1
|
Pargoo SS, Baniasadi F, Jasemi VSK, Hajiaghalou S, Gharanfoli M, Fathi R. Effect of Moderate Static Magnetic Fields on Mice Oocyte Vitrification: Calcium-Related Genes Expression. Biopreserv Biobank 2024; 22:441-451. [PMID: 38527284 DOI: 10.1089/bio.2022.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
The ability to cryopreserve oocytes without ultrastructural injury has been a concern in the development and use of methods to preserve female reproduction. The stability of the cell membrane must be preserved to reduce the damage caused by ice crystals during vitrification. One approach that has been explored is the use of static magnetic fields (SMFs), which are believed to influence cell membrane stability. In this study, the in vitro effects of SMF that range between 20-80 mT on the vitrification of mice germinal vesicle (GV) oocytes were studied. The viability and mitochondrial (Mt) membrane potential of both vitrified and nonvitrified oocytes were assessed using Trypan blue and JC1 staining. The high in vitro maturation (IVM) rate and high Mt membrane potential in metaphase II (MII) oocytes were taken into account to determine the optimal magnetic field intensity, that is, 20 mT. None of the SMF conditions resulted in intact spindles in MII oocytes. The study also explored the expression of store-operated calcium entry (Stim1, Orai1, and Ip3r) and meiosis resumption (Ccnb, Cdk) genes in GV and MII oocytes of both vitrified and control groups. The results show that the expressions of Orai1 and Ccnb genes in Vit-MII-SMF oocytes were considerably increased. However, no significant difference in Stim1 expression was observed between the groups. The Vit-MII-SMF group exhibited a significantly higher Ccnb expression compared to other groups. In vitro fertilization (IVF) was performed to evaluate the 2 pronuclear (2PN) rates. The findings demonstrated that using 20 mT SMF improved 2PN rates compared to the nonvitrified groups. This study provides a deeper understanding of the effects of moderate SMF and vitrification on the expression of calcium channel genes in GV and MII oocytes. The results suggest that applying a 20 mT SMF can help prevent cryoinjury and enhance the characteristics of vitrified-warmed oocytes.
Collapse
Affiliation(s)
- Sara Soleimani Pargoo
- Department of Cell and Molecular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Farzaneh Baniasadi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Vida Sadat Kazemein Jasemi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Samira Hajiaghalou
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohsen Gharanfoli
- Department of Cell and Molecular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
2
|
Lihan M, Tajkhorshid E. Improved Highly Mobile Membrane Mimetic Model for Investigating Protein-Cholesterol Interactions. J Chem Inf Model 2024; 64:4822-4834. [PMID: 38844760 PMCID: PMC12016201 DOI: 10.1021/acs.jcim.4c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Cholesterol (CHL) plays an integral role in modulating the function and activity of various mammalian membrane proteins. Due to the slow dynamics of lipids, conventional computational studies of protein-CHL interactions rely on either long-time scale atomistic simulations or coarse-grained approximations to sample the process. A highly mobile membrane mimetic (HMMM) has been developed to enhance lipid diffusion and thus used to facilitate the investigation of lipid interactions with peripheral membrane proteins and, with customized in silico solvents to replace phospholipid tails, with integral membrane proteins. Here, we report an updated HMMM model that is able to include CHL, a nonphospholipid component of the membrane, henceforth called HMMM-CHL. To this end, we had to optimize the effect of the customized solvents on CHL behavior in the membrane. Furthermore, the new solvent is compatible with simulations using force-based switching protocols. In the HMMM-CHL, both improved CHL dynamics and accelerated lipid diffusion are integrated. To test the updated model, we have applied it to the characterization of protein-CHL interactions in two membrane protein systems, the human β2-adrenergic receptor (β2AR) and the mitochondrial voltage-dependent anion channel 1 (VDAC-1). Our HMMM-CHL simulations successfully identified CHL binding sites and captured detailed CHL interactions in excellent consistency with experimental data as well as other simulation results, indicating the utility of the improved model in applications where an enhanced sampling of protein-CHL interactions is desired.
Collapse
Affiliation(s)
- Muyun Lihan
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Mayse LA, Movileanu L. Gating of β-Barrel Protein Pores, Porins, and Channels: An Old Problem with New Facets. Int J Mol Sci 2023; 24:12095. [PMID: 37569469 PMCID: PMC10418385 DOI: 10.3390/ijms241512095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
β barrels are ubiquitous proteins in the outer membranes of mitochondria, chloroplasts, and Gram-negative bacteria. These transmembrane proteins (TMPs) execute a wide variety of tasks. For example, they can serve as transporters, receptors, membrane-bound enzymes, as well as adhesion, structural, and signaling elements. In addition, multimeric β barrels are common structural scaffolds among many pore-forming toxins. Significant progress has been made in understanding the functional, structural, biochemical, and biophysical features of these robust and versatile proteins. One frequently encountered fundamental trait of all β barrels is their voltage-dependent gating. This process consists of reversible or permanent conformational transitions between a large-conductance, highly permeable open state and a low-conductance, solute-restrictive closed state. Several intrinsic molecular mechanisms and environmental factors modulate this universal property of β barrels. This review article outlines the typical signatures of voltage-dependent gating. Moreover, we discuss recent developments leading to a better qualitative understanding of the closure dynamics of these TMPs.
Collapse
Affiliation(s)
- Lauren A. Mayse
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244, USA;
- Department of Biomedical and Chemical Engineering, Syracuse University, 223 Link Hall, Syracuse, NY 13244, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244, USA;
- Department of Biomedical and Chemical Engineering, Syracuse University, 223 Link Hall, Syracuse, NY 13244, USA
- The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
4
|
Rister AB, Gudermann T, Schredelseker J. E as in Enigma: The Mysterious Role of the Voltage-Dependent Anion Channel Glutamate E73. Int J Mol Sci 2022; 24:ijms24010269. [PMID: 36613710 PMCID: PMC9820230 DOI: 10.3390/ijms24010269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022] Open
Abstract
The voltage-dependent anion channel (VDAC) is the main passageway for ions and metabolites over the outer mitochondrial membrane. It was associated with many physiological processes, including apoptosis and modulation of intracellular Ca2+ signaling. The protein is formed by a barrel of 19 beta-sheets with an N-terminal helix lining the inner pore. Despite its large diameter, the channel can change its selectivity for ions and metabolites based on its open state to regulate transport into and out of mitochondria. VDAC was shown to be regulated by a variety of cellular factors and molecular partners including proteins, lipids and ions. Although the physiological importance of many of these modulatory effects are well described, the binding sites for molecular partners are still largely unknown. The highly symmetrical and sleek structure of the channel makes predictions of functional moieties difficult. However, one residue repeatedly sticks out when reviewing VDAC literature. A glutamate at position 73 (E73) located on the outside of the channel facing the hydrophobic membrane environment was repeatedly proposed to be involved in channel regulation on multiple levels. Here, we review the distinct hypothesized roles of E73 and summarize the open questions around this mysterious residue.
Collapse
Affiliation(s)
- Alexander Bernhard Rister
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Partner Site Munich Heart Alliance, Munich, Germany
| | - Johann Schredelseker
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Partner Site Munich Heart Alliance, Munich, Germany
- Correspondence: ; Tel.: +49-(0)89-2180-73831
| |
Collapse
|
5
|
Ngo VA, Queralt-Martín M, Khan F, Bergdoll L, Abramson J, Bezrukov SM, Rostovtseva TK, Hoogerheide DP, Noskov SY. The Single Residue K12 Governs the Exceptional Voltage Sensitivity of Mitochondrial Voltage-Dependent Anion Channel Gating. J Am Chem Soc 2022; 144:14564-14577. [PMID: 35925797 DOI: 10.1021/jacs.2c03316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The voltage-dependent anion channel (VDAC) is a β-barrel channel of the mitochondrial outer membrane (MOM) that passively transports ions, metabolites, polypeptides, and single-stranded DNA. VDAC responds to a transmembrane potential by "gating," i.e. transitioning to one of a variety of low-conducting states of unknown structure. The gated state results in nearly complete suppression of multivalent mitochondrial metabolite (such as ATP and ADP) transport, while enhancing calcium transport. Voltage gating is a universal property of β-barrel channels, but VDAC gating is anomalously sensitive to transmembrane potential. Here, we show that a single residue in the pore interior, K12, is responsible for most of VDAC's voltage sensitivity. Using the analysis of over 40 μs of atomistic molecular dynamics (MD) simulations, we explore correlations between motions of charged residues inside the VDAC pore and geometric deformations of the β-barrel. Residue K12 is bistable; its motions between two widely separated positions along the pore axis enhance the fluctuations of the β-barrel and augment the likelihood of gating. Single channel electrophysiology of various K12 mutants reveals a dramatic reduction of the voltage-induced gating transitions. The crystal structure of the K12E mutant at a resolution of 2.6 Å indicates a similar architecture of the K12E mutant to the wild type; however, 60 μs of atomistic MD simulations using the K12E mutant show restricted motion of residue 12, due to enhanced connectivity with neighboring residues, and diminished amplitude of barrel motions. We conclude that β-barrel fluctuations, governed particularly by residue K12, drive VDAC gating transitions.
Collapse
Affiliation(s)
- Van A Ngo
- Center for Molecular Simulations, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada.,Advanced Computing for Life Sciences and Engineering, Computing and Computational Sciences, National Center for Computational Sciences, Oak Ridge National Lab, Oak Ridge, Tennessee 37830, United States
| | - María Queralt-Martín
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States.,Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071 Castellón, Spain
| | - Farha Khan
- Department of Physiology, University of California, Los Angeles, California 90095, United States
| | - Lucie Bergdoll
- LISM UMR 7255, CNRS and Aix-Marseille University, Marseille cedex 20, 13402, France
| | - Jeff Abramson
- Department of Physiology, University of California, Los Angeles, California 90095, United States
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - David P Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sergei Yu Noskov
- Center for Molecular Simulations, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
6
|
Li X, Pan J, Li H, Li G, Liu B, Tang X, Liu X, He Z, Peng Z, Zhang H, Wang L, Li Y, Xiang X, Chai X, Yuan Y, Zheng P, Zhang D. DsbA-L interacts with VDAC1 in mitochondrion-mediated tubular cell apoptosis and contributes to the progression of acute kidney disease. EBioMedicine 2022; 76:103859. [PMID: 35124430 PMCID: PMC8829058 DOI: 10.1016/j.ebiom.2022.103859] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND we demonstrated that disulfide-bond A oxidoreductase-like protein (DsbA-L) was involved in the progression of renal fibrosis. However, the precise function of DsbA-L in acute kidney injury (AKI), and the mechanisms involved, have yet to be elucidated. METHODS We illustrate the DsbA-L interacted with VDAC1 by co-IP (co-immunoprecipitation) in vitro and vivo, and found the interaction parts of them by mutation experiment. The above findings were verified by co-localization of them. In addition, we constructed the two model of PT-DsbA-L and VDAC1 KO mice to verify the function of DsbA-L and VDAC1 in models of VAN, CLP and I/R-induced AKI. FINDINGS The PT-DsbA-L-KO mice showed amelioration of I/R, VAN-, and CLP-induced AKI progression via the downregulation of VDAC1. Finally, we confirmed these changes in signal molecules by examining in HK-2 cells and kidney biopsies taken from patients with ischemic or acute interstitial nephritis (AIN)-induced AKI. Mechanistically, DsbA-L interacted with amino acids 9-13 and 22-27 of VDAC1 in the mitochondria of BUMPT cells to induce renal cell apoptosis and mitochondrial injury. INTERPRETATION This work suggested that DsbA-L, located in the proximal tubular cells, drives the progression of AKI, by directly upregulating the levels of VDAC1.Running Title: The role of DsbA-L in AKI FUNDING: National Natural Science Foundation of China, a grant from Key Project of Hunan provincial science and technology innovation, Department of Science and Technology of Hunan Province project of International Cooperation and Exchanges, Changsha Science and Technology Bureau project, Natural Science Foundation of Hunan Province, Fundamental Research Funds for the Central Universities of Central South University, Hunan Provincial Innovation Foundation For Postgraduate China Hunan Provincial Science and Technology Department.
Collapse
Affiliation(s)
- Xiaozhou Li
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Jian Pan
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Huiling Li
- Department of Ophthalmology, People's Republic of China
| | - Guangdi Li
- Department of Public Health, Central South University, Changsha, Hunan, People's Republic of China
| | - Bohao Liu
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Xianming Tang
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Xiangfeng Liu
- Department of General Surgery, Second Xiangya Hospital, People's Republic of China
| | - Zhibiao He
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Zhenyu Peng
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Hongliang Zhang
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Luxiang Wang
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Yijian Li
- Departmentof Urinary Surgery, People's Republic of China
| | - Xudong Xiang
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Xiangping Chai
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Yunchang Yuan
- Department of Chestsurgery, People's Republic of China
| | - Peilin Zheng
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Dongshan Zhang
- Department of Emergency Medicine, People's Republic of China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.
| |
Collapse
|
7
|
Preto J, Gorny H, Krimm I. A Deep Dive into VDAC1 Conformational Diversity Using All-Atom Simulations Provides New Insights into the Structural Origin of the Closed States. Int J Mol Sci 2022; 23:ijms23031175. [PMID: 35163095 PMCID: PMC8834982 DOI: 10.3390/ijms23031175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 01/14/2023] Open
Abstract
The voltage-dependent anion channel 1 (VDAC1) is a crucial mitochondrial transporter that controls the flow of ions and respiratory metabolites entering or exiting mitochondria. As a voltage-gated channel, VDAC1 can switch between a high-conducting “open” state and a low-conducting “closed” state emerging at high transmembrane (TM) potentials. Although cell homeostasis depends on channel gating to regulate the transport of ions and metabolites, structural hallmarks characterizing the closed states remain unknown. Here, we performed microsecond accelerated molecular dynamics to highlight a vast region of VDAC1 conformational landscape accessible at typical voltages known to promote closure. Conformers exhibiting durable subconducting properties inherent to closed states were identified. In all cases, the low conductance was due to the particular positioning of an unfolded part of the N-terminus, which obstructed the channel pore. While the N-terminal tail was found to be sensitive to voltage orientation, our models suggest that stable low-conducting states of VDAC1 predominantly take place from disordered events and do not result from the displacement of a voltage sensor or a significant change in the pore. In addition, our results were consistent with conductance jumps observed experimentally and corroborated a recent study describing entropy as a key factor for VDAC gating.
Collapse
|
8
|
Bogard A, Finn PW, McKinney F, Flacau IM, Smith AR, Whiting R, Fologea D. The Ionic Selectivity of Lysenin Channels in Open and Sub-Conducting States. MEMBRANES 2021; 11:897. [PMID: 34832126 PMCID: PMC8622276 DOI: 10.3390/membranes11110897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 01/13/2023]
Abstract
The electrochemical gradients established across cell membranes are paramount for the execution of biological functions. Besides ion channels, other transporters, such as exogenous pore-forming toxins, may present ionic selectivity upon reconstitution in natural and artificial lipid membranes and contribute to the electrochemical gradients. In this context, we utilized electrophysiology approaches to assess the ionic selectivity of the pore-forming toxin lysenin reconstituted in planar bilayer lipid membranes. The membrane voltages were determined from the reversal potentials recorded upon channel exposure to asymmetrical ionic conditions, and the permeability ratios were calculated from the fit with the Goldman-Hodgkin-Katz equation. Our work shows that lysenin channels are ion-selective and the determined permeability coefficients are cation and anion-species dependent. We also exploited the unique property of lysenin channels to transition to a stable sub-conducting state upon exposure to calcium ions and assessed their subsequent change in ionic selectivity. The observed loss of selectivity was implemented in an electrical model describing the dependency of reversal potentials on calcium concentration. In conclusion, our work demonstrates that this pore-forming toxin presents ionic selectivity but this is adjusted by the particular conduction state of the channels.
Collapse
Affiliation(s)
- Andrew Bogard
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Pangaea W. Finn
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
| | - Fulton McKinney
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
| | - Ilinca M. Flacau
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
| | - Aviana R. Smith
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
| | - Rosey Whiting
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Daniel Fologea
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
9
|
Zhang J, Wang K, Xue P, Chen X, Bian L. Molecular recognition and interaction between human plasminogen Kringle 5 and voltage-dependent anion channel-1 by biological specificity technologies and molecular dynamic simulation. Biophys Chem 2021; 280:106710. [PMID: 34741992 DOI: 10.1016/j.bpc.2021.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
Voltage-dependent anion channel-l (VDAC-1) can bind with plasminogen Kringle 5 as the cell surface receptor and induce cell apoptosis, but the detailed information of binding is not clear yet. Thus, the mutual recognition and binding were investigated here utilizing frontal affinity chromatography, surface plasma resonance, mutation analysis combining molecular dynamics simulation. The results showed that Kringle 5 binds with VDAC-1 in equimolar driven mainly by electrostatic force, with 15 amino acid residues participating in Kringle 5 and 21 in VDAC-1. The observed conformational changes indicated the automatic structure regulation providing these two proteins suitable conformations and spatial surroundings for the tighter and stabler binding. Moreover, Glu29 in Kringle 5 was speculated as the key residue maintaining the largest energy contribution. Therefore, this work provided precise information for the recognition and binding of Kringle 5 with VDAC-1 that is valuable for the corresponding treatment of tumours or other angiogenic diseases.
Collapse
Affiliation(s)
- Jiaxin Zhang
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Kun Wang
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Pengli Xue
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Xiu Chen
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
10
|
Rosencrans WM, Rajendran M, Bezrukov SM, Rostovtseva TK. VDAC regulation of mitochondrial calcium flux: From channel biophysics to disease. Cell Calcium 2021; 94:102356. [PMID: 33529977 PMCID: PMC7914209 DOI: 10.1016/j.ceca.2021.102356] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Voltage-dependent anion channel (VDAC), the most abundant mitochondrial outer membrane protein, is important for a variety of mitochondrial functions including metabolite exchange, calcium transport, and apoptosis. While VDAC's role in shuttling metabolites between the cytosol and mitochondria is well established, there is a growing interest in understanding the mechanisms of its regulation of mitochondrial calcium transport. Here we review the current literature on VDAC's role in calcium signaling, its biophysical properties, physiological function, and pathology focusing on its importance in cardiac diseases. We discuss the specific biophysical properties of the three VDAC isoforms in mammalian cells-VDAC 1, 2, and 3-in relationship to calcium transport and their distinct roles in cell physiology and disease. Highlighting the emerging evidence that cytosolic proteins interact with VDAC and regulate its calcium permeability, we advocate for continued investigation into the VDAC interactome at the contact sites between mitochondria and organelles and its role in mitochondrial calcium transport.
Collapse
Affiliation(s)
- William M Rosencrans
- Section on Molecular Transport, Eunice Kennedy Shriver. National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Megha Rajendran
- Section on Molecular Transport, Eunice Kennedy Shriver. National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver. National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver. National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, United States.
| |
Collapse
|
11
|
Najbauer EE, Becker S, Giller K, Zweckstetter M, Lange A, Steinem C, de Groot BL, Griesinger C, Andreas LB. Structure, gating and interactions of the voltage-dependent anion channel. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:159-172. [PMID: 33782728 PMCID: PMC8071794 DOI: 10.1007/s00249-021-01515-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
The voltage-dependent anion channel (VDAC) is one of the most highly abundant proteins found in the outer mitochondrial membrane, and was one of the earliest discovered. Here we review progress in understanding VDAC function with a focus on its structure, discussing various models proposed for voltage gating as well as potential drug targets to modulate the channel's function. In addition, we explore the sensitivity of VDAC structure to variations in the membrane environment, comparing DMPC-only, DMPC with cholesterol, and near-native lipid compositions, and use magic-angle spinning NMR spectroscopy to locate cholesterol on the outside of the β-barrel. We find that the VDAC protein structure remains unchanged in different membrane compositions, including conditions with cholesterol.
Collapse
Affiliation(s)
- Eszter E Najbauer
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Karin Giller
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Markus Zweckstetter
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- Senior Research Group of Translational Structural Biology in Dementia, Deutsches Zentrum Für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Str. 3a, 37075, Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut Für Molekulare Pharmakologie, 13125, Berlin, Germany
- Institut Für Biologie, Humboldt-Universität Zu Berlin, 10115, Berlin, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
- Max-Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Bert L de Groot
- Department of Theoretical and Computational Biophysics, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
12
|
Preto J, Krimm I. The intrinsically disordered N-terminus of the voltage-dependent anion channel. PLoS Comput Biol 2021; 17:e1008750. [PMID: 33577583 PMCID: PMC7906469 DOI: 10.1371/journal.pcbi.1008750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/25/2021] [Accepted: 01/27/2021] [Indexed: 01/08/2023] Open
Abstract
The voltage-dependent anion channel (VDAC) is a critical β-barrel membrane protein of the mitochondrial outer membrane, which regulates the transport of ions and ATP between mitochondria and the cytoplasm. In addition, VDAC plays a central role in the control of apoptosis and is therefore of great interest in both cancer and neurodegenerative diseases. Although not fully understood, it is presumed that the gating mechanism of VDAC is governed by its N-terminal region which, in the open state of the channel, exhibits an α-helical structure positioned midway inside the pore and strongly interacting with the β-barrel wall. In the present work, we performed molecular simulations with a recently developed force field for disordered systems to shed new light on known experimental results, showing that the N-terminus of VDAC is an intrinsically disordered region (IDR). First, simulation of the N-terminal segment as a free peptide highlighted its disordered nature and the importance of using an IDR-specific force field to properly sample its conformational landscape. Secondly, accelerated dynamics simulation of a double cysteine VDAC mutant under applied voltage revealed metastable low conducting states of the channel representative of closed states observed experimentally. Related structures were characterized by partial unfolding and rearrangement of the N-terminal tail, that led to steric hindrance of the pore. Our results indicate that the disordered properties of the N-terminus are crucial to properly account for the gating mechanism of VDAC. The voltage-dependent anion channel (VDAC) is a membrane protein playing a pivotal role in the transport of ions or ATP across the mitochondrial outer membrane as well as in the induction of apoptosis. At high enough membrane potential, VDAC is known to transition from an open state to multiple closed states, reducing the flow of ions through the channel and blocking the passage of large metabolites. While the structure of the open state was resolved more than a decade ago, a molecular description of the gating mechanism of the channel is still missing. Here we show that the N-terminus of VDAC is an intrinsically disordered region and that such a property has a profound impact on its dynamics either as a free peptide or as part of the channel. By taking disordered properties of the N-terminus into account, we managed to generate long-lived closed conformations of the channel at experimental values of the membrane potential. Our results provide new insights into the molecular mechanism driving the gating of VDAC.
Collapse
Affiliation(s)
- Jordane Preto
- Université Claude Bernard Lyon 1, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM 1052, CNRS 5286, Lyon, France
- * E-mail:
| | - Isabelle Krimm
- Université Claude Bernard Lyon 1, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, INSERM 1052, CNRS 5286, Lyon, France
- CRMN, UMR CNRS 5082, ENS de Lyon, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
13
|
Sander P, Gudermann T, Schredelseker J. A Calcium Guard in the Outer Membrane: Is VDAC a Regulated Gatekeeper of Mitochondrial Calcium Uptake? Int J Mol Sci 2021; 22:ijms22020946. [PMID: 33477936 PMCID: PMC7833399 DOI: 10.3390/ijms22020946] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
Already in the early 1960s, researchers noted the potential of mitochondria to take up large amounts of Ca2+. However, the physiological role and the molecular identity of the mitochondrial Ca2+ uptake mechanisms remained elusive for a long time. The identification of the individual components of the mitochondrial calcium uniporter complex (MCUC) in the inner mitochondrial membrane in 2011 started a new era of research on mitochondrial Ca2+ uptake. Today, many studies investigate mitochondrial Ca2+ uptake with a strong focus on function, regulation, and localization of the MCUC. However, on its way into mitochondria Ca2+ has to pass two membranes, and the first barrier before even reaching the MCUC is the outer mitochondrial membrane (OMM). The common opinion is that the OMM is freely permeable to Ca2+. This idea is supported by the presence of a high density of voltage-dependent anion channels (VDACs) in the OMM, forming large Ca2+ permeable pores. However, several reports challenge this idea and describe VDAC as a regulated Ca2+ channel. In line with this idea is the notion that its Ca2+ selectivity depends on the open state of the channel, and its gating behavior can be modified by interaction with partner proteins, metabolites, or small synthetic molecules. Furthermore, mitochondrial Ca2+ uptake is controlled by the localization of VDAC through scaffolding proteins, which anchor VDAC to ER/SR calcium release channels. This review will discuss the possibility that VDAC serves as a physiological regulator of mitochondrial Ca2+ uptake in the OMM.
Collapse
Affiliation(s)
- Paulina Sander
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany; (P.S.); (T.G.)
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany; (P.S.); (T.G.)
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Partner Site Munich Heart Alliance, Munich, Germany
| | - Johann Schredelseker
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, 80336 Munich, Germany; (P.S.); (T.G.)
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Partner Site Munich Heart Alliance, Munich, Germany
- Correspondence: ; Tel.: +49-(0)89-2180-73831
| |
Collapse
|
14
|
Cheng A, Kawahata I, Fukunaga K. Fatty Acid Binding Protein 5 Mediates Cell Death by Psychosine Exposure through Mitochondrial Macropores Formation in Oligodendrocytes. Biomedicines 2020; 8:biomedicines8120635. [PMID: 33419250 PMCID: PMC7766880 DOI: 10.3390/biomedicines8120635] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
Oligodendrocytes, the myelinating cells in the central nervous system (CNS), are critical for producing myelin throughout the CNS. The loss of oligodendrocytes is associated with multiple neurodegenerative disorders mediated by psychosine. However, the involvement of psychosine in the critical biochemical pathogenetic mechanism of the loss of oligodendrocytes and myelin in krabbe disease (KD) remains unclear. Here, we addressed how oligodendrocytes are induced by psychosine treatment in both KG-1C human oligodendroglial cells and mouse oligodendrocyte precursor cells. We found that fatty acid binding protein 5 (FABP5) expressed in oligodendrocytes accelerates mitochondria-induced glial death by inducing mitochondrial macropore formation through voltage-dependent anion channels (VDAC-1) and BAX. These two proteins mediate mitochondrial outer membrane permeabilization, thereby leading to the release of mitochondrial DNA and cytochrome C into the cytosol, and the activation of apoptotic caspases. Furthermore, we confirmed that the inhibition of FABP5 functions by shRNA and FABP5-specific ligands blocking mitochondrial macropore formation, thereby rescuing psychosine-induced oligodendrocyte death. Taken together, we identified FABP5 as a critical factor in mitochondrial injury associated with psychosine-induced apoptosis in oligodendrocytes.
Collapse
|
15
|
Reif MM, Fischer M, Fredriksson K, Hagn F, Zacharias M. The N-Terminal Segment of the Voltage-Dependent Anion Channel: A Possible Membrane-Bound Intermediate in Pore Unbinding. J Mol Biol 2019; 431:223-243. [DOI: 10.1016/j.jmb.2018.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 12/25/2022]
|
16
|
Diehn M, Munk A, Rudolf D. Maximum likelihood estimation in hidden Markov models with inhomogeneous noise. ESAIM-PROBAB STAT 2019. [DOI: 10.1051/ps/2018017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We consider parameter estimation in finite hidden state space Markov models with time-dependent inhomogeneous noise, where the inhomogeneity vanishes sufficiently fast. Based on the concept of asymptotic mean stationary processes we prove that the maximum likelihood and a quasi-maximum likelihood estimator (QMLE) are strongly consistent. The computation of the QMLE ignores the inhomogeneity, hence, is much simpler and robust. The theory is motivated by an example from biophysics and applied to a Poisson- and linear Gaussian model.
Collapse
|
17
|
Queralt-Martín M, Bergdoll L, Jacobs D, Bezrukov SM, Abramson J, Rostovtseva TK. Assessing the role of residue E73 and lipid headgroup charge in VDAC1 voltage gating. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2019; 1860:22-29. [PMID: 30412693 PMCID: PMC8283775 DOI: 10.1016/j.bbabio.2018.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/05/2018] [Accepted: 11/04/2018] [Indexed: 12/25/2022]
Abstract
The voltage-dependent anion channel (VDAC) is the most abundant protein of the mitochondrial outer membrane (MOM) where it regulates transport of ions and metabolites in and out of the organelle. VDAC function is extensively studied in a lipid bilayer system that allows conductance monitoring of reconstituted channels under applied voltage. The process of switching from a high-conductance state, open to metabolites, to a variety of low-conducting states, which excludes metabolite transport, is termed voltage gating and the mechanism remains poorly understood. Recent studies have implicated the involvement of the membrane-solvated residue E73 in the gating process through β-barrel destabilization. However, there has been no direct experimental evidence of E73 involvement in VDAC1 voltage gating. Here, using electrophysiology measurements, we exclude the involvement of E73 in murine VDAC1 (mVDAC1) voltage gating process. With an established protocol of assessing voltage gating of VDACs reconstituted into planar lipid membranes, we definitively show that mVDAC1 gating properties do not change when E73 is replaced by either a glutamine or an alanine. We further demonstrate that cholesterol has no effect on mVDAC1 gating characteristics, though it was shown that E73 is coordinating residue in the cholesterol binding site. In contrast, we found a pronounced gating effect based on the charge of the phospholipid headgroup, where the positive charge stimulates and negative charge suppresses gating. These findings call for critical evaluation of the existing models of VDAC gating and contribute to our understanding of VDAC's role in control of MOM permeability and regulation of mitochondrial respiration and metabolism.
Collapse
Affiliation(s)
- María Queralt-Martín
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Lucie Bergdoll
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Daniel Jacobs
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergey M. Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeff Abramson
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Tatiana K. Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA,To whom correspondence should be addressed: Tatiana K. Rostovtseva, Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bldg. 9, Room 1E-106, Bethesda, MD 20892-0924. Phone: (301) 402-4702, ; Jeff Abramson, Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095. Phone: (310) 825-3913,
| |
Collapse
|
18
|
Manzo G, Serra I, Magrí A, Casu M, De Pinto V, Ceccarelli M, Scorciapino MA. Folded Structure and Membrane Affinity of the N-Terminal Domain of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion-Selective Channel. ACS OMEGA 2018; 3:11415-11425. [PMID: 30320261 PMCID: PMC6173511 DOI: 10.1021/acsomega.8b01536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
Voltage-dependent anion-selective channels (VDACs) are primarily located in the mitochondrial outer membrane (MOM). They are essential for the regulation of ion and metabolite exchanges. In particular, their role in energy-related nucleotide exchange has many implications in apoptosis, cancer, and neurodegenerative diseases. It has been proposed that VDACs' functions are regulated by mobility of the N-terminal helical domain, which is bound to the inner wall of the main β-barrel domain but exists in equilibrium between the bound-folded and the unbound-unfolded state. When the N-terminal domain detaches from the channel's wall and eventually leaves the lumen, it can either stay exposed to the cytosolic environment or interact with the outer leaflet of the MOM; then, it may also interact with other protein partners. In humans, three different VDAC isoforms are expressed at different tissue-specific levels with evidence of distinct roles. Although the N-terminal domains share high sequence similarity, important differences do exist, with the functionality of the entire protein mostly attributed to them. In this work, the three-dimensional structure and membrane affinity of the three isolated hVDAC N-terminal peptides have been compared through Fourier-transform infrared and NMR spectroscopy in combination with molecular dynamics simulations, and measurement of the surface pressure of lipid monolayers. Although peptides were studied as isolated from the β-barrel domain, the observed differences are relevant for those whole protein's functions in which a protein-protein interaction is mediated by the N-terminal domain.
Collapse
Affiliation(s)
- Giorgia Manzo
- Department
of Chemical and Geological Sciences, Cittadella Universitaria di Monserrato, Department of Physics,
Cittadella Universitaria di Monserrato, and Department
of Biomedical Sciences, Biochemistry Unit, Cittadella Universitaria
di Monserrato, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Cagliari, Italy
| | - Ilaria Serra
- Department
of Chemical and Geological Sciences, Cittadella Universitaria di Monserrato, Department of Physics,
Cittadella Universitaria di Monserrato, and Department
of Biomedical Sciences, Biochemistry Unit, Cittadella Universitaria
di Monserrato, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Cagliari, Italy
| | - Andrea Magrí
- Department of Biomedicine
and Biotechnology, Section of Biology and Genetics, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Mariano Casu
- Department
of Chemical and Geological Sciences, Cittadella Universitaria di Monserrato, Department of Physics,
Cittadella Universitaria di Monserrato, and Department
of Biomedical Sciences, Biochemistry Unit, Cittadella Universitaria
di Monserrato, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Cagliari, Italy
| | - Vito De Pinto
- Department of Biomedicine
and Biotechnology, Section of Biology and Genetics, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Matteo Ceccarelli
- Department
of Chemical and Geological Sciences, Cittadella Universitaria di Monserrato, Department of Physics,
Cittadella Universitaria di Monserrato, and Department
of Biomedical Sciences, Biochemistry Unit, Cittadella Universitaria
di Monserrato, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Cagliari, Italy
| | - Mariano Andrea Scorciapino
- Department
of Chemical and Geological Sciences, Cittadella Universitaria di Monserrato, Department of Physics,
Cittadella Universitaria di Monserrato, and Department
of Biomedical Sciences, Biochemistry Unit, Cittadella Universitaria
di Monserrato, University of Cagliari, S.P. 8 km 0.700, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
19
|
Gopinath T, Veglia G. Probing membrane protein ground and conformationally excited states using dipolar- and J-coupling mediated MAS solid state NMR experiments. Methods 2018; 148:115-122. [PMID: 30012515 PMCID: PMC6428079 DOI: 10.1016/j.ymeth.2018.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
The intrinsic conformational plasticity of membrane proteins directly influences the magnitude of the orientational-dependent NMR interactions such as dipolar couplings (DC) and chemical shift anisotropy (CSA). As a result, the conventional cross-polarization (CP)-based techniques mainly capture the more rigid regions of membrane proteins, while the most dynamic regions are essentially invisible. Nonetheless, dynamic regions can be detected using experiments in which polarization transfer takes place via J-coupling interactions. Here, we review our recent efforts to develop single and dual acquisition pulse sequences with either 1H or 13C detection that utilize both DC and J-coupling mediated transfer to detect both rigid and mobile regions of membrane proteins in native-like lipid environments. We show the application of these new methods for studying the conformational equilibrium of a single-pass membrane protein, phospholamban, which regulates the calcium transport across the sarcoplasmic reticulum (SR) membrane by interacting with the SR Ca2+-ATPase. We anticipate that these methods will be ideal to portray the complex dynamics of membrane proteins in their native environments.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
20
|
Kasimova MA, Lindahl E, Delemotte L. Determining the molecular basis of voltage sensitivity in membrane proteins. J Gen Physiol 2018; 150:1444-1458. [PMID: 30150239 PMCID: PMC6168238 DOI: 10.1085/jgp.201812086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
The identification of voltage-sensing elements in membrane proteins is challenging due to the diversity of voltage-sensing mechanisms. Kasimova et al. present a computational approach to predict the elements involved in voltage sensing, which they validate using voltage-gated ion channels. Voltage-sensitive membrane proteins are united by their ability to transform changes in membrane potential into mechanical work. They are responsible for a spectrum of physiological processes in living organisms, including electrical signaling and cell-cycle progression. Although the mechanism of voltage-sensing has been well characterized for some membrane proteins, including voltage-gated ion channels, even the location of the voltage-sensing elements remains unknown for others. Moreover, the detection of these elements by using experimental techniques is challenging because of the diversity of membrane proteins. Here, we provide a computational approach to predict voltage-sensing elements in any membrane protein, independent of its structure or function. It relies on an estimation of the propensity of a protein to respond to changes in membrane potential. We first show that this property correlates well with voltage sensitivity by applying our approach to a set of voltage-sensitive and voltage-insensitive membrane proteins. We further show that it correctly identifies authentic voltage-sensitive residues in the voltage-sensor domain of voltage-gated ion channels. Finally, we investigate six membrane proteins for which the voltage-sensing elements have not yet been characterized and identify residues and ions that might be involved in the response to voltage. The suggested approach is fast and simple and enables a characterization of voltage sensitivity that goes beyond mere identification of charges. We anticipate that its application before mutagenesis experiments will significantly reduce the number of potential voltage-sensitive elements to be tested.
Collapse
Affiliation(s)
- Marina A Kasimova
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Erik Lindahl
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.,Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Lucie Delemotte
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
21
|
Zeth K, Zachariae U. Ten Years of High Resolution Structural Research on the Voltage Dependent Anion Channel (VDAC)-Recent Developments and Future Directions. Front Physiol 2018; 9:108. [PMID: 29563878 PMCID: PMC5845903 DOI: 10.3389/fphys.2018.00108] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/02/2018] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are evolutionarily related to Gram-negative bacteria and both comprise two membrane systems with strongly differing protein composition. The major protein in the outer membrane of mitochondria is the voltage-dependent anion channel (VDAC), which mediates signal transmission across the outer membrane but also the exchange of metabolites, most importantly ADP and ATP. More than 30 years after its discovery three identical high-resolution structures were determined in 2008. These structures show a 19-stranded anti-parallel beta-barrel with an N-terminal helix located inside. An odd number of beta-strands is also shared by Tom40, another member of the VDAC superfamily. This indicates that this superfamily is evolutionarily relatively young and that it has emerged in the context of mitochondrial evolution. New structural information obtained during the last decade on Tom40 can be used to cross-validate the structure of VDAC and vice versa. Interpretation of biochemical and biophysical studies on both protein channels now rests on a solid basis of structural data. Over the past 10 years, complementary structural and functional information on proteins of the VDAC superfamily has been collected from in-organello, in-vitro, and in silico studies. Most of these findings have confirmed the validity of the original structures. This short article briefly reviews the most important advances on the structure and function of VDAC superfamily members collected during the last decade and summarizes how they enhanced our understanding of the channel.
Collapse
Affiliation(s)
- Kornelius Zeth
- Department for Science and Environment, Roskilde University, Roskilde, Denmark
| | - Ulrich Zachariae
- School of Science and Engineering, University of Dundee, Dundee, United Kingdom.,School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
22
|
Gopinath T, Nelson SED, Veglia G. 1H-detected MAS solid-state NMR experiments enable the simultaneous mapping of rigid and dynamic domains of membrane proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 285:101-107. [PMID: 29173803 PMCID: PMC5764182 DOI: 10.1016/j.jmr.2017.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 05/05/2023]
Abstract
Magic angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy is emerging as a unique method for the atomic resolution structure determination of native membrane proteins in lipid bilayers. Although 13C-detected ssNMR experiments continue to play a major role, recent technological developments have made it possible to carry out 1H-detected experiments, boosting both sensitivity and resolution. Here, we describe a new set of 1H-detected hybrid pulse sequences that combine through-bond and through-space correlation elements into single experiments, enabling the simultaneous detection of rigid and dynamic domains of membrane proteins. As proof-of-principle, we applied these new pulse sequences to the membrane protein phospholamban (PLN) reconstituted in lipid bilayers under moderate MAS conditions. The cross-polarization (CP) based elements enabled the detection of the relatively immobile residues of PLN in the transmembrane domain using through-space correlations; whereas the most dynamic region, which is in equilibrium between folded and unfolded states, was mapped by through-bond INEPT-based elements. These new 1H-detected experiments will enable one to detect not only the most populated (ground) states of biomacromolecules, but also sparsely populated high-energy (excited) states for a complete characterization of protein free energy landscapes.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Sarah E D Nelson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
23
|
Mlayeh L, Krammer EM, Léonetti M, Prévost M, Homblé F. The mitochondrial VDAC of bean seeds recruits phosphatidylethanolamine lipids for its proper functioning. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:786-794. [PMID: 28666835 DOI: 10.1016/j.bbabio.2017.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/28/2017] [Accepted: 06/24/2017] [Indexed: 12/31/2022]
Abstract
The voltage-dependent anion-selective channel (VDAC) is the main pathway for inorganic ions and metabolites through the mitochondrial outer membrane. Studies recently demonstrated that membrane lipids regulate its function. It remains, however, unclear how this regulation takes place. In this study, we show that phospholipids are key regulators of Phaseolus VDAC function and, furthermore, that the salt concentration modulates this regulation. Both selectivity and voltage dependence of Phaseolus VDAC are very sensitive to a change in the lipid polar head from PC to PE. Interestingly enough, this dependence is observed only at low salt concentration. Furthermore, significant changes in VDAC functional properties also occur with the gradual methylation of the PE group pointing to the role of subtle chemical variations in the lipid head group. The dependence of PcVDAC gating upon the introduction of a small mole fraction of PE in a PC bilayer has prompted us to propose the existence of a specific interaction site for PE on the outer surface of PcVDAC. Eventually, comparative modeling and molecular dynamics simulations suggest a potential mechanism to get insight into the anion selectivity enhancement of PcVDAC observed in PE relative to PC.
Collapse
Affiliation(s)
- Lamia Mlayeh
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium
| | - Eva-Maria Krammer
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium.
| | - Marc Léonetti
- I.R.P.H.E., Aix-Marseille Université, CNRS, Technopôle de Château-Gombert, F-13384, Marseille Cedex 13, France.
| | - Martine Prévost
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium.
| | - Fabrice Homblé
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Brussels, Belgium.
| |
Collapse
|
24
|
Gupta R, Ghosh S. Phosphorylation of purified mitochondrial Voltage-Dependent Anion Channel by c-Jun N-terminal Kinase-3 modifies channel voltage-dependence. BIOCHIMIE OPEN 2017; 4:78-87. [PMID: 29450145 PMCID: PMC5802065 DOI: 10.1016/j.biopen.2017.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/02/2017] [Indexed: 02/05/2023]
Abstract
Voltage-Dependent Anion Channel (VDAC) phosphorylated by c-Jun N-terminal Kinase-3 (JNK3) was incorporated into the bilayer lipid membrane. Single-channel electrophysiological properties of the native and the phosphorylated VDAC were compared. The open probability versus voltage curve of the native VDAC displayed symmetry around the voltage axis, whereas that of the phosphorylated VDAC showed asymmetry. This result indicates that phosphorylation by JNK3 modifies voltage-dependence of VDAC.
Collapse
Affiliation(s)
- Rajeev Gupta
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Subhendu Ghosh
- Department of Biophysics, University of Delhi South Campus, India
| |
Collapse
|