed that expression of BTG2 promoted mRNA poly(A) tail shortening through an undefined mechanism. Here we report that the APRO domain of BTG2 interacts directly with the first RRM domain of the poly(A)-binding protein PABPC1. Moreover, PABPC1 RRM and BTG2 APRO domains are sufficient to stimulate CAF1 deadenylase activity in vitro in the absence of other CCR4–NOT complex subunits. Our results unravel thus the mechanism by which BTG2 stimulates mRNA deadenylation, demonstrating its direct role in poly(A) tail length control. Importantly, we also show that the interaction of BTG2 with the first RRM domain of PABPC1 is required for BTG2 to control cell proliferation. BTG2 promotes mRNA poly(A) tail shortening and regulates cellular differentiation. Here, Stupfler et al. show that the BTG2 APRO domain interacts with PABPC1 RRM1, allowing the former to recruit and stimulate the poly(A) tail shortening activity of CAF1 deadenylase and to control cell proliferation.
Collapse
Affiliation(s)
- Benjamin Stupfler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Catherine Birck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Bertrand Séraphin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Fabienne Mauxion
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
17
|
Jerbi S, Jolles B, Bouceba T, Jean-Jean O. Studies on human eRF3-PABP interaction reveal the influence of eRF3a N-terminal glycin repeat on eRF3-PABP binding affinity and the lower affinity of eRF3a 12-GGC allele involved in cancer susceptibility. RNA Biol 2016; 13:306-15. [PMID: 26818177 PMCID: PMC4829321 DOI: 10.1080/15476286.2015.1137421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The eukaryotic release factor 3 (eRF3) has been involved in the control of mRNA degradation through its association with the cytoplasmic Poly(A) Binding Protein, PABP. In mammals, eRF3 N-terminal domain contains two overlapping PAM2 motifs which specifically recognize the MLLE domain of PABP. In humans, eRF3a/GSPT1 gene contains a stable GGC repeat encoding a repeat of glycine residues in eRF3a N-terminus. There are five known eRF3a/GSPT1 alleles in the human population, encoding 7, 9, 10, 11 and 12 glycines. Several studies have reported that the presence of eRF3a 12-GGC allele is correlated with an increased risk of cancer development. Using surface plasmon resonance, we have studied the interaction of the various allelic forms of eRF3a with PABP alone or poly(A)-bound PABP. We found that the N-terminal glycine repeat of eRF3a influences eRF3a-PABP interaction and that eRF3a 12-GGC allele has a decreased binding affinity for PABP. Our comparative analysis on eRF3a alleles suggests that the presence of eRF3a 12-GGC allele could modify the coupling between translation termination and mRNA deadenylation.
Collapse
Affiliation(s)
- Soumaya Jerbi
- a Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), CNRS-UMR8256 , 7 quai Saint Bernard, Paris , France
| | - Béatrice Jolles
- a Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), CNRS-UMR8256 , 7 quai Saint Bernard, Paris , France
| | - Tahar Bouceba
- b Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), CNRS-FR3631 , 7 quai Saint Bernard, Paris , France
| | - Olivier Jean-Jean
- a Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), CNRS-UMR8256 , 7 quai Saint Bernard, Paris , France
| |
Collapse
|
18
|
Zhang X, Xu X, Yang Z, Burcke AJ, Gates KS, Chen SJ, Gu LQ. Mimicking Ribosomal Unfolding of RNA Pseudoknot in a Protein Channel. J Am Chem Soc 2015; 137:15742-52. [PMID: 26595106 PMCID: PMC4886178 DOI: 10.1021/jacs.5b07910] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pseudoknots are a fundamental RNA tertiary structure with important roles in regulation of mRNA translation. Molecular force spectroscopic approaches such as optical tweezers can track the pseudoknot's unfolding intermediate states by pulling the RNA chain from both ends, but the kinetic unfolding pathway induced by this method may be different from that in vivo, which occurs during translation and proceeds from the 5' to 3' end. Here we developed a ribosome-mimicking, nanopore pulling assay for dissecting the vectorial unfolding mechanism of pseudoknots. The pseudoknot unfolding pathway in the nanopore, either from the 5' to 3' end or in the reverse direction, can be controlled by a DNA leader that is attached to the pseudoknot at the 5' or 3' ends. The different nanopore conductance between DNA and RNA translocation serves as a marker for the position and structure of the unfolding RNA in the pore. With this design, we provided evidence that the pseudoknot unfolding is a two-step, multistate, metal ion-regulated process depending on the pulling direction. Most notably, unfolding in both directions is rate-limited by the unzipping of the first helix domain (first step), which is Helix-1 in the 5' → 3' direction and Helix-2 in the 3' → 5' direction, suggesting that the initial unfolding step in either pulling direction needs to overcome an energy barrier contributed by the noncanonical triplex base-pairs and coaxial stacking interactions for the tertiary structure stabilization. These findings provide new insights into RNA vectorial unfolding mechanisms, which play an important role in biological functions including frameshifting.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiaojun Xu
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri 65211, United States
| | - Zhiyu Yang
- Department of Chemistry and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Andrew J. Burcke
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Kent S. Gates
- Department of Chemistry and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry, and Informatics Institute, University of Missouri, Columbia, Missouri 65211, United States
| | - Li-Qun Gu
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
19
|
Wang Y, Yao F, Kang XF. Tetramethylammonium-filled protein nanopore for single-molecule analysis. Anal Chem 2015; 87:9991-7. [PMID: 26337294 DOI: 10.1021/acs.analchem.5b02611] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanopore technology, as the simplest and most inexpensive single-molecule tool, is being intensively developed. In nanopore stochastic sensing, KCl and NaCl have traditionally been employed as pore-filled electrolytes for recording the change of ion conductance in nanopores triggered by analyte translocation through the pore. However, some challenges limit its further advance. Here we used tetramethylammonium (TMA) chloride, instead of KCl, as a novel analysis system for nanopores. Some unique nanopore characteristics were observed: (1) The stability of the planar lipid bilayer for embedding the protein pores was elevated at least 6 times. (2) The TMA-Cl system could effectively reduce the noise of single-channel recording. (3) It was easy to control the insertion of protein pores into the lipid bilayer, and the formed single nanopore could last for a sufficiently long time. (4) TMA-Cl could be used as a DNA speed bump in the nanopore to slow DNA translocation speed. (5) The capacity of the nanopore capture of DNA (capture rate) increased significantly and simultaneously increased the translocation time of DNA in the pore. (6) The TMA-filled nanopore could discriminate between various polynucleotides.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University , Xi'an 710069, P. R. China
| | - Fujun Yao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University , Xi'an 710069, P. R. China
| | - Xiao-feng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University , Xi'an 710069, P. R. China
| |
Collapse
|
20
|
Eliseeva IA, Lyabin DN, Ovchinnikov LP. Poly(A)-binding proteins: structure, domain organization, and activity regulation. BIOCHEMISTRY (MOSCOW) 2014; 78:1377-91. [PMID: 24490729 DOI: 10.1134/s0006297913130014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RNA-binding proteins are of vital importance for mRNA functioning. Among these, poly(A)-binding proteins (PABPs) are of special interest due to their participation in virtually all mRNA-dependent events that is caused by their high affinity for A-rich mRNA sequences. Apart from mRNAs, PABPs interact with many proteins, thus promoting their involvement in cellular events. In the nucleus, PABPs play a role in polyadenylation, determine the length of the poly(A) tail, and may be involved in mRNA export. In the cytoplasm, they participate in regulation of translation initiation and either protect mRNAs from decay through binding to their poly(A) tails or stimulate this decay by promoting mRNA interactions with deadenylase complex proteins. This review presents modern notions of the role of PABPs in mRNA-dependent events; peculiarities of regulation of PABP amount in the cell and activities are also discussed.
Collapse
Affiliation(s)
- I A Eliseeva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
21
|
Wigington CP, Williams KR, Meers MP, Bassell GJ, Corbett AH. Poly(A) RNA-binding proteins and polyadenosine RNA: new members and novel functions. WILEY INTERDISCIPLINARY REVIEWS. RNA 2014; 5:601-22. [PMID: 24789627 PMCID: PMC4332543 DOI: 10.1002/wrna.1233] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/07/2014] [Accepted: 03/06/2014] [Indexed: 02/05/2023]
Abstract
Poly(A) RNA-binding proteins (Pabs) bind with high affinity and specificity to polyadenosine RNA. Textbook models show a nuclear Pab, PABPN1, and a cytoplasmic Pab, PABPC, where the nuclear PABPN1 modulates poly(A) tail length and the cytoplasmic PABPC stabilizes poly(A) RNA in the cytoplasm and also enhances translation. While these conventional roles are critically important, the Pab family has expanded recently both in number and in function. A number of novel roles have emerged for both PAPBPN1 and PABPC that contribute to the fine-tuning of gene expression. Furthermore, as the characterization of the nucleic acid binding properties of RNA-binding proteins advances, additional proteins that show high affinity and specificity for polyadenosine RNA are being discovered. With this expansion of the Pab family comes a concomitant increase in the potential for Pabs to modulate gene expression. Further complication comes from an expansion of the potential binding sites for Pab proteins as revealed by an analysis of templated polyadenosine stretches present within the transcriptome. Thus, Pabs could influence mRNA fate and function not only by binding to the nontemplated poly(A) tail but also to internal stretches of adenosine. Understanding the diverse functions of Pab proteins is not only critical to understand how gene expression is regulated but also to understand the molecular basis for tissue-specific diseases that occur when Pab proteins are altered. Here we describe both conventional and recently emerged functions for PABPN1 and PABPC and then introduce and discuss three new Pab family members, ZC3H14, hnRNP-Q1, and LARP4.
Collapse
Affiliation(s)
- Callie P. Wigington
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Kathryn R. Williams
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael P. Meers
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anita H. Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
22
|
Shasha C, Henley RY, Stoloff DH, Rynearson KD, Hermann T, Wanunu M. Nanopore-based conformational analysis of a viral RNA drug target. ACS NANO 2014; 8:6425-6430. [PMID: 24861167 PMCID: PMC4729693 DOI: 10.1021/nn501969r] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanopores are single-molecule sensors that show exceptional promise as a biomolecular analysis tool by enabling label-free detection of small amounts of sample. In this paper, we demonstrate that nanopores are capable of detecting the conformation of an antiviral RNA drug target. The hepatitis C virus uses an internal ribosome entry site (IRES) motif in order to initiate translation by docking to ribosomes in its host cell. The IRES is therefore a viable and important drug target. Drug-induced changes to the conformation of the HCV IRES motif, from a bent to a straight conformation, have been shown to inhibit HCV replication. However, there is presently no straightforward method to analyze the effect of candidate small-molecule drugs on the RNA conformation. In this paper, we show that RNA translocation dynamics through a 3 nm diameter nanopore is conformation-sensitive by demonstrating a difference in transport times between bent and straight conformations of a short viral RNA motif. Detection is possible because bent RNA is stalled in the 3 nm pore, resulting in longer molecular dwell times than straight RNA. Control experiments show that binding of a weaker drug does not produce a conformational change, as consistent with independent fluorescence measurements. Nanopore measurements of RNA conformation can thus be useful for probing the structure of various RNA motifs, as well as structural changes to the RNA upon small-molecule binding.
Collapse
Affiliation(s)
- Carolyn Shasha
- Departments of Physics and Chemistry/Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Robert Y. Henley
- Departments of Physics and Chemistry/Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Daniel H. Stoloff
- Departments of Physics and Chemistry/Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kevin D. Rynearson
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Thomas Hermann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Meni Wanunu
- Departments of Physics and Chemistry/Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
23
|
Movileanu L. Watching single proteins using engineered nanopores. Protein Pept Lett 2014; 21:235-46. [PMID: 24370252 PMCID: PMC3924890 DOI: 10.2174/09298665113209990078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 11/03/2012] [Accepted: 11/10/2012] [Indexed: 12/22/2022]
Abstract
Recent studies in the area of single-molecule detection of proteins with nanopores show a great promise in fundamental science, bionanotechnology and proteomics. In this mini-review, I discuss a comprehensive array of examinations of protein detection and characterization using protein and solid-state nanopores. These investigations demonstrate the power of the single-molecule nanopore measurements to reveal a broad range of functional, structural, biochemical and biophysical features of proteins, such as their backbone flexibility, enzymatic activity, binding affinity as well as their concentration, size and folding state. Engineered nanopores in organic materials and in inorganic membranes coupled with surface modification and protein engineering might provide a new generation of sensing devices for molecular biomedical diagnostics.
Collapse
Affiliation(s)
- Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA.
| |
Collapse
|
24
|
Clamer M, Höfler L, Mikhailova E, Viero G, Bayley H. Detection of 3'-end RNA uridylation with a protein nanopore. ACS NANO 2014; 8:1364-74. [PMID: 24369707 PMCID: PMC3936189 DOI: 10.1021/nn4050479] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Post-transcriptional modifications of the 3'-ends of RNA molecules have a profound impact on their stability and processing in the cell. Uridylation, the addition of uridines to 3'-ends, has recently been found to be an important regulatory signal to stabilize the tagged molecules or to direct them toward degradation. Simple and cost-effective methods for the detection of this post-transcriptional modification are not yet available. Here, we demonstrate the selective and transient binding of 3'-uridylated ssRNAs inside the β barrel of the staphylococcal α-hemolysin (αHL) nanopore and investigate the molecular basis of uridine recognition by the pore. We show the discrimination of 3'-oligouridine tails on the basis of their lengths and propose the αHL nanopore as a useful sensor for this biologically relevant RNA modification.
Collapse
Affiliation(s)
- Massimiliano Clamer
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Laboratory of Translational Genomics, Center for Integrative Biology, University of Trento, Via delle Regole, 101 38123 Mattarello (TN), Italy
| | - Lajos Höfler
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Ellina Mikhailova
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Gabriella Viero
- Laboratory of Translational Genomics, Center for Integrative Biology, University of Trento, Via delle Regole, 101 38123 Mattarello (TN), Italy
- Institute of Biophysics, CNR, Via alla Cascata 56/C, 38123 (Povo) Trento, Italy
| | - Hagan Bayley
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Corresponding Author: Hagan Bayley
| |
Collapse
|
25
|
Lee SH, Oh J, Park J, Paek KY, Rho S, Jang SK, Lee JB. Poly(A) RNA and Paip2 act as allosteric regulators of poly(A)-binding protein. Nucleic Acids Res 2013; 42:2697-707. [PMID: 24293655 PMCID: PMC3936760 DOI: 10.1093/nar/gkt1170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
When bound to the 3′ poly(A) tail of mRNA, poly(A)-binding protein (PABP) modulates mRNA translation and stability through its association with various proteins. By visualizing individual PABP molecules in real time, we found that PABP, containing four RNA recognition motifs (RRMs), adopts a conformation on poly(A) binding in which RRM1 is in proximity to RRM4. This conformational change is due to the bending of the region between RRM2 and RRM3. PABP-interacting protein 2 actively disrupts the bent structure of PABP to the extended structure, resulting in the inhibition of PABP-poly(A) binding. These results suggest that the changes in the configuration of PABP induced by interactions with various effector molecules, such as poly(A) and PABP-interacting protein 2, play pivotal roles in its function.
Collapse
Affiliation(s)
- Seung Hwan Lee
- School of Interdisciplinary Bioscience & Bioengineering, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Korea, Department of Physics, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Korea, Department of Life Sciences, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Korea and Division of Integrative Biosciences & Biotechnology, Pohang University of Science & Technology (POSTECH), Pohang 790-784, Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
McKinney C, Yu D, Mohr I. A new role for the cellular PABP repressor Paip2 as an innate restriction factor capable of limiting productive cytomegalovirus replication. Genes Dev 2013; 27:1809-20. [PMID: 23964095 PMCID: PMC3759697 DOI: 10.1101/gad.221341.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, Mohr and colleagues establish a role for the poly(A)-binding protein (PABP) repressor Paip2 in viral infection. The investigators find that human cytomegalovirus (HCMV) infection causes the up-regulation of Paip2 as well as PABP. The data indicate that Paip2 accumulation represents an innate host response to counteract the virus-induced increase in PABP abundance, limit the assembly of translation initiation factor complexes, and restrict viral growth. Paip2 thus plays a significant role in an innate defense mechanism to restrict viral protein synthesis and replication. The capacity of polyadenylate-binding protein PABPC1 (PABP1) to stimulate translation is regulated by its repressor, Paip2. Paradoxically, while PABP accumulation promotes human cytomegalovirus (HCMV) protein synthesis, we show that this is accompanied by an analogous increase in the abundance of Paip2 and EDD1, an E3 ubiquitin ligase that destabilizes Paip2. Coordinate control of PABP1, Paip2, and EDD1 required the virus-encoded UL38 mTORC1 activator and resulted in augmented Paip2 synthesis, stability, and association with PABP1. Paip2 synthesis also increased following serum stimulation of uninfected normal fibroblasts, suggesting that this coregulation may play a role in how uninfected cells respond to stress. Significantly, Paip2 accumulation was dependent on PABP accrual, as preventing PABP1 accumulation suppressed viral replication and inhibited the corresponding Paip2 increase. Furthermore, depleting Paip2 restored the ability of infected cells to assemble the translation initiation factor eIF4F, promoting viral protein synthesis and replication without increasing PABP1. This establishes a new role for the cellular PABP1 inhibitor Paip2 as an innate defense that restricts viral protein synthesis and replication. Moreover, it illustrates how a stress-induced rise in PABP1 triggered by virus infection can counter and surpass a corresponding increase in Paip2 abundance and stability.
Collapse
Affiliation(s)
- Caleb McKinney
- Department of Microbiology, New York University Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
27
|
Goss DJ, Kleiman FE. Poly(A) binding proteins: are they all created equal? WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:167-79. [PMID: 23424172 DOI: 10.1002/wrna.1151] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The PABP family of proteins were originally thought of as a simple shield for the mRNA poly(A) tail. Years of research have shown that PABPs interact not only with the poly(A) tail, but also with specific sequences in the mRNA, having a general and specific role on the metabolism of different mRNAs. The complexity of PABPs function is increased by the interactions of PABPs with factors involved in different cellular functions. PABPs participate in all the metabolic pathways of the mRNA: polyadenylation/deadenylation, mRNA export, mRNA surveillance, translation, mRNA degradation, microRNA-associated regulation, and regulation of expression during development. In this review, we update information on the roles of PABPs and emerging data on the specific interactions of PABP homologs. Specific functions of individual members of PABPC family in development and viral infection are beginning to be elucidated. However, the interactions are complex and recent evidence for exchange of nuclear and cytoplasmic forms of the proteins, as well as post-translational modifications, emphasize the possibilities for fine-tuning the PABP metabolic network.
Collapse
Affiliation(s)
- Dixie J Goss
- Chemistry Department, Hunter College CUNY, New York, NY, USA.
| | | |
Collapse
|
28
|
Abstract
The function of cytoplasmic PABPs [poly(A)-binding proteins] in promoting mRNA translation has been intensively studied. However, PABPs also have less clearly defined functions in mRNA turnover including roles in default deadenylation, a major rate-limiting step in mRNA decay, as well as roles in the regulation of mRNA turnover by cis-acting control elements and in the detection of aberrant mRNA transcripts. In the present paper, we review our current understanding of the complex roles of PABP1 in mRNA turnover, focusing on recent progress in mammals and highlighting some of the major questions that remain to be addressed.
Collapse
|
29
|
Reiner JE, Balijepalli A, Robertson JWF, Campbell J, Suehle J, Kasianowicz JJ. Disease Detection and Management via Single Nanopore-Based Sensors. Chem Rev 2012; 112:6431-51. [DOI: 10.1021/cr300381m] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joseph E. Reiner
- Department of Physics, Virginia
Commonwealth University, 701 W. Grace Street, Richmond, Virginia 23284,
United States
| | - Arvind Balijepalli
- Physical
Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8120, United States
- Laboratory of Computational Biology,
National Heart Lung and Blood Institute, Rockville, Maryland 20852,
United States
| | - Joseph W. F. Robertson
- Physical
Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8120, United States
| | - Jason Campbell
- Physical
Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8120, United States
| | - John Suehle
- Physical
Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8120, United States
| | - John J. Kasianowicz
- Physical
Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8120, United States
| |
Collapse
|
30
|
Eliseeva IA, Ovchinnikov LP, Lyabin DN. Specific PABP effect on translation of YB-1 mRNA is neutralized by polyadenylation through a "mini-loop" at 3' UTR. RNA Biol 2012; 9:1473-87. [PMID: 23134843 DOI: 10.4161/rna.22711] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
YB-1 is a multifunctional cold shock domain containing protein that is involved virtually in all DNA- and mRNA-dependent cellular events. Its amount is regulated at the level of both transcription and translation. We showed previously that translation of poly A(-) YB-1 mRNA in vitro is selectively controlled by two proteins, YB-1 and PABP, through their specific and competitive binding to a regulatory element (RE) within 3' UTR of this mRNA. Here, we describe effects of these two proteins on translation of poly A(+) as compared with poly A(-) YB-1 mRNA in a rabbit reticulocyte cell-free translation system. We have found that YB-1 inhibits translation of both poly A(+) and poly A(-) YB-1 mRNAs at the same comparatively low YB-1/mRNA ratio. PABP has no positive effect on translation of poly A(+) YB-1 mRNA, although it has a stimulating effect on translation of poly A(-) YB-1 mRNA. A positive PABP effect on translation of poly A(+) YB-1 mRNA arose after removal of a portion of the sequence between RE and the poly(A) tail and disappeared after its replacement by another non-specific sequence of the same length. We also report that the RE fragment forms a complex with the poly(A) fragment in the presence of rabbit reticulocyte lysate (RRL) proteins. For its formation PABP is necessary but not sufficient. These results are in agreement with the proposed model implying formation of a mini-loop at 3' UTR of YB-1 mRNA that includes RE, RRL proteins and the poly(A) tail.
Collapse
Affiliation(s)
- Irina A Eliseeva
- Institute of Protein Research; Russian Academy of Sciences; Pushchino, Moscow Region, Russian Federation
| | | | | |
Collapse
|