1
|
Acuña-Ochoa JG, Balderrábano-Saucedo NA, Cepeda-Nieto AC, Alvarado-Cervantes MY, Ibarra-Garcia VL, Barr D, Gage MJ, Pfeiffer R, Hu D, Barajas-Martinez H. A De Novo Mutation in ACTC1 and a TTN Variant Linked to a Severe Sporadic Infant Dilated Cardiomyopathy Case. Case Rep Genet 2024; 2024:9517735. [PMID: 39759977 PMCID: PMC11699985 DOI: 10.1155/crig/9517735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/07/2024] [Indexed: 01/07/2025] Open
Abstract
Structural or electrophysiologic cardiac anomalies may compromise cardiac function, leading to sudden cardiac death (SCD). Genetic screening of families with severe cardiomyopathies underlines the role of genetic variations in cardiac-specific genes. The present study details the clinical and genetic characterization of a malignant dilated cardiomyopathy (DCM) case in a 1-year-old Mexican child who presented a severe left ventricular dilation and dysfunction that led to SCD. A total of 132 genes (48 structure- and 84 electrical-related genes) were examined by next generation sequencing to identify potential causative mutations in comparison to control population. In silico analysis identified only two deleterious heterozygous mutations within an evolutionarily well-conserved region of the sarcomeric genes ACTC1/cardiac actin (c.664G > A/p.Ala222Thr) and TTN/titin (c.33250G > A/p.Glu11084Lys). Further pedigree analysis revealed the father of the index case to carry with the TTN mutation. Surprisingly, the ACTC1 mutation was not harbored by any first-degree family member. Computational 3D modeling of the mutated proteins showed electrostatic and conformational shifts of cardiac actin compared to wild-type version, as well as changes in the stability of the compact/folded states of titin that normally contributes to avoid mechanic damage. In conclusion, our findings suggest a likely pathogenic de novo mutation in ACTC1 in coexpression of a TTN variant as possible causes of an early onset of a severe DCM and premature death. These results may increase the known clinical pathogenic variations that may critically alter the structure of the heart, whose fatality could be prevented when rapidly detected.
Collapse
Affiliation(s)
- Jose G. Acuña-Ochoa
- Cardiovascular Research Department, Lankenau Institute for Medical Research, Lankenau Hearth Institute, Wynnewood, Pennsylvania 19096, USA
| | - Norma A. Balderrábano-Saucedo
- Cardiomyopathies and Arrhythmias Research Laboratory/Department, Federico Gómez Children's Hospital of Mexico, Mexico 06720, Mexico
| | - Ana C. Cepeda-Nieto
- Molecular Genomics Laboratory/Department, Faculty of Medicine, Universidad Autónoma de Coahuila, Saltillo, Coahuila 25000, Mexico
| | - Maria Y. Alvarado-Cervantes
- Cardiovascular Research Department, Lankenau Institute for Medical Research, Lankenau Hearth Institute, Wynnewood, Pennsylvania 19096, USA
| | - Vianca L. Ibarra-Garcia
- Therapeutic Innovation Program/Division, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| | - Daniel Barr
- Chemistry Department, University of Mary, Bismarck, North Dakota 58504, USA
| | - Matthew J. Gage
- Chemistry Department, University of Massachusetts at Lowell, Lowell, Massachusetts, 01854, USA
| | - Ryan Pfeiffer
- Molecular Genetics Department, Masonic Medical Research Institute, Utica, New York 13501, USA
| | - Dan Hu
- Molecular Genetics Department, Masonic Medical Research Institute, Utica, New York 13501, USA
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hector Barajas-Martinez
- Cardiovascular Research Department, Lankenau Institute for Medical Research, Lankenau Hearth Institute, Wynnewood, Pennsylvania 19096, USA
- Department of Pharmacology and Physiology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Dassanayake Mudiyanselage SP, Gage MJ. Regulation of Poly-E Motif Flexibility by pH, Ca 2+ and the PPAK Motif. Int J Mol Sci 2022; 23:ijms23094779. [PMID: 35563177 PMCID: PMC9100103 DOI: 10.3390/ijms23094779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 12/04/2022] Open
Abstract
The disordered PEVK region of titin contains two main structural motifs: PPAK and poly-E. The distribution of these motifs in the PEVK region contributes to the elastic properties of this region, but the specific mechanism of how these motifs work together remains unclear. Previous work from our lab has demonstrated that 28-amino acid peptides of the poly-E motif are sensitive to shifts in pH, becoming more flexible as the pH decreases. We extend this work to longer poly-E constructs, including constructs containing PPAK motifs. Our results demonstrate that longer poly-E motifs have a much larger range of pH sensitivity and that the inclusion of the PPAK motif reduces this sensitivity. We also demonstrate that binding calcium can increase the conformational flexibility of the poly-E motif, though the PPAK motif can block this calcium-dependent change. The data presented here suggest a model where PPAK and calcium can alter the stiffness of the poly-E motif by modulating the degree of charge repulsion in the glutamate clusters.
Collapse
Affiliation(s)
| | - Matthew J. Gage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA;
- UMass Movement Center (UMOVE), University of Massachusetts Lowell, Lowell, MA 01854, USA
- Correspondence:
| |
Collapse
|
3
|
van der Pijl RJ, Domenighetti AA, Sheikh F, Ehler E, Ottenheijm CAC, Lange S. The titin N2B and N2A regions: biomechanical and metabolic signaling hubs in cross-striated muscles. Biophys Rev 2021; 13:653-677. [PMID: 34745373 PMCID: PMC8553726 DOI: 10.1007/s12551-021-00836-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Muscle specific signaling has been shown to originate from myofilaments and their associated cellular structures, including the sarcomeres, costameres or the cardiac intercalated disc. Two signaling hubs that play important biomechanical roles for cardiac and/or skeletal muscle physiology are the N2B and N2A regions in the giant protein titin. Prominent proteins associated with these regions in titin are chaperones Hsp90 and αB-crystallin, members of the four-and-a-half LIM (FHL) and muscle ankyrin repeat protein (Ankrd) families, as well as thin filament-associated proteins, such as myopalladin. This review highlights biological roles and properties of the titin N2B and N2A regions in health and disease. Special emphasis is placed on functions of Ankrd and FHL proteins as mechanosensors that modulate muscle-specific signaling and muscle growth. This region of the sarcomere also emerged as a hotspot for the modulation of passive muscle mechanics through altered titin phosphorylation and splicing, as well as tethering mechanisms that link titin to the thin filament system.
Collapse
Affiliation(s)
| | - Andrea A. Domenighetti
- Shirley Ryan AbilityLab, Chicago, IL USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL USA
| | - Farah Sheikh
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Cardiovascular Medicine and Sciences, King’s College London, London, UK
| | - Coen A. C. Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ USA
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Stephan Lange
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Cankaya AO, Pamuk U, Yucesoy CA. The effects of an activation-dependent increase in titin stiffness on whole muscle properties using finite element modeling. J Biomech 2020; 116:110197. [PMID: 33412436 DOI: 10.1016/j.jbiomech.2020.110197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 11/28/2020] [Accepted: 12/11/2020] [Indexed: 12/31/2022]
Abstract
Active state titin's effects have been studied predominantly in sarcomere or muscle fiber segment level and an understanding of its functional effects in the context of a whole muscle, and the mechanism of those is lacking. By representing experimentally observed calcium induced stiffening and actin-titin interaction induced reduced free spring length effects of active state titin in our linked fiber-matrix mesh finite element model, our aim was to study the mechanism of effects and particularly to determine the functionally more effective active state titin model. Isolated EDL muscle of the rat was modeled and three cases were studied: passive state titin (no change in titin constitutive equation in the active state), active state titin-I (constitutive equation involves a higher stiffness in the active state) and active state titin-II (constitutive equation also involves a strain shift coefficient accounting for titin's reduced free spring length). Isometric muscle lengthening was imposed (initial to long length, lm = 28.7 mm to 32.7 mm). Compared to passive state titin, (i) active state titin-I and II elevates muscle total (lm = 32.7 mm: 14% and 29%, respectively) and active (lm = 32.7 mm: 37.5% and 77.4%, respectively) forces, (ii) active state titin-II also shifts muscle's optimum length to a longer length (lm = 29.6 mm), (iii) active state titin-I and II limits sarcomere shortening (lm = 32.7 mm: up to 10% and 20%, respectively). Such shorter sarcomere effect characterizes active state titin's mechanism of effects. These effects become more pronounced and functionally more effective if not only calcium induced stiffening but also a reduced free spring length of titin is accounted for.
Collapse
Affiliation(s)
- Alican O Cankaya
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Uluç Pamuk
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Can A Yucesoy
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey.
| |
Collapse
|
5
|
Hanson BS, Head D, Dougan L. The hierarchical emergence of worm-like chain behaviour from globular domain polymer chains. SOFT MATTER 2019; 15:8778-8789. [PMID: 31595281 DOI: 10.1039/c9sm01656b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Biological organisms make use of hierarchically organised structures to modulate mechanical behaviour across multiple lengthscales, allowing microscopic objects to generate macroscopic effects. Within these structural hierarchies, the resultant physical behaviour of the entire system is determined not only by the intrinsic mechanical properties of constituent subunits, but also by their organisation in three-dimensional space. When these subunits are polyproteins, colloidal chains or other globular domain polymers, the Kratky-Porod model is often assumed for the individual subunits. Hence, it is implicitly asserted that the polymeric object has an intrinsic parameter, the persistence length, that defines its flexibility. However, the persistence lengths extracted from experiment vary, and are often relatively small. Through a series of simulations on polymer chains formed of globular subunits, we show that the persistence length itself is a hierarchical structural property, related not only to the intrinsic mechanical properties of the underlying monomeric subunits, but emerging due to the organisation of inhomogenous geometry along the polymer contour.
Collapse
Affiliation(s)
| | - David Head
- School of Computing, University of Leeds, Leeds, UK
| | - Lorna Dougan
- School of Physics & Astronomy, University of Leeds, Leeds, UK. and Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
6
|
Callaghan NI, Hadipour-Lakmehsari S, Lee SH, Gramolini AO, Simmons CA. Modeling cardiac complexity: Advancements in myocardial models and analytical techniques for physiological investigation and therapeutic development in vitro. APL Bioeng 2019; 3:011501. [PMID: 31069331 PMCID: PMC6481739 DOI: 10.1063/1.5055873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiomyopathies, heart failure, and arrhythmias or conduction blockages impact millions of patients worldwide and are associated with marked increases in sudden cardiac death, decline in the quality of life, and the induction of secondary pathologies. These pathologies stem from dysfunction in the contractile or conductive properties of the cardiomyocyte, which as a result is a focus of fundamental investigation, drug discovery and therapeutic development, and tissue engineering. All of these foci require in vitro myocardial models and experimental techniques to probe the physiological functions of the cardiomyocyte. In this review, we provide a detailed exploration of different cell models, disease modeling strategies, and tissue constructs used from basic to translational research. Furthermore, we highlight recent advancements in imaging, electrophysiology, metabolic measurements, and mechanical and contractile characterization modalities that are advancing our understanding of cardiomyocyte physiology. With this review, we aim to both provide a biological framework for engineers contributing to the field and demonstrate the technical basis and limitations underlying physiological measurement modalities for biologists attempting to take advantage of these state-of-the-art techniques.
Collapse
Affiliation(s)
| | | | | | | | - Craig A. Simmons
- Author to whom correspondence should be addressed: . Present address: Ted Rogers Centre for Heart
Research, 661 University Avenue, 14th Floor Toronto, Ontario M5G 1M1, Canada. Tel.:
416-946-0548. Fax: 416-978-7753
| |
Collapse
|
7
|
Kotresh MG, Adarsh KS, Shivkumar MA, Mulimani BG, Savadatti MI, Inamdar SR. Spectroscopic investigation of alloyed quantum dot-based FRET to cresyl violet dye. LUMINESCENCE 2015; 31:760-8. [PMID: 26333828 DOI: 10.1002/bio.3021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/27/2015] [Accepted: 07/27/2015] [Indexed: 01/04/2023]
Abstract
Quantum dots (QDs), bright luminescent semiconductor nanoparticles, have found numerous applications ranging from optoelectronics to bioimaging. Here, we present a systematic investigation of fluorescence resonance energy transfer (FRET) from hydrophilic ternary alloyed quantum dots (CdSeS/ZnS) to cresyl violet dye with a view to explore the effect of composition of QD donors on FRET efficiency. Fluorescence emission of QD is controlled by varying the composition of QD without altering the particle size. The results show that quantum yield of the QDs increases with increase in the emission wavelength. The FRET parameters such as spectral overlap J(λ), Förster distance R0, intermolecular distance (r), rate of energy transfer k(T)(r), and transfer efficiency (E) are determined by employing both steady-state and time-resolved fluorescence spectroscopy. Additionally, dynamic quenching is noticed to occur in the present FRET system. Stern-Volmer (K(D)) and bimolecular quenching constants (k(q)) are determined from the Stern-Volmer plot. It is observed that the transfer efficiency follows a linear dependence on the spectral overlap and the quantum yield of the donor as predicted by the Förster theory upon changing the composition of the QD.
Collapse
Affiliation(s)
- M G Kotresh
- Laser Spectroscopy Programme, Department of Physics, and UGC-Centre with Potential for Excellence (CPEPA), Karnatak University, Dharwad, 580003, India
| | - K S Adarsh
- Laser Spectroscopy Programme, Department of Physics, and UGC-Centre with Potential for Excellence (CPEPA), Karnatak University, Dharwad, 580003, India
| | - M A Shivkumar
- Laser Spectroscopy Programme, Department of Physics, and UGC-Centre with Potential for Excellence (CPEPA), Karnatak University, Dharwad, 580003, India
| | | | - M I Savadatti
- Laser Spectroscopy Programme, Department of Physics, and UGC-Centre with Potential for Excellence (CPEPA), Karnatak University, Dharwad, 580003, India
| | - S R Inamdar
- Laser Spectroscopy Programme, Department of Physics, and UGC-Centre with Potential for Excellence (CPEPA), Karnatak University, Dharwad, 580003, India
| |
Collapse
|
8
|
Abstract
The giant protein titin forms a unique filament network in cardiomyocytes, which engages in both mechanical and signaling functions of the heart. TTN, which encodes titin, is also a major human disease gene. In this review, we cover the roles of cardiac titin in normal and failing hearts, with a special emphasis on the contribution of titin to diastolic stiffness. We provide an update on disease-associated titin mutations in cardiac and skeletal muscles and summarize what is known about the impact of protein-protein interactions on titin properties and functions. We discuss the importance of titin-isoform shifts and titin phosphorylation, as well as titin modifications related to oxidative stress, in adjusting the diastolic stiffness of the healthy and the failing heart. Along the way we distinguish among titin alterations in systolic and in diastolic heart failure and ponder the evidence for titin stiffness as a potential target for pharmacological intervention in heart disease.
Collapse
Affiliation(s)
- Wolfgang A Linke
- From the Department of Cardiovascular Physiology, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
9
|
Mártonfalvi Z, Bianco P, Linari M, Caremani M, Nagy A, Lombardi V, Kellermayer M. Low-force transitions in single titin molecules reflect a memory of contractile history. J Cell Sci 2013; 127:858-70. [PMID: 24357719 DOI: 10.1242/jcs.138461] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Titin is a giant elastomeric muscle protein that has been suggested to function as a sensor of sarcomeric stress and strain, but the mechanisms by which it does so are unresolved. To gain insight into its mechanosensory function we manipulated single titin molecules with high-resolution optical tweezers. Discrete, step-wise transitions, with rates faster than canonical Ig domain unfolding occurred during stretch at forces as low as 5 pN. Multiple mechanisms and molecular regions (PEVK, proximal tandem-Ig, N2A) are likely to be involved. The pattern of transitions is sensitive to the history of contractile events. Monte-Carlo simulations of our experimental results predicted that structural transitions begin before the complete extension of the PEVK domain. High-resolution atomic force microscopy (AFM) supported this prediction. Addition of glutamate-rich PEVK domain fragments competitively inhibited the viscoelastic response in both single titin molecules and muscle fibers, indicating that PEVK domain interactions contribute significantly to sarcomere mechanics. Thus, under non-equilibrium conditions across the physiological force range, titin extends by a complex pattern of history-dependent discrete conformational transitions, which, by dynamically exposing ligand-binding sites, could set the stage for the biochemical sensing of the mechanical status of the sarcomere.
Collapse
Affiliation(s)
- Zsolt Mártonfalvi
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, Budapest, H1094 Hungary
| | | | | | | | | | | | | |
Collapse
|
10
|
Graham LD, Glattauer V, Li D, Tyler MJ, Ramshaw JAM. The adhesive skin exudate of Notaden bennetti frogs (Anura: Limnodynastidae) has similarities to the prey capture glue of Euperipatoides sp. velvet worms (Onychophora: Peripatopsidae). Comp Biochem Physiol B Biochem Mol Biol 2013; 165:250-9. [PMID: 23665109 DOI: 10.1016/j.cbpb.2013.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/09/2013] [Accepted: 04/30/2013] [Indexed: 11/30/2022]
Abstract
The dorsal adhesive secretion of the frog Notaden bennetti and the prey-capture "slime" ejected by Euperipatoides sp. velvet worms look and handle similarly. Both consist largely of protein (55-60% of dry weight), which provides the structural scaffold. The major protein of the onychophoran glue (Er_P1 for Euperipatoides rowelli) and the dominant frog glue protein (Nb-1R) are both very large (260-500 kDa), and both give oddly "turbulent" electrophoresis bands. Both major proteins, which are rich in Gly (16-17 mol%) and Pro (7-12 mol%) and contain 4-hydroxyproline (Hyp, 4 mol%), have the composition of intrinsically unstructured proteins. Their propensities for elastomeric or amyloid structures are discussed in light of Er_P1's large content of intrinsically disordered long tandem repeats. The low carbohydrate content of both glues is consistent with conventional protein glycosylation, which in the N. bennetti adhesive was explored by 2D PAGE. The N-linked sugars of Nb-1R appear to prevent inappropriate self-aggregation. Some peptide sequences from Nb-1R are presented. Overall, there are enough similarities between the frog and the velvet worm glues to suspect that they employ related mechanisms for setting and adhesion. A common paradigm is proposed for amphibian and onychophoran adhesives, which, if correct, points to convergent evolution.
Collapse
Affiliation(s)
- Lloyd D Graham
- CSIRO Animal, Food and Health Sciences, PO Box 52, North Ryde, Sydney, New South Wales 1670, Australia.
| | | | | | | | | |
Collapse
|
11
|
Elam WA, Schrank TP, Campagnolo AJ, Hilser VJ. Evolutionary conservation of the polyproline II conformation surrounding intrinsically disordered phosphorylation sites. Protein Sci 2013; 22:405-17. [PMID: 23341186 DOI: 10.1002/pro.2217] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 11/06/2022]
Abstract
Intrinsically disordered (ID) proteins function in the absence of a unique stable structure and appear to challenge the classic structure-function paradigm. The extent to which ID proteins take advantage of subtle conformational biases to perform functions, and whether signals for such mechanism can be identified in proteome-wide studies is not well understood. Of particular interest is the polyproline II (PII) conformation, suggested to be highly populated in unfolded proteins. We experimentally determine a complete calorimetric propensity scale for the PII conformation. Projection of the scale into representative eukaryotic proteomes reveals significant PII bias in regions coding for ID proteins. Importantly, enrichment of PII in ID proteins, or protein segments, is also captured by other PII scales, indicating that this enrichment is robustly encoded and universally detectable regardless of the method of PII propensity determination. Gene ontology (GO) terms obtained using our PII scale and other scales demonstrate a consensus for molecular functions performed by high PII proteins across the proteome. Perhaps the most striking result of the GO analysis is conserved enrichment (P < 10(-8) ) of phosphorylation sites in high PII regions found by all PII scales. Subsequent conformational analysis reveals a phosphorylation-dependent modulation of PII, suggestive of a conserved "tunability" within these regions. In summary, the application of an experimentally determined polyproline II (PII) propensity scale to proteome-wide sequence analysis and gene ontology reveals an enrichment of PII bias near disordered phosphorylation sites that is conserved throughout eukaryotes.
Collapse
Affiliation(s)
- W Austin Elam
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|