1
|
Lottermoser JA, Dittman JS. Complexin Membrane Interactions: Implications for Synapse Evolution and Function. J Mol Biol 2023; 435:167774. [PMID: 35931110 PMCID: PMC9807284 DOI: 10.1016/j.jmb.2022.167774] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023]
Abstract
The molecules and mechanisms behind chemical synaptic transmission have been explored for decades. For several of the core proteins involved in synaptic vesicle fusion, we now have a reasonably detailed grasp of their biochemical, structural, and functional properties. Complexin is one of the key synaptic proteins for which a simple mechanistic understanding is still lacking. Living up to its name, this small protein has been associated with a variety of roles differing between synapses and between species, but little consensus has been reached on its fundamental modes of action. Much attention has been paid to its deeply conserved SNARE-binding properties, while membrane-binding features of complexin and their functional significance have yet to be explored to the same degree. In this review, we summarize the known membrane interactions of the complexin C-terminal domain and their potential relevance to its function, synaptic localization, and evolutionary history.
Collapse
Affiliation(s)
| | - Jeremy S Dittman
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
2
|
Perego E, Reshetniak S, Lorenz C, Hoffmann C, Milovanović D, Rizzoli SO, Köster S. A minimalist model to measure interactions between proteins and synaptic vesicles. Sci Rep 2020; 10:21086. [PMID: 33273508 PMCID: PMC7713060 DOI: 10.1038/s41598-020-77887-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/17/2020] [Indexed: 02/03/2023] Open
Abstract
Protein dynamics in the synaptic bouton are still not well understood, despite many quantitative studies of synaptic structure and function. The complexity of the synaptic environment makes investigations of presynaptic protein mobility challenging. Here, we present an in vitro approach to create a minimalist model of the synaptic environment by patterning synaptic vesicles (SVs) on glass coverslips. We employed fluorescence correlation spectroscopy (FCS) to measure the mobility of monomeric enhanced green fluorescent protein (mEGFP)-tagged proteins in the presence of the vesicle patterns. We observed that the mobility of all eleven measured proteins is strongly reduced in the presence of the SVs, suggesting that they all bind to the SVs. The mobility observed in these conditions is within the range of corresponding measurements in synapses of living cells. Overall, our simple, but robust, approach should enable numerous future studies of organelle-protein interactions in general.
Collapse
Affiliation(s)
- Eleonora Perego
- Institute for X-Ray Physics, University of Göttingen, 37077, Göttingen, Germany
| | - Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Charlotta Lorenz
- Institute for X-Ray Physics, University of Göttingen, 37077, Göttingen, Germany
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Dragomir Milovanović
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37073, Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, 37077, Göttingen, Germany. .,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37073, Göttingen, Germany.
| |
Collapse
|
3
|
Kubánková M, Summers PA, López-Duarte I, Kiryushko D, Kuimova MK. Microscopic Viscosity of Neuronal Plasma Membranes Measured Using Fluorescent Molecular Rotors: Effects of Oxidative Stress and Neuroprotection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36307-36315. [PMID: 31513373 DOI: 10.1021/acsami.9b10426] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Molecular mobility in neuronal plasma membranes is a crucial factor in brain function. Microscopic viscosity is an important parameter that determines molecular mobility. This study presents the first direct measurement of the microviscosity of plasma membranes of live neurons. Microviscosity maps were obtained using fluorescence lifetime imaging of environment-sensing dyes termed "molecular rotors". Neurons were investigated both in the basal state and following common neurodegenerative stimuli, excitotoxicity, or oxidative stress. Both types of neurotoxic challenges induced microviscosity decrease in cultured neurons, and oxidant-induced membrane fluidification was counteracted by the wide-spectrum neuroprotectant, the H3 peptide. These results provide new insights into molecular mobility in neuronal membranes, paramount for basic brain function, and suggest that preservation of membrane stability may be an important aspect of neuroprotection in brain insults and neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Darya Kiryushko
- Centre for Neuroinflammation and Neurodegeneration , Imperial College London , Hammersmith Hospital Campus, Burlington Danes Building, 160 Du Cane Road , London W12 0NN , U.K
| | | |
Collapse
|
4
|
Knabbe J, Nassal JP, Verhage M, Kuner T. Secretory vesicle trafficking in awake and anaesthetized mice: differential speeds in axons versus synapses. J Physiol 2018; 596:3759-3773. [PMID: 29873393 DOI: 10.1113/jp276022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Despite their immense physiological and pathophysiological importance, we know very little about the biology of dense core vesicle (DCV) trafficking in the intact mammalian brain. DCVs are transported at similar average speeds in the anaesthetized and awake mouse brain compared to neurons in culture, yet maximal speed and pausing fraction of transport were higher. Microtubule plus (+)-end extension imaging visualized microtubular growth at 0.12 μm/s and revealed that DCVs were transported faster in the anterograde direction. DCV transport slowed down upon presynaptic bouton approach, possibly promoting synaptic localization and cargo release. Our work provides a basis to extrapolate DCV transport properties determined in cultured neurons to the intact mouse brain and reveals novel features such as slowing upon bouton approach and brain state-dependent trafficking directionality. ABSTRACT Neuronal dense core vesicles (DCVs) transport many cargo molecules like neuropeptides and neurotrophins to their release sites in dendrites or axons. The transport properties of DCVs in axons of the intact mammalian brain are unknown. We used viral expression of a DCV cargo reporter (NPY-Venus/Cherry) in the thalamus and two-photon in vivo imaging to visualize axonal DCV trafficking in thalamocortical projections of anaesthetized and awake mice. We found an average speed of 1 μm/s, maximal speeds of up to 5 μm/s and a pausing fraction of ∼11%. Directionality of transport differed between anaesthetized and awake mice. In vivo microtubule +-end extension imaging using MACF18-GFP revealed microtubular growth at 0.12 μm/s and provided positive identification of antero- and retrograde axonal transport. Consistent with previous reports, anterograde transport was faster (∼2.1 μm/s) than retrograde transport (∼1.4 μm/s). In summary, DCVs are transported with faster maximal speeds and lower pausing fraction in vivo compared to previous results obtained in vitro. Finally, we found that DCVs slowed down upon presynaptic bouton approach. We propose that this mechanism promotes synaptic localization and cargo release.
Collapse
Affiliation(s)
- Johannes Knabbe
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Joris Paul Nassal
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany.,Departments of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU University Medical Center, De Boelelaan, 1087, 1081 HV Amsterdam, The Netherlands
| | - Matthijs Verhage
- Departments of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU University Medical Center, De Boelelaan, 1087, 1081 HV Amsterdam, The Netherlands
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| |
Collapse
|
5
|
Activity-Dependence of Synaptic Vesicle Dynamics. J Neurosci 2017; 37:10597-10610. [PMID: 28954868 DOI: 10.1523/jneurosci.0383-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/08/2017] [Accepted: 08/15/2017] [Indexed: 11/21/2022] Open
Abstract
The proper function of synapses relies on efficient recycling of synaptic vesicles. The small size of synaptic boutons has hampered efforts to define the dynamical states of vesicles during recycling. Moreover, whether vesicle motion during recycling is regulated by neural activity remains largely unknown. We combined nanoscale-resolution tracking of individual synaptic vesicles in cultured hippocampal neurons from rats of both sexes with advanced motion analyses to demonstrate that the majority of recently endocytosed vesicles undergo sequences of transient dynamical states including epochs of directed, diffusional, and stalled motion. We observed that vesicle motion is modulated in an activity-dependent manner, with dynamical changes apparent in ∼20% of observed boutons. Within this subpopulation of boutons, 35% of observed vesicles exhibited acceleration and 65% exhibited deceleration, accompanied by corresponding changes in directed motion. Individual vesicles observed in the remaining ∼80% of boutons did not exhibit apparent dynamical changes in response to stimulation. More quantitative transient motion analyses revealed that the overall reduction of vesicle mobility, and specifically of the directed motion component, is the predominant activity-evoked change across the entire bouton population. Activity-dependent modulation of vesicle mobility may represent an important mechanism controlling vesicle availability and neurotransmitter release.SIGNIFICANCE STATEMENT Mechanisms governing synaptic vesicle dynamics during recycling remain poorly understood. Using nanoscale resolution tracking of individual synaptic vesicles in hippocampal synapses and advanced motion analysis tools we demonstrate that synaptic vesicles undergo complex sets of dynamical states that include epochs of directed, diffusive, and stalled motion. Most importantly, our analyses revealed that vesicle motion is modulated in an activity-dependent manner apparent as the reduction in overall vesicle mobility in response to stimulation. These results define the vesicle dynamical states during recycling and reveal their activity-dependent modulation. Our study thus provides fundamental new insights into the principles governing synaptic function.
Collapse
|
6
|
Wragg RT, Parisotto DA, Li Z, Terakawa MS, Snead D, Basu I, Weinstein H, Eliezer D, Dittman JS. Evolutionary Divergence of the C-terminal Domain of Complexin Accounts for Functional Disparities between Vertebrate and Invertebrate Complexins. Front Mol Neurosci 2017; 10:146. [PMID: 28603484 PMCID: PMC5445133 DOI: 10.3389/fnmol.2017.00146] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/30/2017] [Indexed: 12/19/2022] Open
Abstract
Complexin is a critical presynaptic protein that regulates both spontaneous and calcium-triggered neurotransmitter release in all synapses. Although the SNARE-binding central helix of complexin is highly conserved and required for all known complexin functions, the remainder of the protein has profoundly diverged across the animal kingdom. Striking disparities in complexin inhibitory activity are observed between vertebrate and invertebrate complexins but little is known about the source of these differences or their relevance to the underlying mechanism of complexin regulation. We found that mouse complexin 1 (mCpx1) failed to inhibit neurotransmitter secretion in Caenorhabditis elegans neuromuscular junctions lacking the worm complexin 1 (CPX-1). This lack of inhibition stemmed from differences in the C-terminal domain (CTD) of mCpx1. Previous studies revealed that the CTD selectively binds to highly curved membranes and directs complexin to synaptic vesicles. Although mouse and worm complexin have similar lipid binding affinity, their last few amino acids differ in both hydrophobicity and in lipid binding conformation, and these differences strongly impacted CPX-1 inhibitory function. Moreover, function was not maintained if a critical amphipathic helix in the worm CPX-1 CTD was replaced with the corresponding mCpx1 amphipathic helix. Invertebrate complexins generally shared more C-terminal similarity with vertebrate complexin 3 and 4 isoforms, and the amphipathic region of mouse complexin 3 significantly restored inhibitory function to worm CPX-1. We hypothesize that the CTD of complexin is essential in conferring an inhibitory function to complexin, and that this inhibitory activity has been attenuated in the vertebrate complexin 1 and 2 isoforms. Thus, evolutionary changes in the complexin CTD differentially shape its synaptic role across phylogeny.
Collapse
Affiliation(s)
- Rachel T Wragg
- Department of Biochemistry, Weill Cornell Medical College, New YorkNY, United States
| | - Daniel A Parisotto
- Department of Biochemistry, Weill Cornell Medical College, New YorkNY, United States
| | - Zhenlong Li
- Department of Physiology and Biophysics, Weill Cornell Medical College, New YorkNY, United States
| | - Mayu S Terakawa
- Department of Biochemistry, Weill Cornell Medical College, New YorkNY, United States
| | - David Snead
- Department of Biochemistry, Weill Cornell Medical College, New YorkNY, United States
| | - Ishani Basu
- Department of Biochemistry, Weill Cornell Medical College, New YorkNY, United States
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College, New YorkNY, United States.,Institute for Computational Biomedicine, Weill Cornell Medical College, New YorkNY, United States
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New YorkNY, United States
| | - Jeremy S Dittman
- Department of Biochemistry, Weill Cornell Medical College, New YorkNY, United States
| |
Collapse
|
7
|
Vreja IC, Nikić I, Göttfert F, Bates M, Kröhnert K, Outeiro TF, Hell SW, Lemke EA, Rizzoli SO. Super-resolution Microscopy of Clickable Amino Acids Reveals the Effects of Fluorescent Protein Tagging on Protein Assemblies. ACS NANO 2015; 9:11034-11041. [PMID: 26498474 DOI: 10.1021/acsnano.5b04434] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The advent of super-resolution microscopy (nanoscopy) has set high standards for fluorescence tagging. Fluorescent proteins (FPs) are convenient tags in conventional imaging, but their use in nanoscopy has been questioned due to their relatively large size and propensity to form multimers. Here, we compared the nanoscale organization of proteins with or without FP tags by introducing the unnatural amino acid propargyl-L-lysine (PRK) in 26 proteins known to form multimolecular arrangements and into their FP-tagged variants. We revealed the proteins by coupling synthetic fluorophores to PRK via click chemistry and visualized them using ground-state depletion microscopy followed by individual molecule return, as well as stimulated emission depletion microscopy. The arrangements formed by the FP-tagged and nontagged proteins were similar. Mild, but statistically significant differences were observed for only six proteins (23% of all proteins tested). This suggests that FP-based nanoscopy is generally reliable. Unnatural amino acids should be a reliable alternative for the few proteins that are sensitive to FP tagging.
Collapse
Affiliation(s)
- Ingrid C Vreja
- International Max Planck Research School for Molecular Biology , Göttingen, Germany
| | - Ivana Nikić
- Structural and Computational Biology Unit, EMBL , 69117 Heidelberg, Germany
| | - Fabian Göttfert
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry , 37077 Göttingen, Germany
| | - Mark Bates
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry , 37077 Göttingen, Germany
| | | | | | - Stefan W Hell
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry , 37077 Göttingen, Germany
| | - Edward A Lemke
- Structural and Computational Biology Unit, EMBL , 69117 Heidelberg, Germany
| | | |
Collapse
|