1
|
Yamashita S, Ishihara S, Graner F. Apical constriction requires patterned apical surface remodeling to synchronize cellular deformation. eLife 2025; 13:RP93496. [PMID: 40243291 PMCID: PMC12005724 DOI: 10.7554/elife.93496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Apical constriction is a basic mechanism for epithelial morphogenesis, making columnar cells into wedge shape and bending a flat cell sheet. It has long been thought that an apically localized myosin generates a contractile force and drives the cell deformation. However, when we tested the increased apical surface contractility in a cellular Potts model simulation, the constriction increased pressure inside the cell and pushed its lateral surface outward, making the cells adopt a drop shape instead of the expected wedge shape. To keep the lateral surface straight, we considered an alternative model in which the cell shape was determined by cell membrane elasticity and endocytosis, and the increased pressure is balanced among the cells. The cellular Potts model simulation succeeded in reproducing the apical constriction, and it also suggested that a too strong apical surface tension might prevent the tissue invagination.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Shuji Ishihara
- Graduate School of Arts and Sciences, The University of TokyoTokyoJapan
| | | |
Collapse
|
2
|
Scholz J, Stephan T, Pérez AG, Csiszár A, Hersch N, Fischer LS, Brühmann S, Körber S, Litschko C, Mijanovic L, Kaufmann T, Lange F, Springer R, Pich A, Jakobs S, Peckham M, Tarantola M, Grashoff C, Merkel R, Faix J. Decisive role of mDia-family formins in cell cortex function of highly adherent cells. SCIENCE ADVANCES 2024; 10:eadp5929. [PMID: 39475610 PMCID: PMC11524191 DOI: 10.1126/sciadv.adp5929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 11/02/2024]
Abstract
Cortical formins, pivotal for the assembly of linear actin filaments beneath the membrane, exert only minor effects on unconfined cell migration of weakly and moderately adherent cells. However, their impact on migration and mechanostability of highly adherent cells remains poorly understood. Here, we demonstrate that loss of cortical actin filaments generated by the formins mDia1 and mDia3 drastically compromises cell migration and mechanics in highly adherent fibroblasts. Biophysical analysis of the mechanical properties of the mutant cells revealed a markedly softened cell cortex in the poorly adherent state. Unexpectedly, in the highly adherent state, associated with a hyperstretched morphology with exaggerated focal adhesions and prominent high-strain stress fibers, they exhibited even higher cortical tension compared to control. Notably, misguidance of intracellular forces, frequently accompanied by stress-fiber rupture, culminated in the formation of tension- and contractility-induced macroapertures, which was instantly followed by excessive lamellipodial protrusion at the periphery, providing critical insights into mechanotransduction of mechanically stressed and highly adherent cells.
Collapse
Affiliation(s)
- Jonas Scholz
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Till Stephan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Aina Gallemí Pérez
- Institute for Dynamics of Complex Systems, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Department LFPB, Göttingen, Germany
| | - Agnes Csiszár
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Nils Hersch
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lisa S. Fischer
- Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany
| | - Stefan Brühmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Sarah Körber
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Christof Litschko
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Lucija Mijanovic
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Thomas Kaufmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Felix Lange
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ronald Springer
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andreas Pich
- Research Core Unit Proteomics and Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Michelle Peckham
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Marco Tarantola
- Institute for Dynamics of Complex Systems, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Department LFPB, Göttingen, Germany
| | - Carsten Grashoff
- Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Li H, Liu S, Deguchi S, Matsunaga D. Diffusion model predicts the geometry of actin cytoskeleton from cell morphology. PLoS Comput Biol 2024; 20:e1012312. [PMID: 39102394 PMCID: PMC11326640 DOI: 10.1371/journal.pcbi.1012312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/15/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
Cells exhibit various morphological characteristics due to their physiological activities, and changes in cell morphology are inherently accompanied by the assembly and disassembly of the actin cytoskeleton. Stress fibers are a prominent component of the actin-based intracellular structure and are highly involved in numerous physiological processes, e.g., mechanotransduction and maintenance of cell morphology. Although it is widely accepted that variations in cell morphology interact with the distribution and localization of stress fibers, it remains unclear if there are underlying geometric principles between the cell morphology and actin cytoskeleton. Here, we present a machine learning system that uses the diffusion model to convert the cell shape to the distribution and alignment of stress fibers. By training with corresponding cell shape and stress fibers datasets, our system learns the conversion to generate the stress fiber images from its corresponding cell shape. The predicted stress fiber distribution agrees well with the experimental data. With this conversion relation, our system allows for performing virtual experiments that provide a visual map showing the probability of stress fiber distribution from the virtual cell shape. Our system potentially provides a powerful approach to seek further hidden geometric principles regarding how the configuration of subcellular structures is determined by the boundary of the cell structure; for example, we found that the stress fibers of cells with small aspect ratios tend to localize at the cell edge while cells with large aspect ratios have homogenous distributions.
Collapse
Affiliation(s)
- Honghan Li
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Shiyou Liu
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
- School of Life Science, Peking University, Beijing, China
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Daiki Matsunaga
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Li X, Combs JD, Salaita K, Shu X. Polarized focal adhesion kinase activity within a focal adhesion during cell migration. Nat Chem Biol 2023; 19:1458-1468. [PMID: 37349581 PMCID: PMC10732478 DOI: 10.1038/s41589-023-01353-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/03/2023] [Indexed: 06/24/2023]
Abstract
Focal adhesion kinase (FAK) relays integrin signaling from outside to inside cells and contributes to cell adhesion and motility. However, the spatiotemporal dynamics of FAK activity in single FAs is unclear due to the lack of a robust FAK reporter, which limits our understanding of these essential biological processes. Here we have engineered a genetically encoded FAK activity sensor, dubbed FAK-separation of phases-based activity reporter of kinase (SPARK), which visualizes endogenous FAK activity in living cells and vertebrates. Our work reveals temporal dynamics of FAK activity during FA turnover. Most importantly, our study unveils polarized FAK activity at the distal tip of newly formed single FAs in the leading edge of a migrating cell. By combining FAK-SPARK with DNA tension probes, we show that tensions applied to FAs precede FAK activation and that FAK activity is proportional to the strength of tension. These results suggest tension-induced polarized FAK activity in single FAs, advancing the mechanistic understanding of cell migration.
Collapse
Affiliation(s)
- Xiaoquan Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | | | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
delas Peñas K, Dmitrieva M, Waithe D, Rittscher J. Annotation-free learning of a spatio-temporal manifold of the cell life cycle. BIOLOGICAL IMAGING 2023; 3:e19. [PMID: 38510168 PMCID: PMC10951929 DOI: 10.1017/s2633903x23000193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 05/23/2023] [Accepted: 09/18/2023] [Indexed: 03/22/2024]
Abstract
The cell cycle is a complex biological phenomenon, which plays an important role in many cell biological processes and disease states. Machine learning is emerging to be a pivotal technique for the study of the cell cycle, resulting in a number of available tools and models for the analysis of the cell cycle. Most, however, heavily rely on expert annotations, prior knowledge of mechanisms, and imaging with several fluorescent markers to train their models. Many are also limited to processing only the spatial information in the cell images. In this work, we describe a different approach based on representation learning to construct a manifold of the cell life cycle. We trained our model such that the representations are learned without exhaustive annotations nor assumptions. Moreover, our model uses microscopy images derived from a single fluorescence channel and utilizes both the spatial and temporal information in these images. We show that even with fewer channels and self-supervision, information relevant to cell cycle analysis such as staging and estimation of cycle duration can still be extracted, which demonstrates the potential of our approach to aid future cell cycle studies and in discovery cell biology to probe and understand novel dynamic systems.
Collapse
Affiliation(s)
- Kristofer delas Peñas
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Department of Computer Science, University of the Philippines, Quezon City, Philippines
| | - Mariia Dmitrieva
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Dominic Waithe
- WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Jens Rittscher
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Mogilner A, Savinov M. Crawling, waving, inch worming, dilating, and pivoting mechanics of migrating cells: Lessons from Ken Jacobson. Biophys J 2023; 122:3551-3559. [PMID: 36934300 PMCID: PMC10541468 DOI: 10.1016/j.bpj.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Research on the locomotion of single cells on hard, flat surfaces brought insight into the mechanisms of leading-edge protrusion, spatially graded adhesion, front-rear coordination, and how intracellular and traction forces are harnessed to execute various maneuvers. Here, we highlight how, by studying a variety of cell types, shapes, and movements, Ken Jacobson and his collaborators made several discoveries that triggered the mechanistic understanding of cell motility. We then review the recent advancements and current perspectives in this field.
Collapse
Affiliation(s)
- Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, New York; Department of Biology, New York University, New York, New York.
| | - Mariya Savinov
- Courant Institute of Mathematical Sciences, New York University, New York, New York
| |
Collapse
|
7
|
Mostert D, Grolleman J, van Turnhout MC, Groenen BGW, Conte V, Sahlgren CM, Kurniawan NA, Bouten CVC. SFAlab: image-based quantification of mechano-active ventral actin stress fibers in adherent cells. Front Cell Dev Biol 2023; 11:1267822. [PMID: 37779894 PMCID: PMC10540851 DOI: 10.3389/fcell.2023.1267822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
Ventral actin stress fibers (SFs) are a subset of actin SFs that begin and terminate at focal adhesion (FA) complexes. Ventral SFs can transmit forces from and to the extracellular matrix and serve as a prominent mechanosensing and mechanotransduction machinery for cells. Therefore, quantitative analysis of ventral SFs can lead to deeper understanding of the dynamic mechanical interplay between cells and their extracellular matrix (mechanoreciprocity). However, the dynamic nature and organization of ventral SFs challenge their quantification, and current quantification tools mainly focus on all SFs present in cells and cannot discriminate between subsets. Here we present an image analysis-based computational toolbox, called SFAlab, to quantify the number of ventral SFs and the number of ventral SFs per FA, and provide spatial information about the locations of the identified ventral SFs. SFAlab is built as an all-in-one toolbox that besides analyzing ventral SFs also enables the identification and quantification of (the shape descriptors of) nuclei, cells, and FAs. We validated SFAlab for the quantification of ventral SFs in human fetal cardiac fibroblasts and demonstrated that SFAlab analysis i) yields accurate ventral SF detection in the presence of image imperfections often found in typical fluorescence microscopy images, and ii) is robust against user subjectivity and potential experimental artifacts. To demonstrate the usefulness of SFAlab in mechanobiology research, we modulated actin polymerization and showed that inhibition of Rho kinase led to a significant decrease in ventral SF formation and the number of ventral SFs per FA, shedding light on the importance of the RhoA pathway specifically in ventral SF formation. We present SFAlab as a powerful open source, easy to use image-based analytical tool to increase our understanding of mechanoreciprocity in adherent cells.
Collapse
Affiliation(s)
- Dylan Mostert
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Janine Grolleman
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Mark C. van Turnhout
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Bart G. W. Groenen
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Vito Conte
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Cecilia M. Sahlgren
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Nicholas A. Kurniawan
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Carlijn V. C. Bouten
- Department of Biomedical Engineering, Laboratory for Cell and Tissue Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
8
|
Ruppel A, Wörthmüller D, Misiak V, Kelkar M, Wang I, Moreau P, Méry A, Révilloud J, Charras G, Cappello G, Boudou T, Schwarz US, Balland M. Force propagation between epithelial cells depends on active coupling and mechano-structural polarization. eLife 2023; 12:e83588. [PMID: 37548995 PMCID: PMC10511242 DOI: 10.7554/elife.83588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 08/07/2023] [Indexed: 08/08/2023] Open
Abstract
Cell-generated forces play a major role in coordinating the large-scale behavior of cell assemblies, in particular during development, wound healing, and cancer. Mechanical signals propagate faster than biochemical signals, but can have similar effects, especially in epithelial tissues with strong cell-cell adhesion. However, a quantitative description of the transmission chain from force generation in a sender cell, force propagation across cell-cell boundaries, and the concomitant response of receiver cells is missing. For a quantitative analysis of this important situation, here we propose a minimal model system of two epithelial cells on an H-pattern ('cell doublet'). After optogenetically activating RhoA, a major regulator of cell contractility, in the sender cell, we measure the mechanical response of the receiver cell by traction force and monolayer stress microscopies. In general, we find that the receiver cells show an active response so that the cell doublet forms a coherent unit. However, force propagation and response of the receiver cell also strongly depend on the mechano-structural polarization in the cell assembly, which is controlled by cell-matrix adhesion to the adhesive micropattern. We find that the response of the receiver cell is stronger when the mechano-structural polarization axis is oriented perpendicular to the direction of force propagation, reminiscent of the Poisson effect in passive materials. We finally show that the same effects are at work in small tissues. Our work demonstrates that cellular organization and active mechanical response of a tissue are key to maintain signal strength and lead to the emergence of elasticity, which means that signals are not dissipated like in a viscous system, but can propagate over large distances.
Collapse
Affiliation(s)
- Artur Ruppel
- Université Grenoble Alpes, CNRS, LIPhyGrenobleFrance
| | - Dennis Wörthmüller
- Institute for Theoretical Physics, Heidelberg UniversityHeidelbergGermany
- BioQuant–Center for Quantitative Biology, Heidelberg UniversityHeidelbergGermany
| | | | - Manasi Kelkar
- London Centre for Nanotechnology, University College LondonLondonUnited Kingdom
| | - Irène Wang
- Université Grenoble Alpes, CNRS, LIPhyGrenobleFrance
| | | | - Adrien Méry
- Université Grenoble Alpes, CNRS, LIPhyGrenobleFrance
| | | | - Guillaume Charras
- London Centre for Nanotechnology, University College LondonLondonUnited Kingdom
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
- Institute for the Physics of Living Systems, University College LondonLondonUnited Kingdom
| | | | - Thomas Boudou
- Université Grenoble Alpes, CNRS, LIPhyGrenobleFrance
| | - Ulrich S Schwarz
- Institute for Theoretical Physics, Heidelberg UniversityHeidelbergGermany
- BioQuant–Center for Quantitative Biology, Heidelberg UniversityHeidelbergGermany
| | | |
Collapse
|
9
|
Erlich A, Étienne J, Fouchard J, Wyatt T. How dynamic prestress governs the shape of living systems, from the subcellular to tissue scale. Interface Focus 2022; 12:20220038. [PMID: 36330322 PMCID: PMC9560792 DOI: 10.1098/rsfs.2022.0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/08/2022] [Indexed: 10/16/2023] Open
Abstract
Cells and tissues change shape both to carry out their function and during pathology. In most cases, these deformations are driven from within the systems themselves. This is permitted by a range of molecular actors, such as active crosslinkers and ion pumps, whose activity is biologically controlled in space and time. The resulting stresses are propagated within complex and dynamical architectures like networks or cell aggregates. From a mechanical point of view, these effects can be seen as the generation of prestress or prestrain, resulting from either a contractile or growth activity. In this review, we present this concept of prestress and the theoretical tools available to conceptualize the statics and dynamics of living systems. We then describe a range of phenomena where prestress controls shape changes in biopolymer networks (especially the actomyosin cytoskeleton and fibrous tissues) and cellularized tissues. Despite the diversity of scale and organization, we demonstrate that these phenomena stem from a limited number of spatial distributions of prestress, which can be categorized as heterogeneous, anisotropic or differential. We suggest that in addition to growth and contraction, a third type of prestress-topological prestress-can result from active processes altering the microstructure of tissue.
Collapse
Affiliation(s)
| | - Jocelyn Étienne
- Université Grenoble Alpes, CNRS, LIPHY, 38000 Grenoble, France
| | - Jonathan Fouchard
- Laboratoire de Biologie du Développement, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS (UMR 7622), INSERM (URL 1156), 7 quai Saint Bernard, 75005 Paris, France
| | - Tom Wyatt
- Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Peñas KED, Haeusler R, Feng S, Magidson V, Dmitrieva M, Wink D, Lockett S, Kinders R, Rittscher J. Profiling DNA damage in 3D Histology Samples. MEDICAL OPTICAL IMAGING AND VIRTUAL MICROSCOPY IMAGE ANALYSIS : FIRST INTERNATIONAL WORKSHOP, MOVI 2022, HELD IN CONJUNCTION WITH MICCAI 2022, SINGAPORE, SEPTEMBER 18, 2022, PROCEEDINGS. MOVI (WORKSHOP) (1ST : 2022 : SINGAPORE) 2022:84-93. [PMID: 39899002 PMCID: PMC7617225 DOI: 10.1007/978-3-031-16961-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The morphology of individual cells can reveal much about the underlying states and mechanisms in biology. In tumor environments, the interplay among different cell morphologies in local neighborhoods can further improve this characterization. In this paper, we present an approach based on representation learning to capture similarities and subtle differences in cells positive for γH2AX, a common marker for DNA damage. We demonstrate that texture representations using GLCM and VAE-GAN enable profiling of cells in both singular and local neighborhood contexts. Additionally, we investigate a possible quantification of immune and DNA damage response interplay by enumerating CD8+ and γH2AX+ on different scales. Using our profiling approach, regions in treated tissues can be differentiated from control tissue regions, demonstrating its potential in aiding quantitative measurements of DNA damage and repair in tumor contexts.
Collapse
Affiliation(s)
- Kristofer E. delas Peñas
- Department of Engineering Science, University of Oxford, United Kingdom
- Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford, UK
- Department of Computer Science, University of the Philippines, Philippines
| | - Ralf Haeusler
- Department of Engineering Science, University of Oxford, United Kingdom
- Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford, UK
| | - Sally Feng
- Frederick National Laboratory for Cancer Research, National Cancer Institute, USA
| | - Valentin Magidson
- Frederick National Laboratory for Cancer Research, National Cancer Institute, USA
| | - Mariia Dmitrieva
- Department of Engineering Science, University of Oxford, United Kingdom
- Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford, UK
| | - David Wink
- Center for Cancer Research, National Cancer Institute, USA
| | - Stephen Lockett
- Frederick National Laboratory for Cancer Research, National Cancer Institute, USA
| | - Robert Kinders
- Frederick National Laboratory for Cancer Research, National Cancer Institute, USA
| | - Jens Rittscher
- Department of Engineering Science, University of Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, UK
- Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford, UK
| |
Collapse
|
11
|
Ghosh D, Ghosh S, Chaudhuri A. Deconstructing the role of myosin contractility in force fluctuations within focal adhesions. Biophys J 2022; 121:1753-1764. [PMID: 35346641 PMCID: PMC9117893 DOI: 10.1016/j.bpj.2022.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/23/2021] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Force fluctuations exhibited in focal adhesions that connect a cell to its extracellular environment point to the complex role of the underlying machinery that controls cell migration. To elucidate the explicit role of myosin motors in the temporal traction force oscillations, we vary the contractility of these motors in a dynamical model based on the molecular clutch hypothesis. As the contractility is lowered, effected both by changing the motor velocity and the rate of attachment/detachment, we show analytically in an experimentally relevant parameter space, that the system goes from decaying oscillations to stable limit cycle oscillations through a supercritical Hopf bifurcation. As a function of the motor activity and the number of clutches, the system exhibits a rich array of dynamical states. We corroborate our analytical results with stochastic simulations of the motor-clutch system. We obtain limit cycle oscillations in the parameter regime as predicted by our model. The frequency range of oscillations in the average clutch and motor deformation compares well with experimental results.
Collapse
Affiliation(s)
- Debsuvra Ghosh
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Manauli, India
| | - Subhadip Ghosh
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Abhishek Chaudhuri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Manauli, India.
| |
Collapse
|
12
|
El Arawi D, Vézy C, Déturche R, Lehmann M, Kessler H, Dontenwill M, Jaffiol R. Advanced quantification for single-cell adhesion by variable-angle TIRF nanoscopy. BIOPHYSICAL REPORTS 2021; 1:100021. [PMID: 36425460 PMCID: PMC9680782 DOI: 10.1016/j.bpr.2021.100021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/07/2021] [Indexed: 05/25/2023]
Abstract
Over the last decades, several techniques have been developed to study cell adhesion; however, they present significant shortcomings. Such techniques mostly focus on strong adhesion related to specific protein-protein associations, such as ligand-receptor binding in focal adhesions. Therefore, weak adhesion, related to less specific or nonspecific cell-substrate interactions, are rarely addressed. Hence, we propose in this work a complete investigation of cell adhesion, from highly specific to nonspecific adhesiveness, using variable-angle total internal reflection fluorescence (vaTIRF) nanoscopy. This technique allows us to map in real time cell topography with a nanometric axial resolution, along with cell cortex refractive index. These two key parameters allow us to distinguish high and low adhesive cell-substrate contacts. Furthermore, vaTIRF provides cell-substrate binding energy, thus revealing a correlation between cell contractility and cell-substrate binding energy. Here, we highlight the quantitative measurements achieved by vaTIRF on U87MG glioma cells expressing different amounts of α 5 integrins and distinct motility on fibronectin. Regarding integrin expression level, data extracted from vaTIRF measurements, such as the number and size of high adhesive contacts per cell, corroborate the adhesiveness of U87MG cells as intended. Interestingly enough, we found that cells overexpressing α 5 integrins present a higher contractility and lower adhesion energy.
Collapse
Affiliation(s)
- Dalia El Arawi
- Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| | - Cyrille Vézy
- Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| | - Régis Déturche
- Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| | - Maxime Lehmann
- Laboratoire de Bioimagerie et Pathologies, UMR CNRS 7021, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Horst Kessler
- Department Chemie, Institute for Advanced Study, Technische Universität München, Garching, Germany
| | - Monique Dontenwill
- Laboratoire de Bioimagerie et Pathologies, UMR CNRS 7021, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Rodolphe Jaffiol
- Light, nanomaterials, nanotechnologies, ERL CNRS 7004, Université de Technologie de Troyes, Troyes, France
| |
Collapse
|
13
|
Weißenbruch K, Grewe J, Hippler M, Fladung M, Tremmel M, Stricker K, Schwarz US, Bastmeyer M. Distinct roles of nonmuscle myosin II isoforms for establishing tension and elasticity during cell morphodynamics. eLife 2021; 10:71888. [PMID: 34374341 PMCID: PMC8391736 DOI: 10.7554/elife.71888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/09/2021] [Indexed: 12/29/2022] Open
Abstract
Nonmuscle myosin II (NM II) is an integral part of essential cellular processes, including adhesion and migration. Mammalian cells express up to three isoforms termed NM IIA, B, and C. We used U2OS cells to create CRISPR/Cas9-based knockouts of all three isoforms and analyzed the phenotypes on homogenously coated surfaces, in collagen gels, and on micropatterned substrates. In contrast to homogenously coated surfaces, a structured environment supports a cellular phenotype with invaginated actin arcs even in the absence of NM IIA-induced contractility. A quantitative shape analysis of cells on micropatterns combined with a scale-bridging mathematical model reveals that NM IIA is essential to build up cellular tension during initial stages of force generation, while NM IIB is necessary to elastically stabilize NM IIA-generated tension. A dynamic cell stretch/release experiment in a three-dimensional scaffold confirms these conclusions and in addition reveals a novel role for NM IIC, namely the ability to establish tensional homeostasis.
Collapse
Affiliation(s)
- Kai Weißenbruch
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Justin Grewe
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany.,BioQuant-Center for Quantitative Biology, University of Heidelberg, Heidelberg, Germany
| | - Marc Hippler
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Magdalena Fladung
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Moritz Tremmel
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Kathrin Stricker
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ulrich Sebastian Schwarz
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany.,BioQuant-Center for Quantitative Biology, University of Heidelberg, Heidelberg, Germany
| | - Martin Bastmeyer
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
14
|
Kassianidou E, Probst D, Jäger J, Lee S, Roguet AL, Schwarz US, Kumar S. Extracellular Matrix Geometry and Initial Adhesive Position Determine Stress Fiber Network Organization during Cell Spreading. Cell Rep 2020; 27:1897-1909.e4. [PMID: 31067472 DOI: 10.1016/j.celrep.2019.04.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 02/25/2019] [Accepted: 04/05/2019] [Indexed: 01/13/2023] Open
Abstract
Three-dimensional matrices often contain highly structured adhesive tracks that require cells to turn corners and bridge non-adhesive areas. Here, we investigate these complex processes using micropatterned cell adhesive frames. Spreading kinetics on these matrices depend strongly on initial adhesive position and are predicted by a cellular Potts model (CPM), which reflects a balance between adhesion and intracellular tension. As cells spread, new stress fibers (SFs) assemble periodically and parallel to the leading edge, with spatial intervals of ∼2.5 μm, temporal intervals of ∼15 min, and characteristic lifetimes of ∼50 min. By incorporating these rules into the CPM, we can successfully predict SF network architecture. Moreover, we observe broadly similar behavior when we culture cells on arrays of discrete collagen fibers. Our findings show that ECM geometry and initial cell position strongly determine cell spreading and that cells encode a memory of their spreading history through SF network organization.
Collapse
Affiliation(s)
- Elena Kassianidou
- Department of Bioengineering, University of California, Berkeley, CA 94720-1762, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762, USA
| | - Dimitri Probst
- Heidelberg University, Institute for Theoretical Physics and BioQuant-Center for Quantitative Biology, Philosophenweg 19, 69120 Heidelberg, Germany
| | - Julia Jäger
- Heidelberg University, Institute for Theoretical Physics and BioQuant-Center for Quantitative Biology, Philosophenweg 19, 69120 Heidelberg, Germany
| | - Stacey Lee
- Department of Bioengineering, University of California, Berkeley, CA 94720-1762, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762, USA
| | - Anne-Lou Roguet
- Department of Bioengineering, University of California, Berkeley, CA 94720-1762, USA; École Polytechnique, 91120 Palaiseau, France
| | - Ulrich Sebastian Schwarz
- Heidelberg University, Institute for Theoretical Physics and BioQuant-Center for Quantitative Biology, Philosophenweg 19, 69120 Heidelberg, Germany.
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, CA 94720-1762, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720-1762, USA.
| |
Collapse
|
15
|
On the mechanical response of the actomyosin cortex during cell indentations. Biomech Model Mechanobiol 2020; 19:2061-2079. [PMID: 32356071 DOI: 10.1007/s10237-020-01324-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/02/2020] [Indexed: 01/01/2023]
Abstract
A mechanical model is presented to analyze the mechanics and dynamics of the cell cortex during indentation. We investigate the impact of active contraction on the cross-linked actin network for different probe sizes and indentation rates. The essential molecular mechanisms of filament stretching, cross-linking and motor activity, are represented by an active and viscous mechanical continuum. The filaments behave as worm-like chains linked either by passive rigid linkers or by myosin motors. In the first example, the effects of probe size and loading rate are evaluated using the model for an idealized rounded cell shape in which properties are based on the results of parallel-plate rheometry available in the literature. Extreme cases of probe size and indentation rate are taken into account. Afterward, AFM experiments were done by engaging smooth muscle cells with both sharp and spherical probes. By inverse analysis with finite element software, our simulations mimicking the experimental conditions show the model is capable of fitting the AFM data. The results provide spatiotemporal dependence on the size and rate of the mechanical stimuli. The model captures the general features of the cell response. It characterizes the actomyosin cortex as an active solid at short timescales and as a fluid at longer timescales by showing (1) higher levels of contraction in the zones of high curvature; (2) larger indentation forces as the probe size increases; and (3) increase in the apparent modulus with the indentation depth but no dependence on the rate of the mechanical stimuli. The methodology presented in this work can be used to address and predict microstructural dependence on the force generation of living cells, which can contribute to understanding the broad spectrum of results in cell experiments.
Collapse
|
16
|
Bautista M, Fernandez A, Pinaud F. A Micropatterning Strategy to Study Nuclear Mechanotransduction in Cells. MICROMACHINES 2019; 10:E810. [PMID: 31771260 PMCID: PMC6952994 DOI: 10.3390/mi10120810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023]
Abstract
Micropatterning techniques have been widely used in biology, particularly in studies involving cell adhesion and proliferation on different substrates. Cell micropatterning approaches are also increasingly employed as in vitro tools to investigate intracellular mechanotransduction processes. In this report, we examined how modulating cellular shapes on two-dimensional rectangular fibronectin micropatterns of different widths influences nuclear mechanotransduction mediated by emerin, a nuclear envelope protein implicated in Emery-Dreifuss muscular dystrophy (EDMD). Fibronectin microcontact printing was tested onto glass coverslips functionalized with three different silane reagents (hexamethyldisilazane (HMDS), (3-Aminopropyl)triethoxysilane (APTES) and (3-Glycidyloxypropyl)trimethoxysilane (GPTMS)) using a vapor-phase deposition method. We observed that HMDS provides the most reliable printing surface for cell micropatterning, notably because it forms a hydrophobic organosilane monolayer that favors the retainment of surface antifouling agents on the coverslips. We showed that, under specific mechanical cues, emerin-null human skin fibroblasts display a significantly more deformed nucleus than skin fibroblasts expressing wild type emerin, indicating that emerin plays a crucial role in nuclear adaptability to mechanical stresses. We further showed that proper nuclear responses to forces involve a significant relocation of emerin from the inner nuclear envelope towards the outer nuclear envelope and the endoplasmic reticulum membrane network. Cell micropatterning by fibronectin microcontact printing directly on HMDS-treated glass represents a simple approach to apply steady-state biophysical cues to cells and study their specific mechanobiology responses in vitro.
Collapse
Affiliation(s)
- Markville Bautista
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA;
| | - Anthony Fernandez
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Fabien Pinaud
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA;
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
17
|
Müller A, Müller S, Nasufovic V, Arndt HD, Pompe T. Actin stress fiber dynamics in laterally confined cells. Integr Biol (Camb) 2019; 11:175-185. [DOI: 10.1093/intbio/zyz016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 05/08/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022]
Abstract
Abstract
Multiple cellular processes are affected by spatial constraints from the extracellular matrix and neighboring cells. In vitro experiments using defined micro-patterning allow for in-depth analysis and a better understanding of how these constraints impact cellular behavior and functioning. Herein we focused on the analysis of actin cytoskeleton dynamics as a major determinant of mechanotransduction mechanisms in cells. We seeded primary human umbilical vein endothelial cells onto stripe-like cell-adhesive micro-patterns with varying widths and then monitored and quantified the dynamic reorganization of actin stress fibers, including fiber velocities, orientation and density, within these live cells using the cell permeable F-actin marker SiR-actin. Although characteristic parameters describing the overall stress fiber architecture (average orientation and density) were nearly constant throughout the observation time interval of 60 min, we observed permanent transport and turnover of individual actin stress fibers. Stress fibers were more strongly oriented along stripe direction with decreasing stripe width, (5° on 20 μm patterns and 10° on 40 μm patterns), together with an overall narrowing of the distribution of fiber orientation. Fiber dynamics was characterized by a directed movement from the cell edges towards the cell center, where fiber dissolution frequently took place. By kymograph analysis, we found median fiber velocities in the range of 0.2 μm/min with a weak dependence on pattern width. Taken together, these data suggest that cell geometry determines actin fiber orientation, while it also affects actin fiber transport and turnover.
Collapse
Affiliation(s)
- Andreas Müller
- Institute of Biochemistry, Leipzig University, Johannisallee 21–23, Leipzig, Germany
| | - Sandra Müller
- Institute of Biochemistry, Leipzig University, Johannisallee 21–23, Leipzig, Germany
| | - Veselin Nasufovic
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 10, Jena, Germany
| | - Hans-Dieter Arndt
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 10, Jena, Germany
| | - Tilo Pompe
- Institute of Biochemistry, Leipzig University, Johannisallee 21–23, Leipzig, Germany
- Leibniz Institute of Polymer Research, Max Bergmann Center of Biomaterials, Hohe Str. 6, Dresden, Germany
| |
Collapse
|
18
|
Prasad A, Alizadeh E. Cell Form and Function: Interpreting and Controlling the Shape of Adherent Cells. Trends Biotechnol 2019; 37:347-357. [DOI: 10.1016/j.tibtech.2018.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
|
19
|
Profiling cellular morphodynamics by spatiotemporal spectrum decomposition. PLoS Comput Biol 2018; 14:e1006321. [PMID: 30071020 PMCID: PMC6091976 DOI: 10.1371/journal.pcbi.1006321] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 08/14/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022] Open
Abstract
Cellular morphology and associated morphodynamics are widely used for qualitative and quantitative assessments of cell state. Here we implement a framework to profile cellular morphodynamics based on an adaptive decomposition of local cell boundary motion into instantaneous frequency spectra defined by the Hilbert-Huang transform (HHT). Our approach revealed that spontaneously migrating cells with approximately homogeneous molecular makeup show remarkably consistent instantaneous frequency distributions, though they have markedly heterogeneous mobility. Distinctions in cell edge motion between these cells are captured predominantly by differences in the magnitude of the frequencies. We found that acute photo-inhibition of Vav2 guanine exchange factor, an activator of the Rho family of signaling proteins coordinating cell motility, produces significant shifts in the frequency distribution, but does not affect frequency magnitude. We therefore concluded that the frequency spectrum encodes the wiring of the molecular circuitry that regulates cell boundary movements, whereas the magnitude captures the activation level of the circuitry. We also used HHT spectra as multi-scale spatiotemporal features in statistical region merging to identify subcellular regions of distinct motion behavior. In line with our conclusion that different HHT spectra relate to different signaling regimes, we found that subcellular regions with different morphodynamics indeed exhibit distinct Rac1 activities. This algorithm thus can serve as an accurate and sensitive classifier of cellular morphodynamics to pinpoint spatial and temporal boundaries between signaling regimes. Many studies in cell biology employ global shape descriptors to probe mechanisms of cell morphogenesis. Here, we implement a framework in this paper to profile cellular morphodynamics very locally. We employ the Hilbert-Huang transform (HHT) to extract along the entire cell edge spectra of instantaneous edge motion frequency and magnitude and use them to classify overall cell behavior as well as subcellular edge sectors of distinct dynamics. We find in fibroblast-like COS7 cells that the marked heterogeneity in mobility of an unstimulated population is fully captured by differences in the magnitude spectra, while the frequency spectra are conserved between cells. Using optogenetics to acutely inhibit morphogenetic signaling pathways we find that these molecular shifts are reflected by changes in the frequency spectra but not in the magnitude spectra. After clustering cell edge sectors with distinct morphodynamics we observe in cells expressing a Rac1 activity biosensor that the sectors with different frequency spectra associate with different signaling intensity and dynamics. Together, these observations let us conclude that the frequency spectrum encodes the wiring of the molecular circuitry that regulates edge movements, whereas the magnitude captures the activation level of the circuitry.
Collapse
|
20
|
Oakes PW. Balancing forces in migration. Curr Opin Cell Biol 2018; 54:43-49. [PMID: 29723736 DOI: 10.1016/j.ceb.2018.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 01/13/2023]
Abstract
The integrated molecular interactions of proteins can create active biological networks whose material properties and actions can impact a variety of physiological processes. Chief among these is the ability to generate and respond to physical forces. The cytoskeleton plays a key role in this behavior, characterized by active self-reorganization to control a cell's shape and mediate its physical interactions. This review discusses our current understanding of how the material properties of the cytoskeleton and its physical interactions with the extracellular environment impact cell migration.
Collapse
Affiliation(s)
- Patrick W Oakes
- Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627, United States; Department of Biology, University of Rochester, Rochester, NY 14627, United States.
| |
Collapse
|
21
|
Fernandez A, Bautista M, Stanciauskas R, Chung T, Pinaud F. Cell-Shaping Micropatterns for Quantitative Super-Resolution Microscopy Imaging of Membrane Mechanosensing Proteins. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27575-27586. [PMID: 28766344 DOI: 10.1021/acsami.7b09743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Patterning cells on microcontact-printed substrates is a powerful approach to control cell morphology and introduce specific mechanical cues on a cell's molecular organization. Although global changes in cellular architectures caused by micropatterns can easily be probed with diffraction-limited optical microscopy, studying molecular reorganizations at the nanoscale demands micropatterned substrates that accommodate the optical requirements of single molecule microscopy techniques. Here, we developed a simple micropatterning strategy that provides control of cellular architectures and is optimized for nanometer accuracy single molecule tracking and three-dimensional super-resolution imaging of plasma and nuclear membrane proteins in cells. This approach, based on fibronectin microcontact printing on hydrophobic organosilane monolayers, allows evanescent wave and light-sheet microscopy of cells whilst fulfilling the stringent optical demands of point reconstruction optical microscopy. By imposing steady-state mechanical cues on cells grown in these micropatterns, we reveal nanoscale remodeling in the dynamics and the structural organizations of the nuclear envelope mechanotransducing protein emerin and of the plasma membrane mechanosensing protein caveolin-1 using single particle tracking photoactivated localization microscopy and direct stochastic optical reconstruction microscopy imaging. In addition to allowing quantitative biophysical studies of mechanoresponsive membrane proteins, this approach provides an easy means to probe mechanical regulations in cellular membranes with high optical resolution and nanometer precision.
Collapse
Affiliation(s)
- Anthony Fernandez
- Department of Biological Sciences, ‡Department of Chemistry, and §Department of Physics and Astronomy, University of Southern California , Los Angeles, California 90089, United States
| | - Markville Bautista
- Department of Biological Sciences, ‡Department of Chemistry, and §Department of Physics and Astronomy, University of Southern California , Los Angeles, California 90089, United States
| | - Ramunas Stanciauskas
- Department of Biological Sciences, ‡Department of Chemistry, and §Department of Physics and Astronomy, University of Southern California , Los Angeles, California 90089, United States
| | - Taerin Chung
- Department of Biological Sciences, ‡Department of Chemistry, and §Department of Physics and Astronomy, University of Southern California , Los Angeles, California 90089, United States
| | - Fabien Pinaud
- Department of Biological Sciences, ‡Department of Chemistry, and §Department of Physics and Astronomy, University of Southern California , Los Angeles, California 90089, United States
| |
Collapse
|
22
|
Brand CA, Linke M, Weißenbruch K, Richter B, Bastmeyer M, Schwarz US. Tension and Elasticity Contribute to Fibroblast Cell Shape in Three Dimensions. Biophys J 2017; 113:770-774. [PMID: 28755755 DOI: 10.1016/j.bpj.2017.06.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/13/2017] [Accepted: 06/30/2017] [Indexed: 11/16/2022] Open
Abstract
The shape of animal cells is an important regulator for many essential processes such as cell migration or division. It is strongly determined by the organization of the actin cytoskeleton, which is also the main regulator of cell forces. Quantitative analysis of cell shape helps to reveal the physical processes underlying cell shape and forces, but it is notoriously difficult to conduct it in three dimensions. Here we use direct laser writing to create 3D open scaffolds for adhesion of connective tissue cells through well-defined adhesion platforms. Due to actomyosin contractility in the cell contour, characteristic invaginations lined by actin bundles form between adjacent adhesion sites. Using quantitative image processing and mathematical modeling, we demonstrate that the resulting shapes are determined not only by contractility, but also by elastic stress in the peripheral actin bundles. In this way, cells can generate higher forces than through contractility alone.
Collapse
Affiliation(s)
- Christoph A Brand
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany; Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Marco Linke
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany; Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Kai Weißenbruch
- Cell and Neurobiology, Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany; Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Benjamin Richter
- Cell and Neurobiology, Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Martin Bastmeyer
- Cell and Neurobiology, Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany; Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany; HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Ulrich S Schwarz
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany; Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany; HEiKA - Heidelberg Karlsruhe Research Partnership, Heidelberg University, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
23
|
Kurzawa L, Vianay B, Senger F, Vignaud T, Blanchoin L, Théry M. Dissipation of contractile forces: the missing piece in cell mechanics. Mol Biol Cell 2017; 28:1825-1832. [PMID: 28684608 PMCID: PMC5526557 DOI: 10.1091/mbc.e16-09-0672] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022] Open
Abstract
Mechanical forces are key regulators of cell and tissue physiology. The basic molecular mechanism of fiber contraction by the sliding of actin filament upon myosin leading to conformational change has been known for decades. The regulation of force generation at the level of the cell, however, is still far from elucidated. Indeed, the magnitude of cell traction forces on the underlying extracellular matrix in culture is almost impossible to predict or experimentally control. The considerable variability in measurements of cell-traction forces indicates that they may not be the optimal readout to properly characterize cell contractile state and that a significant part of the contractile energy is not transferred to cell anchorage but instead is involved in actin network dynamics. Here we discuss the experimental, numerical, and biological parameters that may be responsible for the variability in traction force production. We argue that limiting these sources of variability and investigating the dissipation of mechanical work that occurs with structural rearrangements and the disengagement of force transmission is key for further understanding of cell mechanics.
Collapse
Affiliation(s)
- Laetitia Kurzawa
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, 38054 Grenoble, France
| | - Benoit Vianay
- Université Paris Diderot, INSERM, CEA, CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d’Hematologie, UMRS1160, 75010 Paris, France
| | - Fabrice Senger
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, 38054 Grenoble, France
| | - Timothée Vignaud
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, 38054 Grenoble, France
| | - Laurent Blanchoin
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, 38054 Grenoble, France
- Université Paris Diderot, INSERM, CEA, CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d’Hematologie, UMRS1160, 75010 Paris, France
| | - Manuel Théry
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, Université Grenoble-Alpes, CEA, CNRS, INRA, 38054 Grenoble, France
- Université Paris Diderot, INSERM, CEA, CytoMorpho Lab, Hôpital Saint Louis, Institut Universitaire d’Hematologie, UMRS1160, 75010 Paris, France
| |
Collapse
|
24
|
Maninova M, Caslavsky J, Vomastek T. The assembly and function of perinuclear actin cap in migrating cells. PROTOPLASMA 2017; 254:1207-1218. [PMID: 28101692 DOI: 10.1007/s00709-017-1077-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/09/2017] [Indexed: 05/24/2023]
Abstract
Stress fibers are actin bundles encompassing actin filaments, actin-crosslinking, and actin-associated proteins that represent the major contractile system in the cell. Different types of stress fibers assemble in adherent cells, and they are central to diverse cellular processes including establishment of the cell shape, morphogenesis, cell polarization, and migration. Stress fibers display specific cellular organization and localization, with ventral fibers present at the basal side, and dorsal fibers and transverse actin arcs rising at the cell front from the ventral to the dorsal side and toward the nucleus. Perinuclear actin cap fibers are a specific subtype of stress fibers that rise from the leading edge above the nucleus and terminate at the cell rear forming a dome-like structure. Perinuclear actin cap fibers are fixed at three points: both ends are anchored in focal adhesions, while the central part is physically attached to the nucleus and nuclear lamina through the linker of nucleoskeleton and cytoskeleton (LINC) complex. Here, we discuss recent work that provides new insights into the mechanism of assembly and the function of these actin stress fibers that directly link extracellular matrix and focal adhesions with the nuclear envelope.
Collapse
Affiliation(s)
- Miloslava Maninova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00, Prague, Czech Republic
| | - Josef Caslavsky
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00, Prague, Czech Republic
| | - Tomas Vomastek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00, Prague, Czech Republic.
| |
Collapse
|
25
|
Geometry and network connectivity govern the mechanics of stress fibers. Proc Natl Acad Sci U S A 2017; 114:2622-2627. [PMID: 28213499 DOI: 10.1073/pnas.1606649114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actomyosin stress fibers (SFs) play key roles in driving polarized motility and generating traction forces, yet little is known about how tension borne by an individual SF is governed by SF geometry and its connectivity to other cytoskeletal elements. We now address this question by combining single-cell micropatterning with subcellular laser ablation to probe the mechanics of single, geometrically defined SFs. The retraction length of geometrically isolated SFs after cutting depends strongly on SF length, demonstrating that longer SFs dissipate more energy upon incision. Furthermore, when cell geometry and adhesive spacing are fixed, cell-to-cell heterogeneities in SF dissipated elastic energy can be predicted from varying degrees of physical integration with the surrounding network. We apply genetic, pharmacological, and computational approaches to demonstrate a causal and quantitative relationship between SF connectivity and mechanics for patterned cells and show that similar relationships hold for nonpatterned cells allowed to form cell-cell contacts in monolayer culture. Remarkably, dissipation of a single SF within a monolayer induces cytoskeletal rearrangements in cells long distances away. Finally, stimulation of cell migration leads to characteristic changes in network connectivity that promote SF bundling at the cell rear. Our findings demonstrate that SFs influence and are influenced by the networks in which they reside. Such higher order network interactions contribute in unexpected ways to cell mechanics and motility.
Collapse
|
26
|
Cardoso Dos Santos M, Vézy C, Morjani H, Jaffol R. Single cell adhesion strength assessed with variable-angle total internal reflection fluorescence microscopy. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.3.438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
27
|
Roux C, Duperray A, Laurent VM, Michel R, Peschetola V, Verdier C, Étienne J. Prediction of traction forces of motile cells. Interface Focus 2016; 6:20160042. [PMID: 27708765 DOI: 10.1098/rsfs.2016.0042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
When crawling on a flat substrate, living cells exert forces on it via adhesive contacts, enabling them to build up tension within their cytoskeleton and to change shape. The measurement of these forces has been made possible by traction force microscopy (TFM), a technique which has allowed us to obtain time-resolved traction force maps during cell migration. This cell 'footprint' is, however, not sufficient to understand the details of the mechanics of migration, that is how cytoskeletal elements (respectively, adhesion complexes) are put under tension and reinforce or deform (respectively, mature and/or unbind) as a result. In a recent paper, we have validated a rheological model of actomyosin linking tension, deformation and myosin activity. Here, we complement this model with tentative models of the mechanics of adhesion and explore how closely these models can predict the traction forces that we recover from experimental measurements during cell migration. The resulting mathematical problem is a PDE set on the experimentally observed domain, which we solve using a finite-element approach. The four parameters of the model can then be adjusted by comparison with experimental results on a single frame of an experiment, and then used to test the predictive power of the model for following frames and other experiments. It is found that the basic pattern of traction forces is robustly predicted by the model and fixed parameters as a function of current geometry only.
Collapse
Affiliation(s)
- Clément Roux
- Laboratoire interdisciplinaire de physique (LIPHY), University Grenoble Alpes, 38000 Grenoble, France; Laboratoire interdisciplinaire de physique (LIPHY), CNRS, 38000 Grenoble, France
| | - Alain Duperray
- IAB, University Grenoble Alpes, 38000 Grenoble, France; IAB, INSERM, 38000 Grenoble, France
| | - Valérie M Laurent
- Laboratoire interdisciplinaire de physique (LIPHY), University Grenoble Alpes, 38000 Grenoble, France; Laboratoire interdisciplinaire de physique (LIPHY), CNRS, 38000 Grenoble, France
| | - Richard Michel
- Laboratoire interdisciplinaire de physique (LIPHY), University Grenoble Alpes, 38000 Grenoble, France; Laboratoire interdisciplinaire de physique (LIPHY), CNRS, 38000 Grenoble, France
| | - Valentina Peschetola
- Laboratoire interdisciplinaire de physique (LIPHY), University Grenoble Alpes, 38000 Grenoble, France; Laboratoire interdisciplinaire de physique (LIPHY), CNRS, 38000 Grenoble, France
| | - Claude Verdier
- Laboratoire interdisciplinaire de physique (LIPHY), University Grenoble Alpes, 38000 Grenoble, France; Laboratoire interdisciplinaire de physique (LIPHY), CNRS, 38000 Grenoble, France
| | - Jocelyn Étienne
- Laboratoire interdisciplinaire de physique (LIPHY), University Grenoble Alpes, 38000 Grenoble, France; Laboratoire interdisciplinaire de physique (LIPHY), CNRS, 38000 Grenoble, France
| |
Collapse
|
28
|
Albert PJ, Schwarz US. Modeling cell shape and dynamics on micropatterns. Cell Adh Migr 2016; 10:516-528. [PMID: 26838278 PMCID: PMC5079397 DOI: 10.1080/19336918.2016.1148864] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/26/2016] [Indexed: 12/29/2022] Open
Abstract
Adhesive micropatterns have become a standard tool to study cells under defined conditions. Applications range from controlling the differentiation and fate of single cells to guiding the collective migration of cell sheets. In long-term experiments, single cell normalization is challenged by cell division. For all of these setups, mathematical models predicting cell shape and dynamics can guide pattern design. Here we review recent advances in predicting and explaining cell shape, traction forces and dynamics on micropatterns. Starting with contour models as the simplest approach to explain concave cell shapes, we move on to network and continuum descriptions as examples for static models. To describe dynamic processes, cellular Potts, vertex and phase field models can be used. Different types of model are appropriate to address different biological questions and together, they provide a versatile tool box to predict cell behavior on micropatterns.
Collapse
Affiliation(s)
- Philipp J. Albert
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Ulrich S. Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
29
|
Albert PJ, Schwarz US. Dynamics of Cell Ensembles on Adhesive Micropatterns: Bridging the Gap between Single Cell Spreading and Collective Cell Migration. PLoS Comput Biol 2016; 12:e1004863. [PMID: 27054883 PMCID: PMC4824460 DOI: 10.1371/journal.pcbi.1004863] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 03/11/2016] [Indexed: 12/20/2022] Open
Abstract
The collective dynamics of multicellular systems arise from the interplay of a few fundamental elements: growth, division and apoptosis of single cells; their mechanical and adhesive interactions with neighboring cells and the extracellular matrix; and the tendency of polarized cells to move. Micropatterned substrates are increasingly used to dissect the relative roles of these fundamental processes and to control the resulting dynamics. Here we show that a unifying computational framework based on the cellular Potts model can describe the experimentally observed cell dynamics over all relevant length scales. For single cells, the model correctly predicts the statistical distribution of the orientation of the cell division axis as well as the final organisation of the two daughters on a large range of micropatterns, including those situations in which a stable configuration is not achieved and rotation ensues. Large ensembles migrating in heterogeneous environments form non-adhesive regions of inward-curved arcs like in epithelial bridge formation. Collective migration leads to swirl formation with variations in cell area as observed experimentally. In each case, we also use our model to predict cell dynamics on patterns that have not been studied before.
Collapse
Affiliation(s)
- Philipp J. Albert
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Ulrich S. Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
30
|
Labouesse C, Gabella C, Meister JJ, Vianay B, Verkhovsky AB. Microsurgery-aided in-situ force probing reveals extensibility and viscoelastic properties of individual stress fibers. Sci Rep 2016; 6:23722. [PMID: 27025817 PMCID: PMC4812326 DOI: 10.1038/srep23722] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/11/2016] [Indexed: 11/10/2022] Open
Abstract
Actin-myosin filament bundles (stress fibers) are critical for tension generation and cell shape, but their mechanical properties are difficult to access. Here we propose a novel approach to probe individual peripheral stress fibers in living cells through a microsurgically generated opening in the cytoplasm. By applying large deformations with a soft cantilever we were able to fully characterize the mechanical response of the fibers and evaluate their tension, extensibility, elastic and viscous properties.
Collapse
Affiliation(s)
- Céline Labouesse
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Chiara Gabella
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-Jacques Meister
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Benoît Vianay
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexander B Verkhovsky
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
31
|
Albert PJ, Schwarz US. Optimizing micropattern geometries for cell shape and migration with genetic algorithms. Integr Biol (Camb) 2016; 8:741-50. [DOI: 10.1039/c6ib00061d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adhesive micropatterns have become a standard tool to control cell shape and function in cell culture.
Collapse
Affiliation(s)
- Philipp J. Albert
- Institute for Theoretical Physics and BioQuant
- Heidelberg University
- 69120 Heidelberg
- Germany
| | - Ulrich S. Schwarz
- Institute for Theoretical Physics and BioQuant
- Heidelberg University
- 69120 Heidelberg
- Germany
| |
Collapse
|