1
|
Jomova K, Raptova R, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol 2023; 97:2499-2574. [PMID: 37597078 PMCID: PMC10475008 DOI: 10.1007/s00204-023-03562-9] [Citation(s) in RCA: 608] [Impact Index Per Article: 304.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023]
Abstract
A physiological level of oxygen/nitrogen free radicals and non-radical reactive species (collectively known as ROS/RNS) is termed oxidative eustress or "good stress" and is characterized by low to mild levels of oxidants involved in the regulation of various biochemical transformations such as carboxylation, hydroxylation, peroxidation, or modulation of signal transduction pathways such as Nuclear factor-κB (NF-κB), Mitogen-activated protein kinase (MAPK) cascade, phosphoinositide-3-kinase, nuclear factor erythroid 2-related factor 2 (Nrf2) and other processes. Increased levels of ROS/RNS, generated from both endogenous (mitochondria, NADPH oxidases) and/or exogenous sources (radiation, certain drugs, foods, cigarette smoking, pollution) result in a harmful condition termed oxidative stress ("bad stress"). Although it is widely accepted, that many chronic diseases are multifactorial in origin, they share oxidative stress as a common denominator. Here we review the importance of oxidative stress and the mechanisms through which oxidative stress contributes to the pathological states of an organism. Attention is focused on the chemistry of ROS and RNS (e.g. superoxide radical, hydrogen peroxide, hydroxyl radicals, peroxyl radicals, nitric oxide, peroxynitrite), and their role in oxidative damage of DNA, proteins, and membrane lipids. Quantitative and qualitative assessment of oxidative stress biomarkers is also discussed. Oxidative stress contributes to the pathology of cancer, cardiovascular diseases, diabetes, neurological disorders (Alzheimer's and Parkinson's diseases, Down syndrome), psychiatric diseases (depression, schizophrenia, bipolar disorder), renal disease, lung disease (chronic pulmonary obstruction, lung cancer), and aging. The concerted action of antioxidants to ameliorate the harmful effect of oxidative stress is achieved by antioxidant enzymes (Superoxide dismutases-SODs, catalase, glutathione peroxidase-GPx), and small molecular weight antioxidants (vitamins C and E, flavonoids, carotenoids, melatonin, ergothioneine, and others). Perhaps one of the most effective low molecular weight antioxidants is vitamin E, the first line of defense against the peroxidation of lipids. A promising approach appears to be the use of certain antioxidants (e.g. flavonoids), showing weak prooxidant properties that may boost cellular antioxidant systems and thus act as preventive anticancer agents. Redox metal-based enzyme mimetic compounds as potential pharmaceutical interventions and sirtuins as promising therapeutic targets for age-related diseases and anti-aging strategies are discussed.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Renata Raptova
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, 812 37, Slovakia.
| |
Collapse
|
2
|
Chen Z, Zhang R, Qin H, Jiang H, Wang A, Zhang X, Huang S, Sun M, Fan X, Lu Z, Li Y, Liu S, Liu M. The pulse light mode enhances the effect of photobiomodulation on B16F10 melanoma cells through autophagy pathway. Lasers Med Sci 2023; 38:71. [PMID: 36790539 DOI: 10.1007/s10103-023-03733-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Photobiomodulation (PBM) is the use of low irradiance light of specific wavelengths to generate physiological changes and therapeutic effects. However, there are few studies on the effects of PBM of different LED light modes on cells. Here, we investigated the difference of influence between continuous wave (CW) and pulse-PBM on B16F10 melanoma cells. Our results suggested that the pulse mode had a more significant PBM than the CW mode on B16F10 melanoma cells. Our study confirmed that ROS and Ca2+ levels in B16F10 melanoma cells treated with pulse-PBM were significantly higher than those in the control and CW-PBM groups. One mechanism that causes the difference in CW and pulse-PBM action is that pulse-PBM activates autophagy of melanoma cells through the ROS/OPN3/Ca2+ signaling pathway, and excessive autophagy activation inhibits proliferation and apoptosis of melanoma cells. Autophagy may be one of the reasons for the difference between pulse- and CW-PBM on melanoma cells. More importantly, melanoma cells responded to brief PBM pulses by increasing intracellular Ca2+ levels.
Collapse
Affiliation(s)
- Zeqing Chen
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, 266033, China
- Qingdao Municipal Health Commission, Qingdao, 266071, China
- Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Ruixiao Zhang
- Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Haokuan Qin
- Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Hui Jiang
- Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Aixia Wang
- Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Xiaolin Zhang
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Shijie Huang
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Miao Sun
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Xuewei Fan
- Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Zhicheng Lu
- Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, 220th Handan Road, Shanghai, 200433, China
| | - Yinghua Li
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China.
| | - Shangfeng Liu
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China.
| | - Muqing Liu
- Institute of Future Lighting, Academy for Engineering & Technology, Fudan University, 220th Handan Road, Shanghai, 200433, China.
- Institute for Electric Light Sources, Fudan University, 220th Handan Road, Shanghai, 200433, China.
- Zhongshan Fudan Joint Innovation Center, 6th Xiangxing Road, Zhongshan City, 528403, China.
| |
Collapse
|
3
|
Isolation and reconstruction of cardiac mitochondria from SBEM images using a deep learning-based method. J Struct Biol 2021; 214:107806. [PMID: 34742833 DOI: 10.1016/j.jsb.2021.107806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 11/23/2022]
Abstract
Mitochondrial morphological defects are a common feature of diseased cardiac myocytes. However, quantitative assessment of mitochondrial morphology is limited by the time-consuming manual segmentation of electron micrograph (EM) images. To advance understanding of the relation between morphological defects and dysfunction, an efficient morphological reconstruction method is desired to enable isolation and reconstruction of mitochondria from EM images. We propose a new method for isolating and reconstructing single mitochondria from serial block-face scanning EM (SBEM) images. CDeep3M, a cloud-based deep learning network for EM images, was used to segment mitochondrial interior volumes and boundaries. Post-processing was performed using both the predicted interior volume and exterior boundary to isolate and reconstruct individual mitochondria. Series of SBEM images from two separate cardiac myocytes were processed. The highest F1-score was 95% using 50 training datasets, greater than that for previously reported automated methods and comparable to manual segmentations. Accuracy of separation of individual mitochondria was 80% on a pixel basis. A total of 2315 mitochondria in the two series of SBEM images were evaluated with a mean volume of 0.78 µm3. The volume distribution was very broad and skewed; the most frequent mitochondria were 0.04-0.06 µm3, but mitochondria larger than 2.0 µm3 accounted for more than 10% of the total number. The average short-axis length was 0.47 µm. Primarily longitudinal mitochondria (0-30 degrees) were dominant (54%). This new automated segmentation and separation method can help quantitate mitochondrial morphology and improve understanding of myocyte structure-function relationships.
Collapse
|
4
|
Marchena M, Echebarria B. Computational Model of Calcium Signaling in Cardiac Atrial Cells at the Submicron Scale. Front Physiol 2018; 9:1760. [PMID: 30618786 PMCID: PMC6295473 DOI: 10.3389/fphys.2018.01760] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 11/21/2018] [Indexed: 01/27/2023] Open
Abstract
In cardiac cells, calcium is the mediator of excitation-contraction coupling. Dysfunctions in calcium handling have been identified as the origin of some cardiac arrhythmias. In the particular case of atrial myocytes, recent available experimental data has found links between these dysfunctions and structural changes in the calcium handling machinery (ryanodine cluster size and distribution, t-tubular network, etc). To address this issue, we have developed a computational model of an atrial myocyte that takes into account the detailed intracellular structure. The homogenized macroscopic behavior is described with a two-concentration field model, using effective diffusion coefficients of calcium in the sarcoplasmic reticulum (SR) and in the cytoplasm. The model reproduces the right calcium transients and dependence with pacing frequency. Under basal conditions, the calcium rise is mostly restricted to the periphery of the cell, with a large concentration ratio between the periphery and the interior. We have then studied the dependence of the speed of the calcium wave on cytosolic and SR diffusion coefficients, finding an almost linear relation with the former, in agreement with a diffusive and fire mechanism of propagation, and little dependence on the latter. Finally, we have studied the effect of a change in RyR cluster microstructure. We find that, under resting conditions, the spark frequency decreases slightly with RyR cluster spatial dispersion, but markedly increases when the RyRs are distributed in clusters of larger size, stressing the importance of RyR cluster organization to understand atrial arrhythmias, as recent experimental results suggest (Macquaide et al., 2015).
Collapse
Affiliation(s)
- Miquel Marchena
- Departament de Física, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Blas Echebarria
- Departament de Física, Universitat Politècnica de Catalunya, Barcelona, Spain
| |
Collapse
|
5
|
Ghosh S, Tran K, Delbridge LMD, Hickey AJR, Hanssen E, Crampin EJ, Rajagopal V. Insights on the impact of mitochondrial organisation on bioenergetics in high-resolution computational models of cardiac cell architecture. PLoS Comput Biol 2018; 14:e1006640. [PMID: 30517098 PMCID: PMC6296675 DOI: 10.1371/journal.pcbi.1006640] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/17/2018] [Accepted: 11/13/2018] [Indexed: 01/05/2023] Open
Abstract
Recent electron microscopy data have revealed that cardiac mitochondria are not arranged in crystalline columns but are organised with several mitochondria aggregated into columns of varying sizes spanning the cell cross-section. This raises the question—how does the mitochondrial arrangement affect the metabolite distributions within cardiomyocytes and what is its impact on force dynamics? Here, we address this question by employing finite element modeling of cardiac bioenergetics on computational meshes derived from electron microscope images. Our results indicate that heterogeneous mitochondrial distributions can lead to significant spatial variation across the cell in concentrations of inorganic phosphate, creatine (Cr) and creatine phosphate (PCr). However, our model predicts that sufficient activity of the creatine kinase (CK) system, coupled with rapid diffusion of Cr and PCr, maintains near uniform ATP and ADP ratios across the cell cross sections. This homogenous distribution of ATP and ADP should also evenly distribute force production and twitch duration with contraction. These results suggest that the PCr shuttle and associated enzymatic reactions act to maintain uniform force dynamics in the cell despite the heterogeneous mitochondrial organization. However, our model also predicts that under hypoxia activity of mitochondrial CK enzymes and diffusion of high-energy phosphate compounds may be insufficient to sustain uniform ATP/ADP distribution and hence force generation. Mammalian cardiomyocytes contain a high volume of mitochondria, which maintains the continuous and bulk supply of ATP to sustain normal heart function. Previously, cardiac mitochondria were understood to be distributed in a regular, crystalline pattern, which facilitated a steady supply of ATP at different workloads. Using electron microscopy images of cell cross sections, we recently found that they are not regularly distributed inside cardiomyocytes. We created new spatially accurate computational models of cardiac cell bioenergetics and tested whether this heterogeneous distribution of mitochondria causes non-uniform energy supply and contractile force production in the cardiomyocyte. We found that ATP and ADP concentrations remain uniform throughout the cell because of the activity of creatine kinase (CK) enzymes that convert ATP produced in the mitochondria into creatine phosphate. Creatine phosphate rapidly diffuses to the myofibril region where it can be converted back to ATP for the contraction cycle in a timely manner. This mechanism is called the phosphocreatine shuttle (PCr shuttle). The PCr shuttle ensures that different areas of the cell produce the same amount of force regardless of the mitochondrial distribution. However, our model also shows that when the cellular oxygen supply is limited—as can be the case in conditions such as heart failure—the PCr shuttle cannot maintain uniform ATP and ADP concentrations across the cell. This causes a non-uniform acto-myosin force distribution and non-uniform twitch duration across the cell cross section. Our study suggests that mechanisms other than the PCr shuttle may be necessary to maintain uniform supply of ATP in a hypoxic environment.
Collapse
Affiliation(s)
- Shouryadipta Ghosh
- Cell Structure and Mechanobiology Group, Dept. of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
- Systems Biology Laboratory, School of Mathematics and Statistics, and Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
| | - Kenneth Tran
- Auckland Bioengineering Institute, University of Auckland, Auckland New Zealand
| | | | | | - Eric Hanssen
- Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Edmund J. Crampin
- Systems Biology Laboratory, School of Mathematics and Statistics, and Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Australia
| | - Vijay Rajagopal
- Cell Structure and Mechanobiology Group, Dept. of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
6
|
Ghosh S, Crampin EJ, Hanssen E, Rajagopal V. A computational study of the role of mitochondrial organization on cardiac bioenergetics. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:2696-2699. [PMID: 29060455 DOI: 10.1109/embc.2017.8037413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
All cells in the body have a specific shape and internal organization which is specific to that cell's function. Heart cells are rod-shaped, and contain arrays of contractile protines (myofibrils) and mitochondria (organelles that produce energy) that are aligned along the length of the rod. This arrangement is presumed to allow the cell to generate maximal contractile force for each heartbeat and for energy metabolites to be readily available to generate this force. Heart disease phenotypes, such as diabetic cardiomyopathy and heart failure, exhibit altered organization of mitochondria. However, physiological and computational studies have predominantly investigated the effect of the biochemical changes that accompany the disease alone, such as reduced rates of ATP production by mitochondria. We present a modeling study that examines the effect of mitochondrial organization on energy metabolite distribution during the heartbeat. A 2D micrograph of the cell cross-section was selected from a 3D image stack of structural data of a cardiac cell. The image was used to generate a 2D finite element model, on which mitochondrial oxidative phosphorylation and energy metabolite diffusion was modelled. Results illustrate that mitochondrial density can induce heterogeneity in the distribution of metabolites across the cell area. We discuss the implications of these findings and avenues for future, more indepth studies.
Collapse
|
7
|
Hatano A, Okada JI, Washio T, Hisada T, Sugiura S. Distinct functional roles of cardiac mitochondrial subpopulations revealed by a 3D simulation model. Biophys J 2016; 108:2732-9. [PMID: 26039174 DOI: 10.1016/j.bpj.2015.04.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 04/08/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022] Open
Abstract
Experimental characterization of two cardiac mitochondrial subpopulations, namely, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), has been hampered by technical difficulties, and an alternative approach is eagerly awaited. We previously developed a three-dimensional computational cardiomyocyte model that integrates electrophysiology, metabolism, and mechanics with subcellular structure. In this study, we further developed our model to include intracellular oxygen diffusion, and determined whether mitochondrial localization or intrinsic properties cause functional variations. For this purpose, we created two models: one with equal SSM and IFM properties and one with IFM having higher activity levels. Using these two models to compare the SSM and IFM responses of [Ca(2+)], tricarboxylic acid cycle activity, [NADH], and mitochondrial inner membrane potential to abrupt changes in pacing frequency (0.25-2 Hz), we found that the reported functional differences between these subpopulations appear to be mostly related to local [Ca(2+)] heterogeneity, and variations in intrinsic properties only serve to augment these differences. We also examined the effect of hypoxia on mitochondrial function. Under normoxic conditions, intracellular oxygen is much higher throughout the cell than the half-saturation concentration for oxidative phosphorylation. However, under limited oxygen supply, oxygen is mostly exhausted in SSM, leaving the core region in an anoxic condition. Reflecting this heterogeneous oxygen environment, the inner membrane potential continues to decrease in IFM, whereas it is maintained to nearly normal levels in SSM, thereby ensuring ATP supply to this region. Our simulation results provide clues to understanding the origin of functional variations in two cardiac mitochondrial subpopulations and their differential roles in maintaining cardiomyocyte function as a whole.
Collapse
Affiliation(s)
- Asuka Hatano
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Jun-Ichi Okada
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Takumi Washio
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Toshiaki Hisada
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Seiryo Sugiura
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| |
Collapse
|
8
|
ROS and ROS-Mediated Cellular Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4350965. [PMID: 26998193 PMCID: PMC4779832 DOI: 10.1155/2016/4350965] [Citation(s) in RCA: 1212] [Impact Index Per Article: 134.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/01/2015] [Accepted: 12/20/2015] [Indexed: 12/22/2022]
Abstract
It has long been recognized that an increase of reactive oxygen species (ROS) can modify the cell-signaling proteins and have functional consequences, which successively mediate pathological processes such as atherosclerosis, diabetes, unchecked growth, neurodegeneration, inflammation, and aging. While numerous articles have demonstrated the impacts of ROS on various signaling pathways and clarify the mechanism of action of cell-signaling proteins, their influence on the level of intracellular ROS, and their complex interactions among multiple ROS associated signaling pathways, the systemic summary is necessary. In this review paper, we particularly focus on the pattern of the generation and homeostasis of intracellular ROS, the mechanisms and targets of ROS impacting on cell-signaling proteins (NF-κB, MAPKs, Keap1-Nrf2-ARE, and PI3K-Akt), ion channels and transporters (Ca(2+) and mPTP), and modifying protein kinase and Ubiquitination/Proteasome System.
Collapse
|
9
|
Hatano A, Okada JI, Washio T, Hisada T, Sugiura S. An integrated finite element simulation of cardiomyocyte function based on triphasic theory. Front Physiol 2015; 6:287. [PMID: 26539124 PMCID: PMC4611143 DOI: 10.3389/fphys.2015.00287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
In numerical simulations of cardiac excitation-contraction coupling, the intracellular potential distribution and mobility of cytosol and ions have been mostly ignored. Although the intracellular potential gradient is small, during depolarization it can be a significant driving force for ion movement, and is comparable to diffusion in terms of net flux. Furthermore, fluid in the t-tubules is thought to advect ions to facilitate their exchange with the extracellular space. We extend our previous finite element model that was based on triphasic theory to examine the significance of these factors in cardiac physiology. Triphasic theory allows us to study the behavior of solids (proteins), fluids (cytosol) and ions governed by mechanics and electrochemistry in detailed subcellular structures, including myofibrils, mitochondria, the sarcoplasmic reticulum, membranes, and t-tubules. Our simulation results predicted an electrical potential gradient inside the t-tubules at the onset of depolarization, which corresponded to the Na(+) channel distribution therein. Ejection and suction of fluid between the t-tubules and the extracellular compartment during isometric contraction were observed. We also examined the influence of t-tubule morphology and mitochondrial location on the electrophysiology and mechanics of the cardiomyocyte. Our results confirm that the t-tubule structure is important for synchrony of Ca(2+) release, and suggest that mitochondria in the sub-sarcolemmal region might serve to cancel Ca(2+) inflow through surface sarcolemma, thereby maintaining the intracellular Ca(2+) environment in equilibrium.
Collapse
Affiliation(s)
- Asuka Hatano
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo Tokyo, Japan
| | - Jun-Ichi Okada
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo Chiba, Japan
| | - Takumi Washio
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo Chiba, Japan
| | - Toshiaki Hisada
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo Chiba, Japan
| | - Seiryo Sugiura
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo Chiba, Japan
| |
Collapse
|
10
|
Rajagopal V, Bass G, Walker CG, Crossman DJ, Petzer A, Hickey A, Siekmann I, Hoshijima M, Ellisman MH, Crampin EJ, Soeller C. Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes. PLoS Comput Biol 2015; 11:e1004417. [PMID: 26335304 PMCID: PMC4559435 DOI: 10.1371/journal.pcbi.1004417] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 06/26/2015] [Indexed: 11/18/2022] Open
Abstract
Spatio-temporal dynamics of intracellular calcium, [Ca2+]i, regulate the contractile function of cardiac muscle cells. Measuring [Ca2+]i flux is central to the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease. However, current imaging techniques are limited in the spatial resolution to which changes in [Ca2+]i can be detected. Using spatial point process statistics techniques we developed a novel method to simulate the spatial distribution of RyR clusters, which act as the major mediators of contractile Ca2+ release, upon a physiologically-realistic cellular landscape composed of tightly-packed mitochondria and myofibrils. We applied this method to computationally combine confocal-scale (~ 200 nm) data of RyR clusters with 3D electron microscopy data (~ 30 nm) of myofibrils and mitochondria, both collected from adult rat left ventricular myocytes. Using this hybrid-scale spatial model, we simulated reaction-diffusion of [Ca2+]i during the rising phase of the transient (first 30 ms after initiation). At 30 ms, the average peak of the simulated [Ca2+]i transient and of the simulated fluorescence intensity signal, F/F0, reached values similar to that found in the literature ([Ca2+]i ≈1 μM; F/F0≈5.5). However, our model predicted the variation in [Ca2+]i to be between 0.3 and 12.7 μM (~3 to 100 fold from resting value of 0.1 μM) and the corresponding F/F0 signal ranging from 3 to 9.5. We demonstrate in this study that: (i) heterogeneities in the [Ca2+]i transient are due not only to heterogeneous distribution and clustering of mitochondria; (ii) but also to heterogeneous local densities of RyR clusters. Further, we show that: (iii) these structure-induced heterogeneities in [Ca2+]i can appear in line scan data. Finally, using our unique method for generating RyR cluster distributions, we demonstrate the robustness in the [Ca2+]i transient to differences in RyR cluster distributions measured between rat and human cardiomyocytes. Calcium (Ca2+) acts as a signal for many functions in the heart cell, from its primary role in triggering contractions during the heartbeat to acting as a signal for cell growth. Cellular function is tightly coupled to its ultra-structural organization. Spatially-realistic and biophysics-based computational models can provide quantitative insights into structure-function relationships in Ca2+ signaling. We developed a novel computational model of a rat ventricular myocyte that integrates structural information from confocal and electron microscopy datasets that were independently acquired and includes: myofibrils (protein complexes that contract during the heartbeat), mitochondria (organelles that provide energy for contraction), and ryanodine receptors (RyR, ion channels that release the Ca2+ required to trigger myofibril contraction from intracellular stores). Using this model, we examined [Ca2+]i dynamics throughout the cell cross-section at a much higher resolution than previously possible. We estimated the size of structural maladaptation that would cause disease-related alterations in [Ca2+]i dynamics. Using our methods for data integration, we also tested whether reducing the density of RyRs in human cardiomyocytes (~40% relative to rat) would have a significant effect on [Ca2+]i. We found that Ca2+ release patterns between the two species are similar, suggesting Ca2+ dynamics are robust to variations in cell ultrastructure.
Collapse
Affiliation(s)
- Vijay Rajagopal
- Department of Mechanical Engineering, University of Melbourne, Melbourne, Australia
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
- * E-mail:
| | - Gregory Bass
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
| | - Cameron G. Walker
- Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - David J. Crossman
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Amorita Petzer
- School of Biological Sciences, University of Auckland, Auckland. New Zealand
| | - Anthony Hickey
- School of Biological Sciences, University of Auckland, Auckland. New Zealand
| | - Ivo Siekmann
- Department of Mechanical Engineering, University of Melbourne, Melbourne, Australia
| | - Masahiko Hoshijima
- Department of Medicine, University of California San Diego, San Diego, United States of America
- National Center for Microscopy and Imaging Research, University of California San Diego, San Diego, United States of America
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, University of California San Diego, San Diego, United States of America
| | - Edmund J. Crampin
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Melbourne, Australia
- School of Medicine, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Australia
| | - Christian Soeller
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Biomedical Physics, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
11
|
Defective sarcoplasmic reticulum-mitochondria calcium exchange in aged mouse myocardium. Cell Death Dis 2014; 5:e1573. [PMID: 25522267 PMCID: PMC4454162 DOI: 10.1038/cddis.2014.526] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/21/2014] [Accepted: 11/04/2014] [Indexed: 02/06/2023]
Abstract
Mitochondrial alterations are critically involved in increased vulnerability to disease during aging. We investigated the contribution of mitochondria–sarcoplasmic reticulum (SR) communication in cardiomyocyte functional alterations during aging. Heart function (echocardiography) and ATP/phosphocreatine (NMR spectroscopy) were preserved in hearts from old mice (>20 months) with respect to young mice (5–6 months). Mitochondrial membrane potential and resting O2 consumption were similar in mitochondria from young and old hearts. However, maximal ADP-stimulated O2 consumption was specifically reduced in interfibrillar mitochondria from aged hearts. Second generation proteomics disclosed an increased mitochondrial protein oxidation in advanced age. Because energy production and oxidative status are regulated by mitochondrial Ca2+, we investigated the effect of age on mitochondrial Ca2+ uptake. Although no age-dependent differences were found in Ca2+ uptake kinetics in isolated mitochondria, mitochondrial Ca2+ uptake secondary to SR Ca2+ release was significantly reduced in cardiomyocytes from old hearts, and this effect was associated with decreased NAD(P)H regeneration and increased mitochondrial ROS upon increased contractile activity. Immunofluorescence and proximity ligation assay identified the defective communication between mitochondrial voltage-dependent anion channel and SR ryanodine receptor (RyR) in cardiomyocytes from aged hearts associated with altered Ca2+ handling. Age-dependent alterations in SR Ca2+ transfer to mitochondria and in Ca2+ handling could be reproduced in cardiomyoctes from young hearts after interorganelle disruption with colchicine, at concentrations that had no effect in aged cardiomyocytes or isolated mitochondria. Thus, defective SR–mitochondria communication underlies inefficient interorganelle Ca2+ exchange that contributes to energy demand/supply mistmach and oxidative stress in the aged heart.
Collapse
|
12
|
Abstract
Mitochondrial disease resulting in reduced bioenergetic output can be due to mutations in either nuclear DNA-encoded or mitochondrial DNA-encoded gene products. We summarize some of the underlying principles of mitochondrial genetics that impact the diagnosis and pathogenesis of mitochondrial disorders. In addition, we present a brief overview of a new frontier in the field, namely, mitochondrial "dynamics," which controls organellar fusion, fission, trafficking, and positioning, and exerts mitochondrial "quality control" by maintaining organellar integrity and viability. Analysis of mutations in gene products associated with this latter area has opened up new vistas in the study of disorders associated with compromised energy production.
Collapse
Affiliation(s)
- Estela Area-Gomez
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Eric A Schon
- Department of Neurology, Columbia University Medical Center, New York, NY, USA Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
13
|
Abstract
Ca²⁺ plays a crucial role in connecting membrane excitability with contraction in myocardium. The hallmark features of heart failure are mechanical dysfunction and arrhythmias; defective intracellular Ca²⁺ homeostasis is a central cause of contractile dysfunction and arrhythmias in failing myocardium. Defective Ca²⁺ homeostasis in heart failure can result from pathological alteration in the expression and activity of an increasingly understood collection of Ca²⁺ homeostatic and structural proteins, ion channels, and enzymes. This review focuses on the molecular mechanisms of defective Ca²⁺ cycling in heart failure and considers how fundamental understanding of these pathways may translate into novel and innovative therapies.
Collapse
Affiliation(s)
- Min Luo
- Division of Cardiovascular Medicine, Department of Internal Medicine, Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|