1
|
Fizari M, Rawson B, Keller N, delToro D, Smith DE. Methods for Studying Motor-Driven Viral DNA Packaging in Bacteriophages phi29, Lambda, and T4 via Single DNA Molecule Manipulation and Rapid Solution Exchange. Methods Mol Biol 2025; 2881:293-327. [PMID: 39704950 DOI: 10.1007/978-1-0716-4280-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Viral DNA packaging is a required step in the assembly of many dsDNA viruses. A molecular motor fueled by ATP hydrolysis packages the viral genome to near crystalline density inside a pre-formed prohead shell in ~5 min at room temperature in vitro. We describe procedures for measuring the packaging of single DNA molecules into single viral proheads with optical tweezers. Additionally, we describe techniques for conducting rapid solution exchange measurements that can be used to probe nucleotide-dependent motor-DNA interactions, stall and restart the motor to probe DNA conformational relaxation, and to probe the dynamics of release of the DNA, akin to ejection, in conditions where the motor fully releases its grip. Three viral packaging systems are described in detail: bacteriophages phi29 (φ29), lambda (λ), and T4. Two different approaches are described: 1. With φ29 and T4, prohead-motor complexes can be pre-assembled in bulk and packaging can be initiated in the optical tweezers by "feeding" a single DNA molecule to one of the complexes; 2. with φ29 and λ, packaging can be initiated in bulk then stalled, and a single prohead-motor-DNA complex can then be captured with optical tweezers and restarted. In both cases, the prohead is ultimately attached to one trapped microsphere and the end of the DNA being packaged is attached to a second trapped microsphere such that packaging of the DNA pulls the two microspheres together and the rate of packaging and force generated by the motor is directly measured in real time. These protocols allow for the effect of many experimental parameters on packaging dynamics to be studied such as temperature, ATP concentration, ionic conditions, structural changes to the DNA substrate, and mutations in the motor proteins. Procedures for capturing microspheres with the optical traps and different measurement modes are also described.
Collapse
Affiliation(s)
- Mounir Fizari
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - Brandon Rawson
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - Nicholas Keller
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - Damian delToro
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - Douglas E Smith
- Department of Physics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Fizari M, Keller N, Jardine PJ, Smith DE. Role of DNA-DNA sliding friction and nonequilibrium dynamics in viral genome ejection and packaging. Nucleic Acids Res 2023; 51:8060-8069. [PMID: 37449417 PMCID: PMC10450192 DOI: 10.1093/nar/gkad582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Many viruses eject their DNA via a nanochannel in the viral shell, driven by internal forces arising from the high-density genome packing. The speed of DNA exit is controlled by friction forces that limit the molecular mobility, but the nature of this friction is unknown. We introduce a method to probe the mobility of the tightly confined DNA by measuring DNA exit from phage phi29 capsids with optical tweezers. We measure extremely low initial exit velocity, a regime of exponentially increasing velocity, stochastic pausing that dominates the kinetics and large dynamic heterogeneity. Measurements with variable applied force provide evidence that the initial velocity is controlled by DNA-DNA sliding friction, consistent with a Frenkel-Kontorova model for nanoscale friction. We confirm several aspects of the ejection dynamics predicted by theoretical models. Features of the pausing suggest that it is connected to the phenomenon of 'clogging' in soft matter systems. Our results provide evidence that DNA-DNA friction and clogging control the DNA exit dynamics, but that this friction does not significantly affect DNA packaging.
Collapse
Affiliation(s)
- Mounir Fizari
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicholas Keller
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paul J Jardine
- Department of Diagnostic and Biological Sciences and Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Fizari M, Keller N, Jardine PJ, Smith DE. Role of DNA-DNA sliding friction and non-equilibrium dynamics in viral genome ejection and packaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535472. [PMID: 37066220 PMCID: PMC10104077 DOI: 10.1101/2023.04.03.535472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Many viruses eject their DNA via a nanochannel in the viral shell, driven by internal forces arising from the high-density genome packing. The speed of DNA exit is controlled by friction forces that limit the molecular mobility, but the nature of this friction is unknown. We introduce a method to probe the mobility of the tightly confined DNA by measuring DNA exit from phage phi29 capsids with optical tweezers. We measure extremely low initial exit velocity, a regime of exponentially increasing velocity, stochastic pausing that dominates the kinetics, and large dynamic heterogeneity. Measurements with variable applied force provide evidence that the initial velocity is controlled by DNA-DNA sliding friction, consistent with a Frenkel-Kontorova model for nanoscale friction. We confirm several aspects of the ejection dynamics predicted by theoretical models. Features of the pausing suggest it is connected to the phenomenon of "clogging" in soft-matter systems. Our results provide evidence that DNA-DNA friction and clogging control the DNA exit dynamics, but that this friction does not significantly affect DNA packaging.
Collapse
|
4
|
Rao VB, Fokine A, Fang Q. The remarkable viral portal vertex: structure and a plausible model for mechanism. Curr Opin Virol 2021; 51:65-73. [PMID: 34619513 DOI: 10.1016/j.coviro.2021.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/23/2021] [Accepted: 09/12/2021] [Indexed: 01/20/2023]
Abstract
Many icosahedral viruses including tailed bacteriophages and herpes viruses have a unique portal vertex where a dodecameric protein ring is associated with a fivefold capsid shell. While the peripheral regions of the portal ring are involved in capsid assembly, its central channel is used to transport DNA into and out of capsid during genome packaging and infection. Though the atomic structure of this highly conserved, turbine-shaped, portal is known for nearly two decades, its molecular mechanism remains a mystery. Recent high-resolution in situ structures reveal various conformational states of the portal and the asymmetric interactions between the 12-fold portal and the fivefold capsid. These lead to a valve-like mechanism for this symmetry-mismatched portal vertex that regulates DNA flow through the channel, a critical function for high fidelity assembly of an infectious virion.
Collapse
Affiliation(s)
- Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC 20064, USA.
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Qianglin Fang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Mo Y, Fizari M, Koharchik K, Smith DE. Determining Trap Compliances, Microsphere Size Variations, and Response Linearities in Single DNA Molecule Elasticity Measurements with Optical Tweezers. Front Mol Biosci 2021; 8:605102. [PMID: 33829038 PMCID: PMC8019724 DOI: 10.3389/fmolb.2021.605102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022] Open
Abstract
We previously introduced the use of DNA molecules for calibration of biophysical force and displacement measurements with optical tweezers. Force and length scale factors can be determined from measurements of DNA stretching. Trap compliance can be determined by fitting the data to a nonlinear DNA elasticity model, however, noise/drift/offsets in the measurement can affect the reliability of this determination. Here we demonstrate a more robust method that uses a linear approximation for DNA elasticity applied to high force range (25-45 pN) data. We show that this method can be used to assess how small variations in microsphere sizes affect DNA length measurements and demonstrate methods for correcting for these errors. We further show that these measurements can be used to check assumed linearities of system responses. Finally, we demonstrate methods combining microsphere imaging and DNA stretching to check the compliance and positioning of individual traps.
Collapse
Affiliation(s)
| | | | | | - Douglas E. Smith
- Department of Physics, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
6
|
The PLB measurement for the connector in Phi29 bacteriophage reveals the function of its channel loop. Biophys J 2021; 120:1650-1664. [PMID: 33684350 DOI: 10.1016/j.bpj.2021.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 11/23/2022] Open
Abstract
The connector protein, also known as the portal protein, located at the portal vertex in the Phi29 bacteriophage has been found to play a key role in the genome DNA packaging motor. There is a disordered region, composed of 12 sets of 18-residue loops N229-N246, that has been assumed to serve as a "clamp" to retain the DNA within the pressurized capsid when DNA is fully packaged. However, the process remains undefined about how the clamping of DNA occurs and what signal is used to engage the channel loops to clamp the DNA near the end of DNA packaging. In this study, we use the planar lipid bilayer (PLB) membrane technique to study the connector with its loops cleaved. The channel properties are compared with those of the connector with corresponding wild-type loops at different membrane potentials. On the basis of the hypothesis of the Donnan effects in the flashing Brownian ratchet model, we associate the PLB experimental results with the outcomes from the relevant biochemical experiments on the proheads containing the connectors without the loops, which enables us to provide a clear picture about how the DNA clamping occurs. A mathematical relationship between the Donnan potential and the DNA packaging density is established, demonstrating that they are both in essence the same signal that is received and transmitted by the connector to dictate DNA clamping and the termination of DNA packaging. At the end of the study, the PLB technique is proposed as a viral research tool, and its potential use to study the functions of specific domains in a portal protein of the tailed bacteriophages is highlighted.
Collapse
|
7
|
Mo Y, Keller N, delToro D, Ananthaswamy N, Harvey S, Rao VB, Smith DE. Function of a viral genome packaging motor from bacteriophage T4 is insensitive to DNA sequence. Nucleic Acids Res 2020; 48:11602-11614. [PMID: 33119757 PMCID: PMC7672480 DOI: 10.1093/nar/gkaa875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/12/2020] [Accepted: 09/29/2020] [Indexed: 01/20/2023] Open
Abstract
Many viruses employ ATP-powered motors during assembly to translocate DNA into procapsid shells. Previous reports raise the question if motor function is modulated by substrate DNA sequence: (i) the phage T4 motor exhibits large translocation rate fluctuations and pauses and slips; (ii) evidence suggests that the phage phi29 motor contacts DNA bases during translocation; and (iii) one theoretical model, the 'B-A scrunchworm', predicts that 'A-philic' sequences that transition more easily to A-form would alter motor function. Here, we use single-molecule optical tweezers measurements to compare translocation of phage, plasmid, and synthetic A-philic, GC rich sequences by the T4 motor. We observed no significant differences in motor velocities, even with A-philic sequences predicted to show higher translocation rate at high applied force. We also observed no significant changes in motor pausing and only modest changes in slipping. To more generally test for sequence dependence, we conducted correlation analyses across pairs of packaging events. No significant correlations in packaging rate, pausing or slipping versus sequence position were detected across repeated measurements with several different DNA sequences. These studies suggest that viral genome packaging is insensitive to DNA sequence and fluctuations in packaging motor velocity, pausing and slipping are primarily stochastic temporal events.
Collapse
Affiliation(s)
- Youbin Mo
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicholas Keller
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Damian delToro
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neeti Ananthaswamy
- Department of Biology, The Catholic University of America, District of Columbia, 20064, USA
| | - Stephen C Harvey
- Department of Biochemistry and Biophysics, Univ. of Pennsylvania, Philadelphia, PA 19104, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, District of Columbia, 20064, USA
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
delToro D, Ortiz D, Ordyan M, Pajak J, Sippy J, Catala A, Oh CS, Vu A, Arya G, Smith DE, Catalano CE, Feiss M. Functional Dissection of a Viral DNA Packaging Machine's Walker B Motif. J Mol Biol 2019; 431:4455-4474. [PMID: 31473160 PMCID: PMC7416571 DOI: 10.1016/j.jmb.2019.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 11/30/2022]
Abstract
Many viruses employ ATP-powered motors for genome packaging. We combined genetic, biochemical, and single-molecule techniques to confirm the predicted Walker-B ATP-binding motif in the phage λ motor and to investigate the roles of the conserved residues. Most changes of the conserved hydrophobic residues resulted in >107-fold decrease in phage yield, but we identified nine mutants with partial activity. Several were cold-sensitive, suggesting that mobility of the residues is important. Single-molecule measurements showed that the partially active A175L exhibits a small reduction in motor velocity and increase in slipping, consistent with a slowed ATP binding transition, whereas G176S exhibits decreased slipping, consistent with an accelerated transition. All changes to the conserved D178, predicted to coordinate Mg2+•ATP, were lethal except conservative change D178E. Biochemical interrogation of the inactive D178N protein found no folding or assembly defects and near-normal endonuclease activity, but a ∼200-fold reduction in steady-state ATPase activity, a lag in the single-turnover ATPase time course, and no DNA packaging, consistent with a critical role in ATP-coupled DNA translocation. Molecular dynamics simulations of related enzymes suggest that the aspartate plays an important role in enhancing the catalytic activity of the motor by bridging the Walker motifs and precisely contributing its charged group to help polarize the bound nucleotide. Supporting this prediction, single-molecule measurements revealed that change D178E reduces motor velocity without increasing slipping, consistent with a slowed hydrolysis step. Our studies thus illuminate the mechanistic roles of Walker-B residues in ATP binding, hydrolysis, and DNA translocation by this powerful motor.
Collapse
Affiliation(s)
- Damian delToro
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Ortiz
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Mariam Ordyan
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joshua Pajak
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Jean Sippy
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Alexis Catala
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Choon-Seok Oh
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Amber Vu
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Carlos E Catalano
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
9
|
Dedeo CL, Cingolani G, Teschke CM. Portal Protein: The Orchestrator of Capsid Assembly for the dsDNA Tailed Bacteriophages and Herpesviruses. Annu Rev Virol 2019; 6:141-160. [PMID: 31337287 PMCID: PMC6947915 DOI: 10.1146/annurev-virology-092818-015819] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tailed, double-stranded DNA bacteriophages provide a well-characterized model system for the study of viral assembly, especially for herpesviruses and adenoviruses. A wealth of genetic, structural, and biochemical work has allowed for the development of assembly models and an understanding of the DNA packaging process. The portal complex is an essential player in all aspects of bacteriophage and herpesvirus assembly. Despite having low sequence similarity, portal structures across bacteriophages share the portal fold and maintain a conserved function. Due to their dynamic role, portal proteins are surprisingly plastic, and their conformations change for each stage of assembly. Because the maturation process is dependent on the portal protein, researchers have been working to validate this protein as a potential antiviral drug target. Here we review recent work on the role of portal complexes in capsid assembly, including DNA packaging, as well as portal ring assembly and incorporation and analysis of portal structures.
Collapse
Affiliation(s)
- Corynne L Dedeo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA;
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA;
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
10
|
Ortiz D, delToro D, Ordyan M, Pajak J, Sippy J, Catala A, Oh CS, Vu A, Arya G, Feiss M, Smith DE, Catalano CE. Evidence that a catalytic glutamate and an 'Arginine Toggle' act in concert to mediate ATP hydrolysis and mechanochemical coupling in a viral DNA packaging motor. Nucleic Acids Res 2019; 47:1404-1415. [PMID: 30541105 PMCID: PMC6379665 DOI: 10.1093/nar/gky1217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/09/2018] [Accepted: 12/06/2018] [Indexed: 01/09/2023] Open
Abstract
ASCE ATPases include ring-translocases such as cellular helicases and viral DNA packaging motors (terminases). These motors have conserved Walker A and B motifs that bind Mg2+-ATP and a catalytic carboxylate that activates water for hydrolysis. Here we demonstrate that Glu179 serves as the catalytic carboxylate in bacteriophage λ terminase and probe its mechanistic role. All changes of Glu179 are lethal: non-conservative changes abrogate ATP hydrolysis and DNA translocation, while the conservative E179D change attenuates ATP hydrolysis and alters single molecule translocation dynamics, consistent with a slowed chemical hydrolysis step. Molecular dynamics simulations of several homologous terminases suggest a novel mechanism, supported by experiments, wherein the conserved Walker A arginine ‘toggles’ between interacting with a glutamate residue in the ‘lid’ subdomain and the catalytic glutamate upon ATP binding; this switch helps mediate a transition from an ‘open’ state to a ‘closed’ state that tightly binds nucleotide and DNA, and also positions the catalytic glutamate next to the γ-phosphate to align the hydrolysis transition state. Concomitant reorientation of the lid subdomain may mediate mechanochemical coupling of ATP hydrolysis and DNA translocation. Given the strong conservation of these structural elements in terminase enzymes, this mechanism may be universal for viral packaging motors.
Collapse
Affiliation(s)
- David Ortiz
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Damian delToro
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mariam Ordyan
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joshua Pajak
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Jean Sippy
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Alexis Catala
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Choon-Seok Oh
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Amber Vu
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carlos E Catalano
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Cryo-EM structures of herpes simplex virus type 1 portal vertex and packaged genome. Nature 2019; 570:257-261. [PMID: 31142842 PMCID: PMC6732574 DOI: 10.1038/s41586-019-1248-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 04/26/2019] [Indexed: 11/28/2022]
Abstract
Herpesviruses are enveloped viruses prevalent in the human population, responsible for a host of pathologies ranging from cold sores to birth defects and cancers. They are characterized by a highly pressurized, T (triangulation number) = 16 pseudo-icosahedral capsid encapsidating a tightly packed dsDNA genome1–3. A key process in the herpesvirus life cycle involves the recruitment of an ATP-driven terminase to a unique portal vertex to recognize, package, and cleave concatemeric dsDNA, ultimately giving rise to a pressurized, genome-containing virion4,5. Though this process has been studied in dsDNA phages6–9—with which herpesviruses bear some similarities—a lack of high-resolution in situ structures of genome-packaging machinery has prevented the elucidation of how these multi-step reactions, which require close coordination among multiple actors, occur in an integrated environment. Thus, to better define the structural basis of genome packaging and organization in the prototypical herpesvirus, herpes simplex virus type 1 (HSV-1), we developed sequential localized classification and symmetry relaxation methods to process cryoEM images of HSV-1 virions, enabling us to decouple and reconstruct hetero-symmetric and asymmetric elements within the pseudo-icosahedral capsid. Here we show in situ structures of the unique portal vertex, genomic termini, and ordered dsDNA coils in the capsid spooled around a disordered dsDNA core. We identify tentacle-like helices and a globular complex capping the portal vertex not observed in phages, indicative of adaptations in the DNA-packaging process specific to herpesviruses. Finally, our atomic models of portal vertex elements reveal how the five-fold-related capsid accommodates symmetry mismatch imparted by the dodecameric portal—long a mystery in icosahedral viruses—and inform possible DNA sequence-recognition and headful-sensing pathways involved in genome packaging. Our work represents the first fully symmetry-resolved structure of a portal vertex and first atomic model of a portal complex in a eukaryotic virus.
Collapse
|
12
|
Ordyan M, Alam I, Mahalingam M, Rao VB, Smith DE. Nucleotide-dependent DNA gripping and an end-clamp mechanism regulate the bacteriophage T4 viral packaging motor. Nat Commun 2018; 9:5434. [PMID: 30575768 PMCID: PMC6303390 DOI: 10.1038/s41467-018-07834-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/23/2018] [Indexed: 11/24/2022] Open
Abstract
ATP-powered viral packaging motors are among the most powerful biomotors known. Motor subunits arranged in a ring repeatedly grip and translocate the DNA to package viral genomes into capsids. Here, we use single DNA manipulation and rapid solution exchange to quantify how nucleotide binding regulates interactions between the bacteriophage T4 motor and DNA substrate. With no nucleotides, there is virtually no gripping and rapid slipping occurs with only minimal friction resisting. In contrast, binding of an ATP analog engages nearly continuous gripping. Occasional slips occur due to dissociation of the analog from a gripping motor subunit, or force-induced rupture of grip, but multiple other analog-bound subunits exert high friction that limits slipping. ADP induces comparably infrequent gripping and variable friction. Independent of nucleotides, slipping arrests when the end of the DNA is about to exit the capsid. This end-clamp mechanism increases the efficiency of packaging by making it essentially irreversible. Packaging of viral DNA depends on strong molecular motors that are powered by ATP hydrolysis. Here, the authors develop a single-molecule assay to monitor how nucleotide binding regulates motor-DNA interactions and reveal a generic mechanism that prevents exit of the whole DNA from the viral capsid during packaging.
Collapse
Affiliation(s)
- Mariam Ordyan
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Mail Code 0379, La Jolla, CA, 92093-0379, USA
| | - Istiaq Alam
- Department of Biology, The Catholic University of America, 620 Michigan Ave. NE, Washington, DC, 20064, USA
| | - Marthandan Mahalingam
- Department of Biology, The Catholic University of America, 620 Michigan Ave. NE, Washington, DC, 20064, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, 620 Michigan Ave. NE, Washington, DC, 20064, USA.
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Mail Code 0379, La Jolla, CA, 92093-0379, USA.
| |
Collapse
|
13
|
Tomasch J, Wang H, Hall ATK, Patzelt D, Preusse M, Petersen J, Brinkmann H, Bunk B, Bhuju S, Jarek M, Geffers R, Lang AS, Wagner-Döbler I. Packaging of Dinoroseobacter shibae DNA into Gene Transfer Agent Particles Is Not Random. Genome Biol Evol 2018; 10:359-369. [PMID: 29325123 PMCID: PMC5786225 DOI: 10.1093/gbe/evy005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 02/07/2023] Open
Abstract
Gene transfer agents (GTAs) are phage-like particles which contain a fragment of genomic DNA of the bacterial or archaeal producer and deliver this to a recipient cell. GTA gene clusters are present in the genomes of almost all marine Rhodobacteraceae (Roseobacters) and might be important contributors to horizontal gene transfer in the world’s oceans. For all organisms studied so far, no obvious evidence of sequence specificity or other nonrandom process responsible for packaging genomic DNA into GTAs has been found. Here, we show that knock-out of an autoinducer synthase gene of Dinoroseobacter shibae resulted in overproduction and release of functional GTA particles (DsGTA). Next-generation sequencing of the 4.2-kb DNA fragments isolated from DsGTAs revealed that packaging was not random. DNA from low-GC conjugative plasmids but not from high-GC chromids was excluded from packaging. Seven chromosomal regions were strongly overrepresented in DNA isolated from DsGTA. These packaging peaks lacked identifiable conserved sequence motifs that might represent recognition sites for the GTA terminase complex. Low-GC regions of the chromosome, including the origin and terminus of replication, were underrepresented in DNA isolated from DsGTAs. DNA methylation reduced packaging frequency while the level of gene expression had no influence. Chromosomal regions found to be over- and underrepresented in DsGTA-DNA were regularly spaced. We propose that a “headful” type of packaging is initiated at the sites of coverage peaks and, after linearization of the chromosomal DNA, proceeds in both directions from the initiation site. GC-content, DNA-modifications, and chromatin structure might influence at which sides GTA packaging can be initiated.
Collapse
Affiliation(s)
- Jürgen Tomasch
- Group Microbial Communication, Helmholtz-Centre for Infection Research, Braunschweig, Germany.,Department of Molecular Bacteriology, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Hui Wang
- Group Microbial Communication, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - April T K Hall
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada
| | - Diana Patzelt
- Group Microbial Communication, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Matthias Preusse
- Department of Molecular Bacteriology, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Jörn Petersen
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Henner Brinkmann
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabin Bhuju
- Group Genome Analytics, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Michael Jarek
- Group Genome Analytics, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Robert Geffers
- Group Genome Analytics, Helmholtz-Center for Infection Research, Braunschweig, Germany
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, Canada
| | - Irene Wagner-Döbler
- Group Microbial Communication, Helmholtz-Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
14
|
Liu N, Chistol G, Cui Y, Bustamante C. Mechanochemical coupling and bi-phasic force-velocity dependence in the ultra-fast ring ATPase SpoIIIE. eLife 2018; 7:32354. [PMID: 29504934 PMCID: PMC5858925 DOI: 10.7554/elife.32354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/03/2018] [Indexed: 11/22/2022] Open
Abstract
Multi-subunit ring-shaped ATPases are molecular motors that harness chemical free energy to perform vital mechanical tasks such as polypeptide translocation, DNA unwinding, and chromosome segregation. Previously we reported the intersubunit coordination and stepping behavior of the hexameric ring-shaped ATPase SpoIIIE (Liu et al., 2015). Here we use optical tweezers to characterize the motor’s mechanochemistry. Analysis of the motor response to external force at various nucleotide concentrations identifies phosphate release as the likely force-generating step. Analysis of SpoIIIE pausing indicates that pauses are off-pathway events. Characterization of SpoIIIE slipping behavior reveals that individual motor subunits engage DNA upon ATP binding. Furthermore, we find that SpoIIIE’s velocity exhibits an intriguing bi-phasic dependence on force. We hypothesize that this behavior is an adaptation of ultra-fast motors tasked with translocating DNA from which they must also remove DNA-bound protein roadblocks. Based on these results, we formulate a comprehensive mechanochemical model for SpoIIIE.
Collapse
Affiliation(s)
- Ninning Liu
- Jason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Gheorghe Chistol
- Jason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, Berkeley, United States.,Department of Physics, University of California, Berkeley, Berkeley, United States
| | - Yuanbo Cui
- Jason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Carlos Bustamante
- Jason L. Choy Laboratory of Single Molecule Biophysics, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Physics, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Department of Chemistry and Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,Kavli Energy NanoSciences Institute at the University of California, Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
15
|
Keller N, delToro DJ, Smith DE. Single-Molecule Measurements of Motor-Driven Viral DNA Packaging in Bacteriophages Phi29, Lambda, and T4 with Optical Tweezers. Methods Mol Biol 2018; 1805:393-422. [PMID: 29971729 DOI: 10.1007/978-1-4939-8556-2_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Viral DNA packaging is a required step in the assembly of many dsDNA viruses. A molecular motor fueled by ATP hydrolysis packages the viral genome to near crystalline density inside a preformed prohead shell in ~5 min at room temperature. We describe procedures for measuring the packaging of single DNA molecules into single viral proheads with optical tweezers. Three viral packaging systems are described in detail: bacteriophages phi29 (φ29), lambda (λ), and T4. Two different approaches are described: (1) With φ29 and T4, prohead-motor complexes can be preassembled in bulk and packaging can be initiated in the optical tweezers by "feeding" a single DNA molecule to one of the complexes; (2) With φ29 and λ, packaging can be initiated in bulk then stalled, and a single prohead-motor-DNA complex can then be captured with optical tweezers and restarted. In both cases, the prohead is ultimately attached to one trapped microsphere and the end of the DNA being packaged is attached to a second trapped microsphere such that packaging of the DNA pulls the two microspheres together and the rate of packaging and force generated by the motor is directly measured in real time. These protocols allow for the effect of many experimental parameters on packaging dynamics to be studied such as temperature, ATP concentration, ionic conditions, structural changes to the DNA substrate, and mutations in the motor proteins. Procedures for capturing microspheres with the optical traps and different measurement modes are also described.
Collapse
Affiliation(s)
- Nicholas Keller
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - Damian J delToro
- Department of Physics, University of California San Diego, La Jolla, CA, USA
| | - Douglas E Smith
- Department of Physics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Cryo-EM structure of the bacteriophage T4 isometric head at 3.3-Å resolution and its relevance to the assembly of icosahedral viruses. Proc Natl Acad Sci U S A 2017; 114:E8184-E8193. [PMID: 28893988 DOI: 10.1073/pnas.1708483114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The 3.3-Å cryo-EM structure of the 860-Å-diameter isometric mutant bacteriophage T4 capsid has been determined. WT T4 has a prolate capsid characterized by triangulation numbers (T numbers) Tend = 13 for end caps and Tmid = 20 for midsection. A mutation in the major capsid protein, gp23, produced T=13 icosahedral capsids. The capsid is stabilized by 660 copies of the outer capsid protein, Soc, which clamp adjacent gp23 hexamers. The occupancies of Soc molecules are proportional to the size of the angle between the planes of adjacent hexameric capsomers. The angle between adjacent hexameric capsomers is greatest around the fivefold vertices, where there is the largest deviation from a planar hexagonal array. Thus, the Soc molecules reinforce the structure where there is the greatest strain in the gp23 hexagonal lattice. Mutations that change the angles between adjacent capsomers affect the positions of the pentameric vertices, resulting in different triangulation numbers in bacteriophage T4. The analysis of the T4 mutant head assembly gives guidance to how other icosahedral viruses reproducibly assemble into capsids with a predetermined T number, although the influence of scaffolding proteins is also important.
Collapse
|
17
|
Jing P, Burris B, Zhang R. Forces from the Portal Govern the Late-Stage DNA Transport in a Viral DNA Packaging Nanomotor. Biophys J 2017; 111:162-77. [PMID: 27410744 DOI: 10.1016/j.bpj.2016.05.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 01/09/2023] Open
Abstract
In the Phi29 bacteriophage, the DNA packaging nanomotor packs its double-stranded DNA genome into the virus capsid. At the late stage of DNA packaging, the negatively charged genome is increasingly compacted at a higher density in the capsid with a higher internal pressure. During the process, two Donnan effects, osmotic pressure and Donnan equilibrium potentials, are significantly amplified, which, in turn, affect the channel activity of the portal protein, GP10, embedded in the semipermeable capsid shell. In the research, planar lipid bilayer experiments were used to study the channel activities of the viral protein. The Donnan effect on the conformational changes of the viral protein was discovered, indicating GP10 may not be a static channel at the late stage of DNA packaging. Due to the conformational changes, GP10 may generate electrostatic forces that govern the DNA transport. For the section of the genome DNA that remains outside of the connector channel, a strong repulsive force from the viral protein would be generated against the DNA entry; however, for the section of the genome DNA within the channel, the portal protein would become a Brownian motor, which adopts the flash Brownian ratchet mechanism to pump the DNA against the increasingly built-up internal pressure (up to 20 atm) in the capsid. Therefore, the DNA transport in the nanoscale viral channel at the late stage of DNA packaging could be a consequence of Brownian movement of the genomic DNA, which would be rectified and harnessed by the forces from the interior wall of the viral channel under the influence of the Donnan effect.
Collapse
Affiliation(s)
- Peng Jing
- Department of Chemistry, College of Arts and Sciences, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana.
| | - Benjamin Burris
- Department of Chemistry, College of Arts and Sciences, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana
| | - Rong Zhang
- Division of Endocrinology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Keller N, Berndsen ZT, Jardine PJ, Smith DE. Experimental comparison of forces resisting viral DNA packaging and driving DNA ejection. Phys Rev E 2017; 95:052408. [PMID: 28618627 DOI: 10.1103/physreve.95.052408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Indexed: 11/07/2022]
Abstract
We compare forces resisting DNA packaging and forces driving DNA ejection in bacteriophage phi29 with theoretical predictions. Ejection of DNA from prohead-motor complexes is triggered by heating complexes after in vitro packaging and force is inferred from the suppression of ejection by applied osmotic pressure. Ejection force from 0% to 80% filling is found to be in quantitative agreement with predictions of a continuum mechanics model that assumes a repulsive DNA-DNA interaction potential based on DNA condensation studies and predicts an inverse-spool conformation. Force resisting DNA packaging from ∼80% to 100% filling inferred from optical tweezers studies is also consistent with the predictions of this model. The striking agreement with these two different measurements suggests that the overall energetics of DNA packaging is well described by the model. However, since electron microscopy studies of phi29 do not reveal a spool conformation, our findings suggest that the spool model overestimates the role of bending rigidity and underestimates the role of intrastrand repulsion. Below ∼80% filling the inferred forces resisting packaging are unexpectedly lower than the inferred ejection forces, suggesting that in this filling range the forces are less accurately determined or strongly temperature dependent.
Collapse
Affiliation(s)
- Nicholas Keller
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Zachary T Berndsen
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.,Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, USA
| | - Paul J Jardine
- Department of Diagnostic and Biological Sciences and Institute for Molecular Virology, University of Minnesota, 515 Delaware Street SE, Minneapolis, Minnesota 55455, USA
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
19
|
Córdoba A, Hinckley DM, Lequieu J, de Pablo JJ. A Molecular View of the Dynamics of dsDNA Packing Inside Viral Capsids in the Presence of Ions. Biophys J 2017; 112:1302-1315. [PMID: 28402874 DOI: 10.1016/j.bpj.2017.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/10/2017] [Accepted: 02/06/2017] [Indexed: 11/27/2022] Open
Abstract
Genome packing in viruses and prokaryotes relies on positively charged ions to reduce electrostatic repulsions, and induce attractions that can facilitate DNA condensation. Here we present molecular dynamics simulations spanning several microseconds of dsDNA packing inside nanometer-sized viral capsids. We use a detailed molecular model of DNA that accounts for molecular structure, basepairing, and explicit counterions. The size and shape of the capsids studied here are based on the 30-nanometer-diameter gene transfer agents of bacterium Rhodobacter capsulatus that transfer random 4.5-kbp (1.5 μm) DNA segments between bacterial cells. Multivalent cations such as spermidine and magnesium induce attraction between packaged DNA sites that can lead to DNA condensation. At high concentrations of spermidine, this condensation significantly increases the shear stresses on the packaged DNA while also reducing the pressure inside the capsid. These effects result in an increase in the packing velocity and the total amount of DNA that can be packaged inside the nanometer-sized capsids. In the simulation results presented here, high concentrations of spermidine3+ did not produce the premature stalling observed in experiments. However, a small increase in the heterogeneity of packing velocities was observed in the systems with magnesium and spermidine ions compared to the system with only salt. The results presented here indicate that the effect of multivalent cations and of spermidine, in particular, on the dynamics of DNA packing, increases with decreasing packing velocities.
Collapse
Affiliation(s)
- Andrés Córdoba
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Daniel M Hinckley
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Joshua Lequieu
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Juan J de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois.
| |
Collapse
|
20
|
Bedwell GJ, Prevelige PE. Targeted mutagenesis of the P22 portal protein reveals the mechanism of signal transmission during DNA packaging. Virology 2017; 505:127-138. [PMID: 28242514 DOI: 10.1016/j.virol.2017.02.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 11/29/2022]
Abstract
The portal vertex in dsDNA bacteriophage serves as the site for genome encapsidation and release. In several of these viruses, efficient termination of DNA packaging has been shown to be dependent on the density of packaged DNA. The portal protein has been implicated as being part of the sensor that regulates packaging termination through DNA-dependent conformational changes during packaging. The mechanism by which DNA induces these conformational changes remains unknown. In this study, we explore how point mutants in the portal core can result in changes in genome packaging density in P22. Mutations in the portal core that subtly alter the structure or dynamics of the protein result in an increase in the amount of DNA packaged. The magnitude of the change is amino acid and location specific. Our findings suggest a mechanism wherein compression of the portal core is an essential aspect of signal transmission during packaging.
Collapse
Affiliation(s)
- Gregory J Bedwell
- Department of Microbiology, University of Alabama at Birmingham, 845 19th St. South, Birmingham, AL 35294, United States; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 3 Blackfan Circle, Boston, MA 02115, United States
| | - Peter E Prevelige
- Department of Microbiology, University of Alabama at Birmingham, 845 19th St. South, Birmingham, AL 35294, United States.
| |
Collapse
|
21
|
de Holanda VH, Gomes MAF. Scaling, crumpled wires, and genome packing in virions. Phys Rev E 2016; 94:062406. [PMID: 28085370 DOI: 10.1103/physreve.94.062406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Indexed: 11/07/2022]
Abstract
The packing of a genome in virions is a topic of intense current interest in biology and biological physics. The area is dominated by allometric scaling relations that connect, e.g., the length of the encapsulated genome and the size of the corresponding virion capsid. Here we report scaling laws obtained from extensive experiments of packing of a macroscopic wire within rigid three-dimensional spherical and nonspherical cavities that can shed light on the details of the genome packing in virions. We show that these results obtained with crumpled wires are comparable to those from a large compilation of biological data from several classes of virions.
Collapse
Affiliation(s)
- V H de Holanda
- Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | - M A F Gomes
- Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| |
Collapse
|
22
|
delToro D, Ortiz D, Ordyan M, Sippy J, Oh CS, Keller N, Feiss M, Catalano CE, Smith DE. Walker-A Motif Acts to Coordinate ATP Hydrolysis with Motor Output in Viral DNA Packaging. J Mol Biol 2016; 428:2709-29. [PMID: 27139643 PMCID: PMC4905814 DOI: 10.1016/j.jmb.2016.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/15/2016] [Accepted: 04/23/2016] [Indexed: 10/21/2022]
Abstract
During the assembly of many viruses, a powerful ATP-driven motor translocates DNA into a preformed procapsid. A Walker-A "P-loop" motif is proposed to coordinate ATP binding and hydrolysis with DNA translocation. We use genetic, biochemical, and biophysical techniques to survey the roles of P-loop residues in bacteriophage lambda motor function. We identify 55 point mutations that reduce virus yield to below detectable levels in a highly sensitive genetic complementation assay and 33 that cause varying reductions in yield. Most changes in the predicted conserved residues K76, R79, G81, and S83 produce no detectable yield. Biochemical analyses show that R79A and S83A mutant proteins fold, assemble, and display genome maturation activity similar to wild-type (WT) but exhibit little ATPase or DNA packaging activity. Kinetic DNA cleavage and ATPase measurements implicate R79 in motor ring assembly on DNA, supporting recent structural models that locate the P-loop at the interface between motor subunits. Single-molecule measurements detect no translocation for K76A and K76R, while G81A and S83A exhibit strong impairments, consistent with their predicted roles in ATP binding. We identify eight residue changes spanning A78-K84 that yield impaired translocation phenotypes and show that Walker-A residues play important roles in determining motor velocity, pausing, and processivity. The efficiency of initiation of packaging correlates strongly with motor velocity. Frequent pausing and slipping caused by changes A78V and R79K suggest that these residues are important for ATP alignment and coupling of ATP binding to DNA gripping. Our findings support recent structural models implicating the P-loop arginine in ATP hydrolysis and mechanochemical coupling.
Collapse
Affiliation(s)
- Damian delToro
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - David Ortiz
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Mariam Ordyan
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jean Sippy
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Choon-Seok Oh
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nicholas Keller
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Carlos E Catalano
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Douglas E Smith
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Abstract
Translocation of viral double-stranded DNA (dsDNA) into the icosahedral prohead shell is catalyzed by TerL, a motor protein that has ATPase, endonuclease, and translocase activities. TerL, following endonucleolytic cleavage of immature viral DNA concatemer recognized by TerS, assembles into a pentameric ring motor on the prohead's portal vertex and uses ATP hydrolysis energy for DNA translocation. TerL's N-terminal ATPase is connected by a hinge to the C-terminal endonuclease. Inchworm models propose that modest domain motions accompanying ATP hydrolysis are amplified, through changes in electrostatic interactions, into larger movements of the C-terminal domain bound to DNA. In phage ϕ29, four of the five TerL subunits sequentially hydrolyze ATP, each powering translocation of 2.5 bp. After one viral genome is encapsidated, the internal pressure signals termination of packaging and ejection of the motor. Current focus is on the structures of packaging complexes and the dynamics of TerL during DNA packaging, endonuclease regulation, and motor mechanics.
Collapse
Affiliation(s)
- Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC 20064;
| | - Michael Feiss
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242;
| |
Collapse
|