1
|
Kuschke S, Thon S, Sattler C, Schwabe T, Benndorf K, Schmauder R. cAMP binding to closed pacemaker ion channels is cooperative. Proc Natl Acad Sci U S A 2024; 121:e2315132121. [PMID: 38377199 PMCID: PMC10907242 DOI: 10.1073/pnas.2315132121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024] Open
Abstract
The cooperative action of the subunits in oligomeric receptors enables fine-tuning of receptor activation, as demonstrated for the regulation of voltage-activated HCN pacemaker ion channels by relating cAMP binding to channel activation in ensemble signals. HCN channels generate electric rhythmicity in specialized brain neurons and cardiomyocytes. There is conflicting evidence on whether binding cooperativity does exist independent of channel activation or not, as recently reported for detergent-solubilized receptors positioned in zero-mode waveguides. Here, we show positive cooperativity in ligand binding to closed HCN2 channels in native cell membranes by following the binding of individual fluorescence-labeled cAMP molecules. Kinetic modeling reveals that the affinity of the still empty binding sites rises with increased degree of occupation and that the transition of the channel to a flip state is promoted accordingly. We conclude that ligand binding to the subunits in closed HCN2 channels not pre-activated by voltage is already cooperative. Hence, cooperativity is not causally linked to channel activation by voltage. Our analysis also shows that single-molecule binding measurements at equilibrium can quantify cooperativity in ligand binding to receptors in native membranes.
Collapse
Affiliation(s)
- Stefan Kuschke
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Susanne Thon
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Christian Sattler
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Tina Schwabe
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Klaus Benndorf
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| | - Ralf Schmauder
- Institute of Physiology II, Jena University Hospital, Friedrich Schiller University, Jena07743, Germany
| |
Collapse
|
2
|
Kierzek M, Deal PE, Miller EW, Mukherjee S, Wachten D, Baumann A, Kaupp UB, Strünker T, Brenker C. Simultaneous recording of multiple cellular signaling events by frequency- and spectrally-tuned multiplexing of fluorescent probes. eLife 2021; 10:e63129. [PMID: 34859780 PMCID: PMC8700268 DOI: 10.7554/elife.63129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/01/2021] [Indexed: 12/21/2022] Open
Abstract
Fluorescent probes that change their spectral properties upon binding to small biomolecules, ions, or changes in the membrane potential (Vm) are invaluable tools to study cellular signaling pathways. Here, we introduce a novel technique for simultaneous recording of multiple probes at millisecond time resolution: frequency- and spectrally-tuned multiplexing (FASTM). Different from present multiplexing approaches, FASTM uses phase-sensitive signal detection, which renders various combinations of common probes for Vm and ions accessible for multiplexing. Using kinetic stopped-flow fluorimetry, we show that FASTM allows simultaneous recording of rapid changes in Ca2+, pH, Na+, and Vm with high sensitivity and minimal crosstalk. FASTM is also suited for multiplexing using single-cell microscopy and genetically encoded FRET biosensors. Moreover, FASTM is compatible with optochemical tools to study signaling using light. Finally, we show that the exceptional time resolution of FASTM also allows resolving rapid chemical reactions. Altogether, FASTM opens new opportunities for interrogating cellular signaling.
Collapse
Affiliation(s)
- Michelina Kierzek
- Centre of Reproductive Medicine and Andrology, University of MünsterMünsterGermany
- CiM-IMPRS Graduate School, University of MünsterMünsterGermany
| | - Parker E Deal
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - Evan W Miller
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Shatanik Mukherjee
- Molecular Sensory Systems, Center of Advanced European Studies and ResearchBonnGermany
| | - Dagmar Wachten
- Institute of Innate Immunity, Department of Biophysical Imaging, Medical Faculty, University of BonnBonnGermany
| | - Arnd Baumann
- Institute of Biological Information Processing (IBI-1), Research Center JülichJülichGermany
| | - U Benjamin Kaupp
- Life & Medical Sciences Institute (LIMES), University of BonnBonnGermany
| | - Timo Strünker
- Centre of Reproductive Medicine and Andrology, University of MünsterMünsterGermany
- Cells in Motion Interfaculty Centre, University of MünsterMünsterGermany
| | - Christoph Brenker
- Centre of Reproductive Medicine and Andrology, University of MünsterMünsterGermany
| |
Collapse
|
3
|
Hett T, Zbik T, Mukherjee S, Matsuoka H, Bönigk W, Klose D, Rouillon C, Brenner N, Peuker S, Klement R, Steinhoff HJ, Grubmüller H, Seifert R, Schiemann O, Kaupp UB. Spatiotemporal Resolution of Conformational Changes in Biomolecules by Combining Pulsed Electron-Electron Double Resonance Spectroscopy with Microsecond Freeze-Hyperquenching. J Am Chem Soc 2021; 143:6981-6989. [PMID: 33905249 DOI: 10.1021/jacs.1c01081] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The function of proteins is linked to their conformations that can be resolved with several high-resolution methods. However, only a few methods can provide the temporal order of intermediates and conformational changes, with each having its limitations. Here, we combine pulsed electron-electron double resonance spectroscopy with a microsecond freeze-hyperquenching setup to achieve spatiotemporal resolution in the angstrom range and lower microsecond time scale. We show that the conformational change of the Cα-helix in the cyclic nucleotide-binding domain of the Mesorhizobium loti potassium channel occurs within about 150 μs and can be resolved with angstrom precision. Thus, this approach holds great promise for obtaining 4D landscapes of conformational changes in biomolecules.
Collapse
Affiliation(s)
- Tobias Hett
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Tobias Zbik
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Shatanik Mukherjee
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Hideto Matsuoka
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Wolfgang Bönigk
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Daniel Klose
- Fachbereich Physik, Universität Osnabrück, Barbarastraße 7, 49076 Osnabrück, Germany
| | - Christophe Rouillon
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Norbert Brenner
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Sebastian Peuker
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Reinhard Klement
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Reinhard Seifert
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.,Life & Medical Sciences Institute (LIMES), University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany
| |
Collapse
|
4
|
Kim N, Shin S, Bae SW. cAMP Biosensors Based on Genetically Encoded Fluorescent/Luminescent Proteins. BIOSENSORS-BASEL 2021; 11:bios11020039. [PMID: 33572585 PMCID: PMC7911721 DOI: 10.3390/bios11020039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) plays a key role in signal transduction pathways as a second messenger. Studies on the cAMP dynamics provided useful scientific insights for drug development and treatment of cAMP-related diseases such as some cancers and prefrontal cortex disorders. For example, modulation of cAMP-mediated intracellular signaling pathways by anti-tumor drugs could reduce tumor growth. However, most early stage tools used for measuring the cAMP level in living organisms require cell disruption, which is not appropriate for live cell imaging or animal imaging. Thus, in the last decades, tools were developed for real-time monitoring of cAMP distribution or signaling dynamics in a non-invasive manner. Genetically-encoded sensors based on fluorescent proteins and luciferases could be powerful tools to overcome these drawbacks. In this review, we discuss the recent genetically-encoded cAMP sensors advances, based on single fluorescent protein (FP), Föster resonance energy transfer (FRET), single luciferase, and bioluminescence resonance energy transfer (BRET) for real-time non-invasive imaging.
Collapse
Affiliation(s)
- Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Korea;
| | - Seunghan Shin
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea;
| | - Se Won Bae
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea;
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea
- Correspondence: ; Tel.: +82-64-754-3543
| |
Collapse
|
5
|
Chou CH, Lim JC, Lai YH, Chen YT, Lo YH, Huang JJ. Characterizations of protein-ligand reaction kinetics by transistor-microfluidic integrated sensors. Anal Chim Acta 2020; 1110:1-10. [DOI: 10.1016/j.aca.2020.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/11/2020] [Accepted: 03/07/2020] [Indexed: 11/28/2022]
|
6
|
Trötschel C, Hamzeh H, Alvarez L, Pascal R, Lavryk F, Bönigk W, Körschen HG, Müller A, Poetsch A, Rennhack A, Gui L, Nicastro D, Strünker T, Seifert R, Kaupp UB. Absolute proteomic quantification reveals design principles of sperm flagellar chemosensation. EMBO J 2020; 39:e102723. [PMID: 31880004 PMCID: PMC7024835 DOI: 10.15252/embj.2019102723] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022] Open
Abstract
Cilia serve as cellular antennae that translate sensory information into physiological responses. In the sperm flagellum, a single chemoattractant molecule can trigger a Ca2+ rise that controls motility. The mechanisms underlying such ultra-sensitivity are ill-defined. Here, we determine by mass spectrometry the copy number of nineteen chemosensory signaling proteins in sperm flagella from the sea urchin Arbacia punctulata. Proteins are up to 1,000-fold more abundant than the free cellular messengers cAMP, cGMP, H+ , and Ca2+ . Opto-chemical techniques show that high protein concentrations kinetically compartmentalize the flagellum: Within milliseconds, cGMP is relayed from the receptor guanylate cyclase to a cGMP-gated channel that serves as a perfect chemo-electrical transducer. cGMP is rapidly hydrolyzed, possibly via "substrate channeling" from the channel to the phosphodiesterase PDE5. The channel/PDE5 tandem encodes cGMP turnover rates rather than concentrations. The rate-detection mechanism allows continuous stimulus sampling over a wide dynamic range. The textbook notion of signal amplification-few enzyme molecules process many messenger molecules-does not hold for sperm flagella. Instead, high protein concentrations ascertain messenger detection. Similar mechanisms may occur in other small compartments like primary cilia or dendritic spines.
Collapse
Affiliation(s)
- Christian Trötschel
- Fakultät für Biologie und BiotechnologieRuhr‐Universität BochumBochumGermany
| | - Hussein Hamzeh
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
| | - Luis Alvarez
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - René Pascal
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Fedir Lavryk
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Wolfgang Bönigk
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Heinz G Körschen
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Astrid Müller
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Ansgar Poetsch
- Fakultät für Biologie und BiotechnologieRuhr‐Universität BochumBochumGermany
- Present address:
Center for Marine and Molecular BiotechnologyQNLMQindaoChina
- Present address:
College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Andreas Rennhack
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Long Gui
- Departments of Cell Biology and BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Daniela Nicastro
- Departments of Cell Biology and BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Timo Strünker
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
- Center of Reproductive Medicine and AndrologyUniversity Hospital MünsterMünsterGermany
| | - Reinhard Seifert
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
- Life& Medical Sciences Institute (LIMES)University of BonnBonnGermany
| |
Collapse
|
7
|
Sumino A, Sumikama T, Uchihashi T, Oiki S. High-speed AFM reveals accelerated binding of agitoxin-2 to a K + channel by induced fit. SCIENCE ADVANCES 2019; 5:eaax0495. [PMID: 31281899 PMCID: PMC6609221 DOI: 10.1126/sciadv.aax0495] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Agitoxin-2 (AgTx2) from scorpion venom is a potent blocker of K+ channels. The docking model has been elucidated, but it remains unclear whether binding dynamics are described by a two-state model (AgTx2-bound and AgTx2-unbound) or a more complicated mechanism, such as induced fit or conformational selection. Here, we observed the binding dynamics of AgTx2 to the KcsA channel using high-speed atomic force microscopy. From images of repeated binding and dissociation of AgTx2 to the channel, single-molecule kinetic analyses revealed that the affinity of the channel for AgTx2 increased during persistent binding and decreased during persistent dissociation. We propose a four-state model, including high- and low-affinity states of the channel, with relevant rate constants. An induced-fit pathway was dominant and accelerated binding by 400 times. This is the first analytical imaging of scorpion toxin binding in real time, which is applicable to various biological dynamics including channel ligands, DNA-modifier proteins, and antigen-antibody complexes.
Collapse
Affiliation(s)
- A. Sumino
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
- PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - T. Sumikama
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Japan
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - T. Uchihashi
- Department of Physics and Structural Biology Research Center, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- Exploratory Research Center on Life and Living Systems, National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - S. Oiki
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
8
|
Xiong Y, McQuistan TJ, Stanek JW, Summerton JE, Mata JE, Squier TC. Detection of unique Ebola virus oligonucleotides using fluorescently-labeled phosphorodiamidate morpholino oligonucleotide probe pairs. Anal Biochem 2018; 557:84-90. [PMID: 30030994 DOI: 10.1016/j.ab.2018.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022]
Abstract
Here we identify a low-cost diagnostic platform using fluorescently-labeled phosphorodiamidate morpholino oligonucleotide (PMO) probe pairs, which upon binding target oligonucleotides undergo fluorescence resonance energy transfer (FRET). Using a target oligonucleotide derived from the Ebola virus (EBOV), we have derivatized PMO probes with either Alexa Fluor488 (donor) or tetramethylrhodamine (acceptor). Upon EBOV target oligonulceotide binding, observed changes in FRET between PMO probe pairs permit a 25 pM lower limit of detection; there is no off-target binding within a complex mixture of nucleic acids and other biomolecules present in human saliva. Equivalent levels of FRET occur using PMO probe pairs for single or double stranded oligonucleotide targets. High-affinity binding is retained under low-ionic strength conditions that disrupt oligonucleotide secondary structures (e.g., stem-loop structures), ensuring reliable target detection. Under these low-ionic strength conditions, rates of PMO probe binding to target oligonucleotides are increased 3-fold relative to conventional high-ionic strength conditions used for nucleic acid hybridization, with half-maximal binding occurring within 10 min. Our results indicate an ability to use PMO probe pairs to detect clinically relevant levels of EBOV and other oligonucleotide targets in complex biological samples without the need for nucleic acid amplification, and open the possibility of population screening that includes assays for the genomic integration of DNA based copies of viral RNA.
Collapse
Affiliation(s)
- Yijia Xiong
- Department of Basic Medical Sciences, Western University of Health Sciences, 200 Mullins Drive, Lebanon, OR, 97355, United States
| | - Tammie J McQuistan
- Department of Basic Medical Sciences, Western University of Health Sciences, 200 Mullins Drive, Lebanon, OR, 97355, United States
| | - James W Stanek
- Department of Basic Medical Sciences, Western University of Health Sciences, 200 Mullins Drive, Lebanon, OR, 97355, United States
| | - James E Summerton
- Gene Tools, LLC, One Summerton Way, Philomath, OR, 97370, United States
| | - John E Mata
- Department of Basic Medical Sciences, Western University of Health Sciences, 200 Mullins Drive, Lebanon, OR, 97355, United States; Takena Technologies Inc, 405 West First Street, Albany, OR, 97321, United States
| | - Thomas C Squier
- Department of Basic Medical Sciences, Western University of Health Sciences, 200 Mullins Drive, Lebanon, OR, 97355, United States.
| |
Collapse
|
9
|
Bourdeaux F, Hammer CA, Vogt S, Schweighöfer F, Nöll G, Wachtveitl J, Grininger M. Flavin Storage and Sequestration by Mycobacterium tuberculosis Dodecin. ACS Infect Dis 2018; 4:1082-1092. [PMID: 29608272 DOI: 10.1021/acsinfecdis.7b00237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dodecins are small flavin binding proteins occurring in archaea and bacteria. They are remarkable for binding dimers of flavins with their functional relevant aromatic isoalloxazine rings deeply covered. Bacterial dodecins are widely spread and found in a large variety of pathogens, among them Pseudomonas aeruginosa, Streptococcus pneumonia, Ralstonia solanacearum, and Mycobacterium tuberculosis ( M. tuberculosis). In this work, we seek to understand the function of dodecins from M. tuberculosis dodecin. We describe flavin binding in thermodynamic and kinetic properties and achieve mechanistic insight in dodecin function by applying spectroscopic and electrochemical methods. Intriguingly, we reveal a significant pH dependence in the affinity and specificity of flavin binding. Our data give insight in M. tuberculosis dodecin function and advance the current understanding of dodecins as flavin storage and sequestering proteins. We suggest that the dodecin in M. tuberculosis may specifically be important for flavin homeostasis during the elaborate lifestyle of this organism, which calls for the evaluation of this protein as drug target.
Collapse
Affiliation(s)
- Florian Bourdeaux
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| | - Christopher A. Hammer
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Stephan Vogt
- Nöll Junior Research Group, Organic Chemistry, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Felix Schweighöfer
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Gilbert Nöll
- Nöll Junior Research Group, Organic Chemistry, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Cluster of Excellence for Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
10
|
Balbach M, Beckert V, Hansen JN, Wachten D. Shedding light on the role of cAMP in mammalian sperm physiology. Mol Cell Endocrinol 2018; 468:111-120. [PMID: 29146556 DOI: 10.1016/j.mce.2017.11.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022]
Abstract
Mammalian fertilization relies on sperm finding the egg and penetrating the egg vestments. All steps in a sperm's lifetime crucially rely on changes in the second messenger cAMP (cyclic adenosine monophosphate). In recent years, it has become clear that signal transduction in sperm is not a continuum, but rather organized in subcellular domains, e.g. the sperm head and the sperm flagellum, with the latter being further separated into the midpiece, principal piece, and endpiece. To understand the underlying signaling pathways controlling sperm function in more detail, experimental approaches are needed that allow to study sperm signaling with spatial and temporal precision. Here, we will give a comprehensive overview on cAMP signaling in mammalian sperm, describing the molecular players involved in these pathways and the sperm functions that are controlled by cAMP. Furthermore, we will highlight recent advances in analyzing and manipulating sperm signaling with spatio-temporal precision using light.
Collapse
Affiliation(s)
- Melanie Balbach
- Center of Advanced European Studies and Research (caesar), Department of Molecular Sensory Systems, Bonn, Germany
| | - Vera Beckert
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Jan N Hansen
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany; Center of Advanced European Studies and Research (caesar), Minerva Max Planck Research Group, Molecular Physiology, Bonn, Germany.
| |
Collapse
|
11
|
Liu M, Zhang G, Mahanta N, Lee Y, Hilty C. Measurement of Kinetics and Active Site Distances in Metalloenzymes Using Paramagnetic NMR with 13C Hyperpolarization. J Phys Chem Lett 2018; 9:2218-2221. [PMID: 29624056 PMCID: PMC6200339 DOI: 10.1021/acs.jpclett.8b00350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Paramagnetic relaxation enhancement (PRE) conjoint with hyperpolarized NMR reveals structural information on the enzyme-product complex in an ongoing metalloenzyme-catalyzed reaction. Substrates of pseudouridine monophosphate glycosidase are hyperpolarized using the dynamic nuclear polarization (DNP) method. Time series of 13C NMR spectra are subsequently measured with the enzyme containing diamagnetic Mg2+ or paramagnetic Mn2+ ions in the active site. The differences of the signal evolution and line widths in the Mg2+ vs Mn2+ reactions are explained through PRE in the enzyme-bound product, which is in fast exchange with its free form. Here, a strong distance dependence of the paramagnetically enhanced relaxation rates enables the calculation of distances from product atoms to the metal center in the complexed structure. The same method can be used to add structural information to real-time characterizations of chemical processes involving compounds with naturally present or artificially introduced paramagnetic sites.
Collapse
Affiliation(s)
- Mengxiao Liu
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA
| | - Guannan Zhang
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA
| | - Nilkamal Mahanta
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA
| | - Youngbok Lee
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA
- Department of Bionano Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 426-791, Korea
| | - Christian Hilty
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA
| |
Collapse
|
12
|
McCluskey K, Carlos Penedo J. An integrated perspective on RNA aptamer ligand-recognition models: clearing muddy waters. Phys Chem Chem Phys 2018; 19:6921-6932. [PMID: 28225108 DOI: 10.1039/c6cp08798a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Riboswitches are short RNA motifs that sensitively and selectively bind cognate ligands to modulate gene expression. Like protein receptor-ligand pairs, their binding dynamics are traditionally categorized as following one of two paradigmatic mechanisms: conformational selection and induced fit. In conformational selection, ligand binding stabilizes a particular state already present in the receptor's dynamic ensemble. In induced fit, ligand-receptor interactions enable the system to overcome the energetic barrier into a previously inaccessible state. In this article, we question whether a polarized division of RNA binding mechanisms truly meets the conceptual needs of the field. We will review the history behind this classification of RNA-ligand interactions, and the way induced fit in particular has been rehabilitated by single-molecule studies of RNA aptamers. We will highlight several recent results from single-molecule experimental studies of riboswitches that reveal gaps or even contradictions between common definitions of the two terms, and we will conclude by proposing a more robust framework that considers the range of RNA behaviors unveiled in recent years as a reality to be described, rather than an increasingly unwieldy set of exceptions to the traditional models.
Collapse
Affiliation(s)
- K McCluskey
- Department of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK.
| | - J Carlos Penedo
- Department of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK. and Biomolecular Sciences Research Complex, University of St. Andrews, St. Andrews, KY16 9SS, UK.
| |
Collapse
|
13
|
Trigo-Mouriño P, Griesinger C, Lee D. Label-free NMR-based dissociation kinetics determination. JOURNAL OF BIOMOLECULAR NMR 2017; 69:229-235. [PMID: 29143948 DOI: 10.1007/s10858-017-0150-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
Understanding the dissociation of molecules is the basis to modulate interactions of biomedical interest. Optimizing drugs for dissociation rates is found to be important for their efficacy, selectivity, and safety. Here, we show an application of the high-power relaxation dispersion (RD) method to the determination of the dissociation rates of weak binding ligands from receptors. The experiment probes proton RD on the ligand and, therefore, avoids the need for any isotopic labeling. The large ligand excess eases the detection significantly. Importantly, the use of large spin-lock fields allows the detection of faster dissociation rates than other relaxation approaches. Moreover, this experimental approach allows to access directly the off-rate of the binding process without the need for analyzing a series of samples with increasing ligand saturation. The validity of the method is shown with small molecule interactions using two macromolecules, bovine serum albumin and tubulin heterodimers.
Collapse
Affiliation(s)
- Pablo Trigo-Mouriño
- Department of NMR-Based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-Based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Donghan Lee
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
14
|
Liu M, Kim Y, Hilty C. Characterization of Chemical Exchange Using Relaxation Dispersion of Hyperpolarized Nuclear Spins. Anal Chem 2017; 89:9154-9158. [PMID: 28714674 DOI: 10.1021/acs.analchem.7b01896] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chemical exchange phenomena are ubiquitous in macromolecules, which undergo conformational change or ligand complexation. NMR relaxation dispersion (RD) spectroscopy based on a Carr-Purcell-Meiboom-Gill pulse sequence is widely applied to identify the exchange and measure the lifetime of intermediate states on the millisecond time scale. Advances in hyperpolarization methods improve the applicability of NMR spectroscopy when rapid acquisitions or low concentrations are required, through an increase in signal strength by several orders of magnitude. Here, we demonstrate the measurement of chemical exchange from a single aliquot of a ligand hyperpolarized by dissolution dynamic nuclear polarization (D-DNP). Transverse relaxation rates are measured simultaneously at different pulsing delays by dual-channel 19F NMR spectroscopy. This two-point measurement is shown to allow the determination of the exchange term in the relaxation rate expression. For the ligand 4-(trifluoromethyl)benzene-1-carboximidamide binding to the protein trypsin, the exchange term is found to be equal within error limits in neutral and acidic environments from D-DNP NMR spectroscopy, corresponding to a pre-equilibrium of trypsin deprotonation. This finding illustrates the capability for determination of binding mechanisms using D-DNP RD. Taking advantage of hyperpolarization, the ligand concentration in the exchange measurements can reach on the order of tens of μM and protein concentration can be below 1 μM, i.e., conditions typically accessible in drug discovery.
Collapse
Affiliation(s)
- Mengxiao Liu
- Department of Chemistry, Texas A&M University , 3255 TAMU, College Station, Texas 77843, United States
| | - Yaewon Kim
- Department of Chemistry, Texas A&M University , 3255 TAMU, College Station, Texas 77843, United States
| | - Christian Hilty
- Department of Chemistry, Texas A&M University , 3255 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
15
|
Voß B, Seifert R, Kaupp UB, Grubmüller H. A Quantitative Model for cAMP Binding to the Binding Domain of MloK1. Biophys J 2016; 111:1668-1678. [PMID: 27760354 PMCID: PMC5073059 DOI: 10.1016/j.bpj.2016.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/03/2016] [Accepted: 09/12/2016] [Indexed: 01/03/2023] Open
Abstract
Ligand-protein binding processes are essential in biological systems. A well-studied system is the binding of cyclic adenosine monophosphate to the cyclic nucleotide binding domain of the bacterial potassium channel MloK1. Strikingly, the measured on-rate for cyclic adenosine monophosphate binding is two orders of magnitude slower than a simple Smoluchowski diffusion model would suggest. To resolve this discrepancy and to characterize the ligand-binding path in structural and energetic terms, we calculated 1100 ligand-binding molecular dynamics trajectories and tested two scenarios: In the first scenario, the ligand transiently binds to the protein surface and then diffuses along the surface into the binding site. In the second scenario, only ligands that reach the protein surface in the vicinity of the binding site proceed into the binding site. Here, a binding funnel, which increasingly confines the translational as well as the rotational degrees of freedom, determines the binding pathways and limits the on-rate. From the simulations, we identified five surface binding states and calculated the rates between these surface binding states, the binding site, and the bulk. We find that the transient binding of the ligands to the surface binding states does not affect the on-rate, such that this effect alone cannot explain the observed low on-rate. Rather, by quantifying the translational and rotational degrees of freedom and by calculating the binding committor, our simulations confirmed the existence of a binding funnel as the main bottleneck. Direct binding via the binding funnel dominates the binding kinetics, and only ∼10% of all ligands proceed via the surface into the binding site. The simulations further predict an on-rate between 15 and 40μs-1(mol/l)-1, which agrees with the measured on-rate.
Collapse
Affiliation(s)
- Béla Voß
- Department for Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - U Benjamin Kaupp
- Department of Sensory Systems, Forschungszentrum Caesar, Bonn, Germany
| | - Helmut Grubmüller
- Department for Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
16
|
Rangl M, Miyagi A, Kowal J, Stahlberg H, Nimigean CM, Scheuring S. Real-time visualization of conformational changes within single MloK1 cyclic nucleotide-modulated channels. Nat Commun 2016; 7:12789. [PMID: 27647260 PMCID: PMC5034309 DOI: 10.1038/ncomms12789] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 08/01/2016] [Indexed: 01/11/2023] Open
Abstract
Eukaryotic cyclic nucleotide-modulated (CNM) ion channels perform various physiological roles by opening in response to cyclic nucleotides binding to a specialized cyclic nucleotide-binding domain. Despite progress in structure-function analysis, the conformational rearrangements underlying the gating of these channels are still unknown. Here, we image ligand-induced conformational changes in single CNM channels from Mesorhizobium loti (MloK1) in real-time, using high-speed atomic force microscopy. In the presence of cAMP, most channels are in a stable conformation, but a few molecules dynamically switch back and forth (blink) between at least two conformations with different heights. Upon cAMP depletion, more channels start blinking, with blinking heights increasing over time, suggestive of slow, progressive loss of ligands from the tetramer. We propose that during gating, MloK1 transitions from a set of mobile conformations in the absence to a stable conformation in the presence of ligand and that these conformations are central for gating the pore.
Collapse
Affiliation(s)
- Martina Rangl
- INSERM U1006, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, Marseille 13009, France
| | - Atsushi Miyagi
- INSERM U1006, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, Marseille 13009, France
| | - Julia Kowal
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, Basel CH-4058, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, Basel CH-4058, Switzerland
| | - Crina M Nimigean
- INSERM U1006, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, Marseille 13009, France.,Departments of Anesthesiology, Physiology and Biophysics, and Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, USA
| | - Simon Scheuring
- INSERM U1006, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, Marseille 13009, France
| |
Collapse
|
17
|
Paul F, Weikl TR. How to Distinguish Conformational Selection and Induced Fit Based on Chemical Relaxation Rates. PLoS Comput Biol 2016; 12:e1005067. [PMID: 27636092 PMCID: PMC5026370 DOI: 10.1371/journal.pcbi.1005067] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/14/2016] [Indexed: 12/04/2022] Open
Abstract
Protein binding often involves conformational changes. Important questions are whether a conformational change occurs prior to a binding event (‘conformational selection’) or after a binding event (‘induced fit’), and how conformational transition rates can be obtained from experiments. In this article, we present general results for the chemical relaxation rates of conformational-selection and induced-fit binding processes that hold for all concentrations of proteins and ligands and, thus, go beyond the standard pseudo-first-order approximation of large ligand concentration. These results allow to distinguish conformational-selection from induced-fit processes—also in cases in which such a distinction is not possible under pseudo-first-order conditions—and to extract conformational transition rates of proteins from chemical relaxation data. The function of proteins is affected by their conformational dynamics, i.e. by transitions between lower-energy ground-state conformations and higher-energy excited-state conformations of the proteins. Advanced NMR and single-molecule experiments indicate that higher-energy conformations in the unbound state of proteins can be similar to ground-state conformations in the bound state, and vice versa. These experiments illustrate that the conformational change of a protein during binding may occur before a binding event, rather than being induced by this binding event. However, determining the temporal order of conformational transitions and binding events typically requires additional information from chemical relaxation experiments that probe the relaxation kinetics of a mixture of proteins and ligands into binding equilibrium. These chemical relaxation experiments are usually performed and analysed at ligand concentrations that are much larger than the protein concentrations. At such high ligand concentrations, the temporal order of conformational transitions and binding events can only be inferred in special cases. In this article, we present general equations that describe the dominant chemical relaxation kinetics for all protein and ligand concentrations. Our general equations allow to clearly infer from relaxation data whether a conformational transition occurs prior to a binding event, or after the binding event.
Collapse
Affiliation(s)
- Fabian Paul
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany
- Free University Berlin, Department of Mathematics and Computer Science, Berlin, Germany
- * E-mail: (FP); (TRW)
| | - Thomas R. Weikl
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany
- * E-mail: (FP); (TRW)
| |
Collapse
|
18
|
Zheng X, Wang J. Universal statistical fluctuations in thermodynamics and kinetics of single molecular recognition. Phys Chem Chem Phys 2016; 18:8570-8. [PMID: 26947972 DOI: 10.1039/c5cp06416c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the main universal statistical distributions of single molecular recognition. The distributions of the single molecule binding free energy spectrum or density of states were characterized in the ligand-receptor binding energy landscape. The analytical results are consistent with the microscopic molecular simulations. The free energy distribution of different binding modes or states for a single molecule ligand receptor pair is approximately Gaussian near the mean and exponential at the tail. The equilibrium constant of single molecule binding is log-normal distributed near the mean and power law distributed near the tail. Additionally, we found that the kinetics distribution of single molecule ligand binding can be characterized by log-normal around the mean and power law distribution near the tail. This distribution is caused by exploration of the underlying inhomogeneous free energy landscape. Different ligand-receptor binding complexes have the same universal form of distribution but differ in parameters.
Collapse
Affiliation(s)
- Xiliang Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Jin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China and Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA.
| |
Collapse
|
19
|
Mukherjee S, Jansen V, Jikeli JF, Hamzeh H, Alvarez L, Dombrowski M, Balbach M, Strünker T, Seifert R, Kaupp UB, Wachten D. A novel biosensor to study cAMP dynamics in cilia and flagella. eLife 2016; 5. [PMID: 27003291 PMCID: PMC4811770 DOI: 10.7554/elife.14052] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/05/2016] [Indexed: 01/09/2023] Open
Abstract
The cellular messenger cAMP regulates multiple cellular functions, including signaling in cilia and flagella. The cAMP dynamics in these subcellular compartments are ill-defined. We introduce a novel FRET-based cAMP biosensor with nanomolar sensitivity that is out of reach for other sensors. To measure cAMP dynamics in the sperm flagellum, we generated transgenic mice and reveal that the hitherto methods determining total cAMP levels do not reflect changes in free cAMP levels. Moreover, cAMP dynamics in the midpiece and principal piece of the flagellum are distinctively different. The sole cAMP source in the flagellum is the soluble adenylate cyclase (SACY). Although bicarbonate-dependent SACY activity requires Ca2+, basal SACY activity is suppressed by Ca2+. Finally, we also applied the sensor to primary cilia. Our new cAMP biosensor features unique characteristics that allow gaining new insights into cAMP signaling and unravel the molecular mechanisms underlying ciliary function in vitro and in vivo. DOI:http://dx.doi.org/10.7554/eLife.14052.001 Cells can change the way they grow, move or develop in response to information from their environment. This information is first detected at the surface of the cell and then the information is relayed around the interior of the cell by signaling molecules known as “second messengers”. A molecule called cAMP is a well-known second messenger that is involved in many different signaling pathways. Therefore, the levels of cAMP in specific areas of the cell need to be precisely regulated to enable different signaling pathways to be activated at specific times and locations. Some cells have hair-like structures called cilia or flagella on their surface. Cilia and flagella are able to move the fluid that surrounds the cells or even move the cells themselves. The second messenger cAMP plays an essential role in making cilia move, but it is challenging to analyze the dynamics of cAMP – that this, how the levels of this molecule change over time – in these structures. The levels of cAMP in live cells can only be measured using fluorescent biosensors. Introducing these biosensors into specific cell structures is difficult and they are not sensitive enough to respond to low levels of cAMP. Furthermore, it is difficult to measure cAMP activity inside such tiny structures using these biosensors. Mukherjee, Jansen, Jikeli et al. now address some of these challenges by creating a new cAMP biosensor that has several unique features. Most importantly, it can respond to very low levels of cAMP, making it more sensitive than previous biosensors. Mukherjee et al. test this new biosensor in the flagella of sperm cells from mice, which reveals how the production of cAMP is regulated in the flagellum. The new biosensor also shows that different parts of the flagellum can have different cAMP dynamics. In the future, this new biosensor could be used to study cAMP in other structures and compartments within cells. DOI:http://dx.doi.org/10.7554/eLife.14052.002
Collapse
Affiliation(s)
- Shatanik Mukherjee
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Vera Jansen
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany
| | - Jan F Jikeli
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany
| | - Hussein Hamzeh
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany
| | - Luis Alvarez
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Marco Dombrowski
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany
| | - Melanie Balbach
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Timo Strünker
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany.,Centrum für Reproduktionsmedizin und Andrologie, Universitätsklinikum Münster, Münster, Germany
| | - Reinhard Seifert
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - U Benjamin Kaupp
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, Bonn, Germany
| | - Dagmar Wachten
- Minerva Max Planck Research Group, Molecular Physiology, Center of Advanced European Studies and Research, Bonn, Germany
| |
Collapse
|
20
|
Discrimination between conformational selection and induced fit protein-ligand binding using Integrated Global Fit analysis. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:245-57. [PMID: 26538331 DOI: 10.1007/s00249-015-1090-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/07/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023]
Abstract
Molecular recognition between proteins and small molecule ligands is at the heart of biological function in cellular systems and the basis of modern rational drug development. Therefore, the mechanisms governing protein-ligand interaction have been objects of research for many decades. The last 15 years has seen a revival of a discussion whether conformational selection (CS) or induced fit (IF) is the most relevant binding mechanism. A decreasing observed rate constant, k obs, with increasing ligand concentration was considered to be a hallmark of CS, but according to contemporary knowledge, a positive saturating behavior of k obs can be explained by both CS and IF mechanisms. The only currently recognized kinetic method to differentiate between both binding mechanisms includes the measurement of two separate series of binding kinetics with variation of either protein or ligand under pseudo-first-order conditions. This study avoids the disadvantage of high protein concentrations and provides evidence that a comprehensive Integrated Global Fit analysis of sets of binding kinetics with just varied ligand concentration in combination with equilibrium data and optional displacement kinetics can effectively differentiate between CS and IF binding mechanisms. The limiting situation, when physical binding dominates over the previous (CS) or subsequent (IF) conformational changes, is carefully analyzed. Finally, the relevance of kinetic methods and the elucidation of more complex binding mechanisms are discussed for advanced rational selection and optimization of drug candidates.
Collapse
|
21
|
Kowal J, Chami M, Baumgartner P, Arheit M, Chiu PL, Rangl M, Scheuring S, Schröder GF, Nimigean CM, Stahlberg H. Ligand-induced structural changes in the cyclic nucleotide-modulated potassium channel MloK1. Nat Commun 2015; 5:3106. [PMID: 24469021 PMCID: PMC4086158 DOI: 10.1038/ncomms4106] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/13/2013] [Indexed: 12/25/2022] Open
Abstract
Cyclic nucleotide-modulated ion channels are important for signal transduction and pacemaking in eukaryotes. The molecular determinants of ligand gating in these channels are still unknown, mainly because of a lack of direct structural information. Here we report ligand-induced conformational changes in full-length MloK1, a cyclic nucleotide-modulated potassium channel from the bacterium Mesorhizobium loti, analysed by electron crystallography and atomic force microscopy. Upon cAMP binding, the cyclic nucleotide-binding domains move vertically towards the membrane, and directly contact the S1–S4 voltage sensor domains. This is accompanied by a significant shift and tilt of the voltage sensor domain helices. In both states, the inner pore-lining helices are in an ‘open’ conformation. We propose a mechanism in which ligand binding can favour pore opening via a direct interaction between the cyclic nucleotide-binding domains and voltage sensors. This offers a simple mechanistic hypothesis for the coupling between ligand gating and voltage sensing in eukaryotic HCN channels. The molecular determinants underlying ligand gating of cyclic nucleotide-modulated ion channels remain unclear. Kowal et al. determine the conformational changes underlying cAMP binding to the bacterial channel MloK1, and propose a mechanism for coupling of ligand gating and voltage sensing in eukaryotic HCN channels.
Collapse
Affiliation(s)
- Julia Kowal
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Mohamed Chami
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Paul Baumgartner
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Marcel Arheit
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | - Martina Rangl
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13009 Marseille, France
| | - Simon Scheuring
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13009 Marseille, France
| | - Gunnar F Schröder
- 1] Forschungszentrum Jülich, Institute of Complex Systems, ICS-6: Structural Biochemistry, 52425 Jülich, Germany [2] Department of Physics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Crina M Nimigean
- Departments of Anesthesiology, Physiology and Biophysics, and Biochemistry, Weill Cornell Medical College, 1300 York Ave, New York, New York 10065, USA
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| |
Collapse
|
22
|
Pessoa J, Fonseca F, Furini S, Morais-Cabral JH. Determinants of ligand selectivity in a cyclic nucleotide-regulated potassium channel. ACTA ACUST UNITED AC 2015; 144:41-54. [PMID: 24981229 PMCID: PMC4076524 DOI: 10.1085/jgp.201311145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Preference for cGMP binding to a cyclic nucleotide–binding domain can achieved by compensating for ligand dehydration or through retention of solvation waters in the bound state. Cyclic nucleotide–binding (CNB) domains regulate the activity of channels, kinases, exchange factors, and transcription factors. These proteins are highly variable in their ligand selectivity; some are highly selective for either cAMP or cGMP, whereas others are not. Several molecular determinants of ligand selectivity in CNB domains have been defined, but these do not provide a complete view of the selectivity mechanism. We performed a thorough analysis of the ligand-binding properties of mutants of the CNB domain from the MlotiK1 potassium channel. In particular, we defined which residues specifically favor cGMP or cAMP. Inversion of ligand selectivity, from favoring cAMP to favoring cGMP, was only achieved through a combination of three mutations in the ligand-binding pocket. We determined the x-ray structure of the triple mutant bound to cGMP and performed molecular dynamics simulations and a biochemical analysis of the effect of the mutations. We concluded that the increase in cGMP affinity and selectivity does not result simply from direct interactions between the nucleotide base and the amino acids introduced in the ligand-binding pocket residues. Rather, tighter cGMP binding over cAMP results from the polar chemical character of the mutations, from greater accessibility of water molecules to the ligand in the bound state, and from an increase in the structural flexibility of the mutated binding pocket.
Collapse
Affiliation(s)
- João Pessoa
- Instituto de Biologia Molecular e Celular and Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180 Porto, PortugalInstituto de Biologia Molecular e Celular and Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180 Porto, Portugal
| | - Fátima Fonseca
- Instituto de Biologia Molecular e Celular and Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180 Porto, Portugal
| | - Simone Furini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - João H Morais-Cabral
- Instituto de Biologia Molecular e Celular and Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180 Porto, Portugal
| |
Collapse
|
23
|
Meyer-Almes FJ. Kinetic binding assays for the analysis of protein-ligand interactions. DRUG DISCOVERY TODAY. TECHNOLOGIES 2015; 17:1-8. [PMID: 26724330 DOI: 10.1016/j.ddtec.2015.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/24/2015] [Indexed: 05/27/2023]
Abstract
The importance of binding kinetics in terms of residence time and on-rate in drug discovery has been broadly accepted in the past few years. Furthermore, evidence has accumulated that the optimal binding mechanism of a drug to its target molecule is related to physiological efficacy as well as selectivity and thus drug safety. Homogeneous fluorescence-based binding assays have been shown to enable high throughput kinetics requiring only small amounts of protein and can be developed to elucidate even complex mechanisms of molecular recognition. A generalized approach is proposed that combines high quality kinetic and equilibrium data in an Integrated Global Fit analysis yielding the most probable binding mechanism.
Collapse
Affiliation(s)
- Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Darmstadt, Germany.
| |
Collapse
|
24
|
Shimizu Y, Ishii T, Ogawa K, Sasaki S, Matsui H, Nakayama M. Biochemical characterization of smoothened receptor antagonists by binding kinetics against drug-resistant mutant. Eur J Pharmacol 2015; 764:220-227. [PMID: 26048307 DOI: 10.1016/j.ejphar.2015.05.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/29/2015] [Accepted: 05/29/2015] [Indexed: 11/27/2022]
Abstract
Hedgehog (Hh) signaling critical for development, differentiation, and cell growth is involved in several cancers, including medulloblastoma and basal cell carcinoma. Although antagonism of the smoothened receptor (SMO), which mediates Hh signaling, is an attractive therapeutic target, a drug-resistant mutation in SMO (SMO-D473H) was identified in a clinical trial of the approved drug vismodegib. TAK-441 potently inhibits SMO-D473H, unlike vismodegib and another SMO antagonist, cyclopamine, whereas the differences in binding modes between these antagonists remain unknown. Here we report the biochemical characterization of TAK-441, vismodegib, and cyclopamine by binding kinetics. The association (kon) and dissociation (koff) rates were determined by kinetic binding studies using [(3)H]TAK-441, and dissociation was confirmed by label-free affinity selection-mass spectrometry (AS-MS). In the [(3)H]TAK-441 competition assay, TAK-441 but not vismodegib and cyclopamine showed time-dependent inhibition. Quantitative kinetic binding analysis revealed that koff of TAK-441 was >10-fold smaller than those of vismodegib and cyclopamine. To further assess the binding mode of antagonists, kinetic binding analysis was performed against SMO-D473H. The D473H mutation affected koff of TAK-441 but not kon. In contrast, only kon was changed by the D473H mutation in the case of vismodegib and cyclopamine. These results suggest that the difference in antagonist efficacy against D473H is associated with the binding mode of antagonists. These findings provide a new insight into the drug action of SMO antagonists and help develop potential therapeutics for drug-resistant mutants.
Collapse
Affiliation(s)
- Yuji Shimizu
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Tsuyoshi Ishii
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazumasa Ogawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoshi Sasaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideki Matsui
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaharu Nakayama
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
25
|
Weikl TR, Paul F. Conformational selection in protein binding and function. Protein Sci 2014; 23:1508-18. [PMID: 25155241 DOI: 10.1002/pro.2539] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 11/10/2022]
Abstract
Protein binding and function often involves conformational changes. Advanced nuclear magnetic resonance (NMR) experiments indicate that these conformational changes can occur in the absence of ligand molecules (or with bound ligands), and that the ligands may "select" protein conformations for binding (or unbinding). In this review, we argue that this conformational selection requires transition times for ligand binding and unbinding that are small compared to the dwell times of proteins in different conformations, which is plausible for small ligand molecules. Such a separation of timescales leads to a decoupling and temporal ordering of binding/unbinding events and conformational changes. We propose that conformational-selection and induced-change processes (such as induced fit) are two sides of the same coin, because the temporal ordering is reversed in binding and unbinding direction. Conformational-selection processes can be characterized by a conformational excitation that occurs prior to a binding or unbinding event, while induced-change processes exhibit a characteristic conformational relaxation that occurs after a binding or unbinding event. We discuss how the ordering of events can be determined from relaxation rates and effective on- and off-rates determined in mixing experiments, and from the conformational exchange rates measured in advanced NMR or single-molecule fluorescence resonance energy transfer experiments. For larger ligand molecules such as peptides, conformational changes and binding events can be intricately coupled and exhibit aspects of conformational-selection and induced-change processes in both binding and unbinding direction.
Collapse
Affiliation(s)
- Thomas R Weikl
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | | |
Collapse
|
26
|
McCoy JG, Rusinova R, Kim DM, Kowal J, Banerjee S, Jaramillo Cartagena A, Thompson AN, Kolmakova-Partensky L, Stahlberg H, Andersen OS, Nimigean CM. A KcsA/MloK1 chimeric ion channel has lipid-dependent ligand-binding energetics. J Biol Chem 2014; 289:9535-46. [PMID: 24515111 DOI: 10.1074/jbc.m113.543389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cyclic nucleotide-modulated ion channels play crucial roles in signal transduction in eukaryotes. The molecular mechanism by which ligand binding leads to channel opening remains poorly understood, due in part to the lack of a robust method for preparing sufficient amounts of purified, stable protein required for structural and biochemical characterization. To overcome this limitation, we designed a stable, highly expressed chimeric ion channel consisting of the transmembrane domains of the well characterized potassium channel KcsA and the cyclic nucleotide-binding domains of the prokaryotic cyclic nucleotide-modulated channel MloK1. This chimera demonstrates KcsA-like pH-sensitive activity which is modulated by cAMP, reminiscent of the dual modulation in hyperpolarization-activated and cyclic nucleotide-gated channels that display voltage-dependent activity that is also modulated by cAMP. Using this chimeric construct, we were able to measure for the first time the binding thermodynamics of cAMP to an intact cyclic nucleotide-modulated ion channel using isothermal titration calorimetry. The energetics of ligand binding to channels reconstituted in lipid bilayers are substantially different from those observed in detergent micelles, suggesting that the conformation of the chimera's transmembrane domain is sensitive to its (lipid or lipid-mimetic) environment and that ligand binding induces conformational changes in the transmembrane domain. Nevertheless, because cAMP on its own does not activate these chimeric channels, cAMP binding likely has a smaller energetic contribution to gating than proton binding suggesting that there is only a small difference in cAMP binding energy between the open and closed states of the channel.
Collapse
|
27
|
Schünke S, Stoldt M. Structural snapshot of cyclic nucleotide binding domains from cyclic nucleotide-sensitive ion channels. Biol Chem 2014; 394:1439-51. [PMID: 24021595 DOI: 10.1515/hsz-2013-0228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/04/2013] [Indexed: 01/27/2023]
Abstract
Cyclic nucleotide-binding domains (CNBDs) that are present in various channel proteins play crucial roles in signal amplification cascades. Although atomic resolution structures of some of those CNBDs are available, the detailed mechanism by which they confer cyclic nucleotide-binding to the ion channel pore remains poorly understood. In this review, we describe structural insights about cyclic nucleotide-binding-induced conformational changes in CNBDs and their potential coupling with channel gating.
Collapse
|
28
|
Cukkemane A, Baldus M. Characterization of a cyclic nucleotide-activated K(+) channel and its lipid environment by using solid-state NMR spectroscopy. Chembiochem 2013; 14:1789-98. [PMID: 23956185 DOI: 10.1002/cbic.201300182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Indexed: 01/31/2023]
Abstract
Voltage-gated ion channels are large tetrameric multidomain membrane proteins that play crucial roles in various cellular transduction pathways. Because of their large size and domain-related mobility, structural characterization has proved challenging. We analyzed high-resolution solid-state NMR data on different isotope-labeled protein constructs of a bacterial cyclic nucleotide-activated K(+) channel (MlCNG) in lipid bilayers. We could identify the different subdomains of the 4×355 residue protein, such as the voltage-sensing domain and the cyclic nucleotide binding domain. Comparison to ssNMR data obtained on isotope-labeled cell membranes suggests a tight association of negatively charged lipids to the channel. We detected spectroscopic polymorphism that extends beyond the ligand binding site, and the corresponding protein segments have been associated with mutant channel types in eukaryotic systems. These findings illustrate the potential of ssNMR for structural investigations on large membrane-embedded proteins, even in the presence of local disorder.
Collapse
Affiliation(s)
- Abhishek Cukkemane
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht (The Netherlands)
| | | |
Collapse
|