1
|
Song Y, Ma Z, Zhang W. Manipulation of a Single Polymer Chain: From the Nanomechanical Properties to Dynamic Structure Evolution. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ziwen Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
2
|
Wang S, Wang J, Ju T, Yang F, Qu K, Liu W, Wang Z. Study of NSCLC cell migration promoted by NSCLC-derived extracellular vesicle using atomic force microscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1455-1462. [PMID: 33666600 DOI: 10.1039/d0ay02074e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Extracellular vesicles (EVs) secreted by cancer cells play a key role in the cancer microenvironment and progression. Previous studies have mainly focused on molecular functions, cellular components and biological processes using chemical and biological methods. However, whether the mechanical properties of cancer cells change due to EVs remains poorly understood. This work studies the effects of mechanical changes in non-small cell lung cancer (NSCLC) cells after treatment with EVs on migration by atomic force microscopy (AFM). Different concentrations of EVs were added into the experimental groups based on co-culture experiments, while the control group was cultured without EVs for 48 h. Cellular migration was evaluated by wound healing experiments. The cellular morphology, cell stiffness and surface adhesion were investigated by AFM. Cytoskeleton changes were detected by fluorescence staining assay. By comparison to the control group, the cell migration was enhanced. After treatment with EVs, the cell length and height show an upward trend, and the adhesion force and Young's modulus show a downward trend, and filopodia were also detected in the cells. Overall, the EVs promoted the migration of NSCLC cells by regulating cells' physical properties and skeletal rearrangement.
Collapse
Affiliation(s)
- Shuwei Wang
- The First Hospital, Jilin University, Changchun 130012, China.
| | | | | | | | | | | | | |
Collapse
|
3
|
Wu Z, Yang W, Hou S, Xie D, Yang J, Liu L, Yang S. In vivo antiviral activity and disassembly mechanism of novel 1-phenyl-5-amine-4-pyrazole thioether derivatives against Tobacco mosaic virus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104771. [PMID: 33771249 DOI: 10.1016/j.pestbp.2021.104771] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
A series of novel 1-phenyl-5-amine-4-pyrazole thioether derivatives containing a 1,3,4-oxadiazole moiety was designed and synthesised. In vivo antiviral bioassay results showed that most of the target compounds exhibited excellent inactivation activity against Tobacco mosaic virus (TMV). The EC50 values of the inactivation activities for T2, T7, T9, T24, T25 and T27 were 15.7, 15.7, 15.5, 11.9, 12.5 and 16.5 μg/mL, respectively, which were remarkably superior over that of the commercialised antiviral agent ningnanmycin (40.3 μg/mL). Morphological study using AFM and TEM of TMV treated with T24 showed that T24 could significantly shorten the polymerization length of TMV particles and formed a distinct break on the rod-shaped TMV. Investigations for virus infection efficiency on tobacco leaves demonstrated that infectivity of virion had been reduced obviously upon T24 treatment. Subsequently, a strong interaction between T24 and TMV-CP (Kd = 3.8 μM, score 6.11) was observed through MST experiments. Molecular docking study further revealed that target compounds interact with amino acid residue Glu50 in TMV CP, causing disassembly of virion, shorting the length of the virion and reducing the infectivity of virion, and resulting in high inactivating activity of target compounds. This study provides a new insight for discovery of antiviral compounds through a new action mechanism with a new binding site.
Collapse
Affiliation(s)
- Zhibing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China.
| | - Wenqing Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Shuaitao Hou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Dewen Xie
- College of Pharmacy, Guizhou University, Guiyang 550025, PR China
| | - Jingxin Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Liwei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
4
|
Wang S, Ju T, Wang J, Yang F, Qu K, Liu W, Wang Z. Migration of BEAS-2B cells enhanced by H1299 cell derived-exosomes. Micron 2021; 143:103001. [PMID: 33508546 DOI: 10.1016/j.micron.2020.103001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022]
Abstract
Previous studies reported that exosomes (Exos) secreted by tumor cells could affect the tumor cells themselves and normal cells. However, the effects of exosomes derived from tumor cells on normal cells' migration and mechanical characteristics are rarely reported. This work explores the effects of H1299 cell-derived exosomes (H1299-Exos) on the migration of BEAS-2B cells, and analyzes possible mechanical mechanisms. In the experiments, exosomes were isolated from the culture supernatants of H1299 cells by ultracentrifugation. The H1299-Exos were confirmed by scanning electron microscope (SEM) and western blotting (WB). The BEAS-2B cell migration was assessed using scratch assays. Cytoskeletal structure changes were detected by immunofluorescence. Surface morphology and mechanical properties were measured by atomic force microscopy (AFM). After incubation with H1299-Exos for 48 h, BEAS-2B cells enhanced migration ability, with increased filopodia and cytoskeletal rearrangements. The changes in the morphology and mechanical properties of the cells caused by H1299-Exos were detected using AFM, including the increase in cell length and the decrease in cell height, Young's modulus and adhesion. In short, H1299-Exos promoted the BEAS-2B cell migrations. It indicates that the morphological and mechanical properties can be used as a means to assess normal cell alterations induced by tumor cell derived-exosomes. This provides a method for studying the effects of exosomes secreted by tumor cells on normal cells and the changes in their physical properties.
Collapse
Affiliation(s)
- Shuwei Wang
- The First Hospital, Jilin University, Changchun, 130012, China
| | - Tuoyu Ju
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China
| | - Jiajia Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China
| | - Fan Yang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China
| | - Kaige Qu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China
| | - Wei Liu
- The First Hospital, Jilin University, Changchun, 130012, China.
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China; Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, 130022, China; JR3CN & IRAC, University of Bedfordshire, Luton, LU1 3JU, UK.
| |
Collapse
|
5
|
Li S, Wang X, Li Z, Huang Z, Lin S, Hu J, Tu Y. Research progress of single molecule force spectroscopy technology based on atomic force microscopy in polymer materials: Structure, design strategy and probe modification. NANO SELECT 2021. [DOI: 10.1002/nano.202000235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Shi Li
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Xiao Wang
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Zhihua Li
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Zhenzhu Huang
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 PR China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 PR China
- Incubator of Nanxiong CAS Co., Ltd. Nanxiong 512400 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Shudong Lin
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 PR China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 PR China
- Incubator of Nanxiong CAS Co., Ltd. Nanxiong 512400 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Jiwen Hu
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 PR China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 PR China
- Incubator of Nanxiong CAS Co., Ltd. Nanxiong 512400 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yuanyuan Tu
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 PR China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 PR China
- Incubator of Nanxiong CAS Co., Ltd. Nanxiong 512400 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| |
Collapse
|
6
|
Arkhipenko MV, Nikitin NA, Baranov OA, Evtushenko EA, Atabekov JG, Karpova OV. Surface Charge Mapping on Virions and Virus-Like Particles of Helical Plant Viruses. Acta Naturae 2019; 11:73-78. [PMID: 31993237 PMCID: PMC6977955 DOI: 10.32607/20758251-2019-11-4-73-78] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Currently, the assembly of helical plant viruses is poorly understood. The viral assembly and infection may be affected by the charge distribution on the virion surface. However, only the total virion charge (isoelectric point) has been determined for most plant viruses. Here, we report on the first application of positively charged magnetic nanoparticles for mapping the surface charge distribution of helical plant viruses. The charge was demonstrated to be unevenly distributed on the surface of viruses belonging to different taxonomic groups, with the negative charge being predominantly located at one end of the virions. This charge distribution is mainly controlled by viral RNA.
Collapse
Affiliation(s)
- M. V. Arkhipenko
- Department of Virology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - N. A. Nikitin
- Department of Virology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - O. A. Baranov
- Department of Virology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - E. A. Evtushenko
- Department of Virology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - J. G. Atabekov
- Department of Virology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - O. V. Karpova
- Department of Virology, Lomonosov Moscow State University, Moscow, 119234 Russia
| |
Collapse
|
7
|
Wang H, Chen Y, Zhang W. A single-molecule atomic force microscopy study reveals the antiviral mechanism of tannin and its derivatives. NANOSCALE 2019; 11:16368-16376. [PMID: 31436278 DOI: 10.1039/c9nr05410c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antiviral agents work by stopping or intervening the virus replication. Virus replication is a fast and multi-step process while effective antiviral intervention requires agents to interact with the protein coat, genetic RNA/DNA or both during virus replication. Thus, quantifying these interactions at the molecular level, although it is quite challenging, is very important for an understanding of the underlying molecular mechanism of antiviral intervention. Here, at the single molecule level, we employ single molecule force spectroscopy (SMFS) in combination with AFM imaging and choose tobacco mosaic virus (TMV)/tannin as a model system of tubular virus to directly study how the inhibitor influences the interactions of RNA and coat protein. We illustrated the antiviral mechanism of tannin during the three main stages of TMV infection, i.e., before the entry of cells, the disassembly of genetic RNA and reassembly of genetic RNA, respectively. Our SMFS results show that tannin and its derivatives can stabilize the TMV complex by enhancing the interactions between RNA and coat protein via weak interactions, such as hydrogen bonding and hydrophobic interactions. In addition, the stabilization effect showed molecular weight dependence, i.e., for higher molecular weight tannin the stabilization occurs after genetic RNA gets partially disassembled from the protein coat, while the lower molecular weight tannin hydrolyte starts experiencing the stabilization effect before the RNA disassembly. Furthermore, the cycling stretching-relaxation experiments in the presence/absence of tannin proved that tannin can prevent the assembling of RNA and coat protein. In addition, the AFM imaging results demonstrate that tannin can cause the aggregation of TMV particles in a concentration-dependent manner; a higher concentration of tannin will cause more severe aggregations. These results deepen our understanding of the antiviral mechanism of tannin and its derivatives, which facilitate the rational design of efficient agents for antiviral therapy.
Collapse
Affiliation(s)
- Huijie Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China.
| | - Ying Chen
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China.
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
8
|
Weis F, Beckers M, von der Hocht I, Sachse C. Elucidation of the viral disassembly switch of tobacco mosaic virus. EMBO Rep 2019; 20:e48451. [PMID: 31535454 PMCID: PMC6831999 DOI: 10.15252/embr.201948451] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 11/26/2022] Open
Abstract
Stable capsid structures of viruses protect viral RNA while they also require controlled disassembly for releasing the viral genome in the host cell. A detailed understanding of viral disassembly processes and the involved structural switches is still lacking. This process has been extensively studied using tobacco mosaic virus (TMV), and carboxylate interactions are assumed to play a critical part in this process. Here, we present two cryo‐EM structures of the helical TMV assembly at 2.0 and 1.9 Å resolution in conditions of high Ca2+ concentration at low pH and in water. Based on our atomic models, we identify the conformational details of the disassembly switch mechanism: In high Ca2+/acidic pH environment, the virion is stabilized between neighboring subunits through carboxyl groups E95 and E97 in close proximity to a Ca2+ binding site that is shared between two subunits. Upon increase in pH and lower Ca2+ levels, mutual repulsion of the E95/E97 pair and Ca2+ removal destabilize the network of interactions between adjacent subunits at lower radius and release the switch for viral disassembly.
Collapse
Affiliation(s)
- Felix Weis
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Maximilian Beckers
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Faculty of Biosciences, EMBL and Heidelberg University, Heidelberg, Germany
| | - Iris von der Hocht
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons 3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Carsten Sachse
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons 3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
9
|
Yang P, Song Y, Feng W, Zhang W. Unfolding of a Single Polymer Chain from the Single Crystal by Air-Phase Single-Molecule Force Spectroscopy: Toward Better Force Precision and More Accurate Description of Molecular Behaviors. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01544] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Zheng Y, Wang Q, Yang X, Li Z, Gao L, Zhang H, Nie W, Geng X, Wang K. Investigation of the interactions between aptamer and misfolded proteins: From monomer and oligomer to fibril by single-molecule force spectroscopy. J Mol Recognit 2017; 31. [PMID: 29143447 DOI: 10.1002/jmr.2686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/10/2017] [Accepted: 10/19/2017] [Indexed: 12/13/2022]
Abstract
Increasing knowledge on the understanding interactions of aptamer with misfolded proteins (including monomer, oligomer, and amyloid fibril) is crucial for development of aggregation inhibitors and diagnosis of amyloid diseases. Herein, the interactions of lysozyme monomer-, oligomer-, and amyloid fibril-aptamer were investigated using single-molecule force spectroscopy. The results revealed that the aptamer screened against lysozyme monomer could also bind to oligomer and amyloid fibril, in spite of the recognition at a lower binding probability. It may be attributed to the inherent structural differences of misfolded proteins and the flexible conformation of aptamer. In addition, dynamic force spectra showed that there were similar dissociation paths in the dissociation process of lysozyme monomer-, oligomer-, and amyloid fibril-aptamer complexes. It showed that the dissociation only passed 1 energy barrier from the binding state to the detachment. However, the dynamic parameters suggested that the oligomer- and amyloid fibril-aptamer were more stable than lysozyme monomer-aptamer. The phenomena may result from the exposure of aptamer-recognized sequences on the surface and the electrostatic interactions. This work demonstrated that single-molecule force spectroscopy could be a powerful tool to study the binding behavior of the aptamer with misfolded proteins at single-molecule level, providing abundant information for researches and comprehensive applications of aptamer probes in diagnosis of amyloid diseases.
Collapse
Affiliation(s)
- Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Zhiping Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Lei Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Hua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Wenyan Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Xiuhua Geng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, China
| |
Collapse
|
11
|
Li Z, Wang Q, Yang X, Wang K, Du S, Zhang H, Gao L, Zheng Y, Nie W. Evaluating the Effect of Lidocaine on the Interactions of C-reactive Protein with Its Aptamer and Antibody by Dynamic Force Spectroscopy. Anal Chem 2017; 89:3370-3377. [PMID: 28231708 DOI: 10.1021/acs.analchem.6b03960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Effects of medicine on the biomolecular interaction have been given extensive attention in biochemistry and biomedicine because of the complexity of the environment in vivo and the increasing opportunity of exposure to medicine. Herein, the effect of lidocaine on the interactions of C-reactive protein (CRP) with its aptamer and antibody under different temperature was investigated through dynamic force spectroscopy (DFS). The results revealed that lidocaine could reduce the binding probabilities and binding affinities of the CRP-aptamer and the CRP-antibody. An interesting discovery was that lidocaine had differential influences on the dynamic force spectra of the CRP-aptamer and the CRP-antibody. The energy landscape of the CRP-aptamer turned from two activation barriers to one after the treatment of lidocaine, while the one activation barrier in energy landscape of the CRP-antibody almost remained unchanged. In addition, similar results were obtained for 25 and 37 °C. In accordance with the result of molecular docking, the reduction of binding probabilities might be due to the binding of lidocaine on CRP. Additionally, the alteration of the dissociation pathway of the CRP-aptamer and the change of binding affinities might be caused by the conformational change of CRP, which was verified through synchronous fluorescence spectroscopy. Furthermore, differential effects of lidocaine on the interactions of CRP-aptamer and CRP-antibody might be attributed to the different dissociation processes and binding sites of the CRP-aptamer and the CRP-antibody and different structures of the aptamer and the antibody. This work indicated that DFS provided information for further research and comprehensive applications of biomolecular interaction, especially in the design of biosensors in complex systems.
Collapse
Affiliation(s)
- Zhiping Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Shasha Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Hua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Lei Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| | - Wenyan Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha 410082, P. R. China
| |
Collapse
|
12
|
Kou X, Zhang W, Zhang W. Quantifying the Interactions between PEI and Double-Stranded DNA: Toward the Understanding of the Role of PEI in Gene Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21055-21062. [PMID: 27435435 DOI: 10.1021/acsami.6b06399] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Poly(ethylene imine) (PEI) is one of the most efficient nonviral vectors, and its binding mode/strength with double-stranded DNA (dsDNA), which is still not clear, is a core area of transfection studies. In this work we used the atomic force microscopy (AFM)-based single molecule force spectroscopy (SMFS) to detect the interaction between branched PEI and dsDNA quantitatively by using a long chain DNA as a probe. Our results indicate that PEI binds to phosphoric acid skeletons of dsDNA mainly via electrostatic interactions, no obvious groove-binding or intercalation has happened. The interaction strength is about 24-25 pN, and it remains unchanged at pH 5.0 and 7.4, which correspond to the pH values in lysosomes and in the cytoplasmic matrix, respectively. However, the interaction is found to be sensitive to the ionic strength of the environment. In addition, the unbinding force shows no obvious loading rate dependence indicative of equilibrium binding/unbinding.
Collapse
Affiliation(s)
- Xiaolong Kou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, People's Republic of China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, People's Republic of China
| |
Collapse
|
13
|
Li Q, Zhang T, Pan Y, Ciacchi LC, Xu B, Wei G. AFM-based force spectroscopy for bioimaging and biosensing. RSC Adv 2016. [DOI: 10.1039/c5ra22841g] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AFM-based force spectroscopy shows wide bio-related applications especially for bioimaging and biosensing.
Collapse
Affiliation(s)
- Qing Li
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| | - Tong Zhang
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Yangang Pan
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| | - Bingqian Xu
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Gang Wei
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| |
Collapse
|
14
|
Tan X, Litau S, Zhang X, Müller J. Single-Molecule Force Spectroscopy of an Artificial DNA Duplex Comprising a Silver(I)-Mediated Base Pair. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11305-11310. [PMID: 26421907 DOI: 10.1021/acs.langmuir.5b03183] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Single-molecule force spectroscopy measurements of a DNA duplex comprising an artificial metal-mediated base pair are reported. The measurements reveal that DNA duplexes comprising one central imidazole:imidazole mispair rupture at lower forces than a related duplex with canonical base pairs only. In contrast, DNA duplexes with one central imidazole-Ag(+)-imidazole base pair (formed by the addition of Ag(+) to the aforementioned duplex with the mispair) rupture at higher forces. These measurements indicate for the first time that the increase in thermal stability of a nucleic acid duplex that is observed upon the formation of a metal-mediated base pair is accompanied by a concomitant mechanical stabilization. In fact, the mechanical stabilization even exceeds the thermal one. This result indicates that nucleic acids with metal-mediated base pairs should be ideal building blocks for rigid functionalized DNA nano-objects.
Collapse
Affiliation(s)
- Xinxin Tan
- Department of Chemistry, Key Lab of Organic Optoelectronics and Molecular Engineering, Tsinghua University , Beijing 100084, P. R. China
| | - Stefanie Litau
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster , Corrensstr. 28/30, 48149 Münster, Germany
| | - Xi Zhang
- Department of Chemistry, Key Lab of Organic Optoelectronics and Molecular Engineering, Tsinghua University , Beijing 100084, P. R. China
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster , Corrensstr. 28/30, 48149 Münster, Germany
| |
Collapse
|
15
|
Cao Y. A single-molecule view on the disassembly of tobacco mosaic virus. Biophys J 2013; 105:2615-6. [PMID: 24359731 DOI: 10.1016/j.bpj.2013.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yi Cao
- National Laboratory of Solid State Microstructure and Department of Physics, Nanjing University, Nanjing, P. R. China.
| |
Collapse
|