1
|
Sadeghi M, Rosenberger D. Dynamic framework for large-scale modeling of membranes and peripheral proteins. Methods Enzymol 2024; 701:457-514. [PMID: 39025579 DOI: 10.1016/bs.mie.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In this chapter, we present a novel computational framework to study the dynamic behavior of extensive membrane systems, potentially in interaction with peripheral proteins, as an alternative to conventional simulation methods. The framework effectively describes the complex dynamics in protein-membrane systems in a mesoscopic particle-based setup. Furthermore, leveraging the hydrodynamic coupling between the membrane and its surrounding solvent, the coarse-grained model grounds its dynamics in macroscopic kinetic properties such as viscosity and diffusion coefficients, marrying the advantages of continuum- and particle-based approaches. We introduce the theoretical background and the parameter-space optimization method in a step-by-step fashion, present the hydrodynamic coupling method in detail, and demonstrate the application of the model at each stage through illuminating examples. We believe this modeling framework to hold great potential for simulating membrane and protein systems at biological spatiotemporal scales, and offer substantial flexibility for further development and parametrization.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany.
| | | |
Collapse
|
2
|
Vo A, Murphy M, Phan P, Stone T, Prabhu R. Molecular Dynamics Simulation of Membrane Systems in the context of Traumatic Brain Injury. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023. [DOI: 10.1016/j.cobme.2023.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
3
|
Marrink SJ, Monticelli L, Melo MN, Alessandri R, Tieleman DP, Souza PCT. Two decades of Martini: Better beads, broader scope. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials University of Groningen Groningen The Netherlands
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Oeiras Portugal
| | - Riccardo Alessandri
- Pritzker School of Molecular Engineering University of Chicago Chicago Illinois USA
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences University of Calgary Alberta Canada
| | - Paulo C. T. Souza
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| |
Collapse
|
4
|
Sadeghi M, Noé F. Hydrodynamic coupling for particle-based solvent-free membrane models. J Chem Phys 2021; 155:114108. [PMID: 34551532 DOI: 10.1063/5.0061623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The great challenge with biological membrane systems is the wide range of scales involved, from nanometers and picoseconds for individual lipids to the micrometers and beyond millisecond for cellular signaling processes. While solvent-free coarse-grained membrane models are convenient for large-scale simulations and promising to provide insight into slow processes involving membranes, these models usually have unrealistic kinetics. One major obstacle is the lack of an equally convenient way of introducing hydrodynamic coupling without significantly increasing the computational cost of the model. To address this, we introduce a framework based on anisotropic Langevin dynamics, for which major in-plane and out-of-plane hydrodynamic effects are modeled via friction and diffusion tensors from analytical or semi-analytical solutions to Stokes hydrodynamic equations. Using this framework, in conjunction with our recently developed membrane model, we obtain accurate dispersion relations for planar membrane patches, both free-standing and in the vicinity of a wall. We briefly discuss how non-equilibrium dynamics is affected by hydrodynamic interactions. We also measure the surface viscosity of the model membrane and discuss the affecting dissipative mechanisms.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| |
Collapse
|
5
|
Nagao M, Kelley EG, Faraone A, Saito M, Yoda Y, Kurokuzu M, Takata S, Seto M, Butler PD. Relationship between Viscosity and Acyl Tail Dynamics in Lipid Bilayers. PHYSICAL REVIEW LETTERS 2021; 127:078102. [PMID: 34459628 DOI: 10.1103/physrevlett.127.078102] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Membrane viscosity is a fundamental property that controls molecular transport and structural rearrangements in lipid membranes. Given its importance in many cell processes, various experimental and computational methods have been developed to measure the membrane viscosity, yet the estimated values depend highly on the method and vary by orders of magnitude. Here we investigate the molecular origins of membrane viscosity by measuring the nanoscale dynamics of the lipid acyl tails using x-ray and neutron spectroscopy techniques. The results show that the membrane viscosity can be estimated from the structural relaxation times of the lipid tails.
Collapse
Affiliation(s)
- Michihiro Nagao
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899-6102, USA
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742-2115, USA
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - Elizabeth G Kelley
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899-6102, USA
| | - Antonio Faraone
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899-6102, USA
| | - Makina Saito
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka, 590-0494, Japan
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, 679-5198, Japan
| | - Masayuki Kurokuzu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka, 590-0494, Japan
| | - Shinichi Takata
- J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan
| | - Makoto Seto
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka, 590-0494, Japan
| | - Paul D Butler
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899-6102, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
6
|
Large-scale simulation of biomembranes incorporating realistic kinetics into coarse-grained models. Nat Commun 2020; 11:2951. [PMID: 32528158 PMCID: PMC7289815 DOI: 10.1038/s41467-020-16424-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Biomembranes are two-dimensional assemblies of phospholipids that are only a few nanometres thick, but form micrometre-sized structures vital to cellular function. Explicit molecular modelling of biologically relevant membrane systems is computationally expensive due to the large number of solvent particles and slow membrane kinetics. Coarse-grained solvent-free membrane models offer efficient sampling but sacrifice realistic kinetics, thereby limiting the ability to predict pathways and mechanisms of membrane processes. Here, we present a framework for integrating coarse-grained membrane models with continuum-based hydrodynamics. This framework facilitates efficient simulation of large biomembrane systems with large timesteps, while achieving realistic equilibrium and non-equilibrium kinetics. It helps to bridge between the nanometer/nanosecond spatiotemporal resolutions of coarse-grained models and biologically relevant time- and lengthscales. As a demonstration, we investigate fluctuations of red blood cells, with varying cytoplasmic viscosities, in 150-milliseconds-long trajectories, and compare kinetic properties against single-cell experimental observations.
Collapse
|
7
|
F Brandner A, Timr S, Melchionna S, Derreumaux P, Baaden M, Sterpone F. Modelling lipid systems in fluid with Lattice Boltzmann Molecular Dynamics simulations and hydrodynamics. Sci Rep 2019; 9:16450. [PMID: 31712588 PMCID: PMC6848203 DOI: 10.1038/s41598-019-52760-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/21/2019] [Indexed: 11/09/2022] Open
Abstract
In this work we present the coupling between Dry Martini, an efficient implicit solvent coarse-grained model for lipids, and the Lattice Boltzmann Molecular Dynamics (LBMD) simulation technique in order to include naturally hydrodynamic interactions in implicit solvent simulations of lipid systems. After validating the implementation of the model, we explored several systems where the action of a perturbing fluid plays an important role. Namely, we investigated the role of an external shear flow on the dynamics of a vesicle, the dynamics of substrate release under shear, and inquired the dynamics of proteins and substrates confined inside the core of a vesicle. Our methodology enables future exploration of a large variety of biological entities and processes involving lipid systems at the mesoscopic scale where hydrodynamics plays an essential role, e.g. by modulating the migration of proteins in the proximity of membranes, the dynamics of vesicle-based drug delivery systems, or, more generally, the behaviour of proteins in cellular compartments.
Collapse
Affiliation(s)
- Astrid F Brandner
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Stepan Timr
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Simone Melchionna
- ISC-CNR, Dipartimento di Fisica, Università Sapienza, P.le A. Moro 5, 00185, Rome, Italy.,Lexma Technology 1337 Massachusetts Avenue, Arlington, MA, 02476, USA
| | - Philippe Derreumaux
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Marc Baaden
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France.,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France. .,Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
8
|
Camley BA, Brown FLH. Motion of objects embedded in lipid bilayer membranes: Advection and effective viscosity. J Chem Phys 2019; 151:124104. [PMID: 31575184 DOI: 10.1063/1.5121418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An interfacial regularized Stokeslet scheme is presented to predict the motion of solid bodies (e.g., proteins or gel-phase domains) embedded within flowing lipid bilayer membranes. The approach provides a numerical route to calculate velocities and angular velocities in complex flow fields that are not amenable to simple Faxén-like approximations. Additionally, when applied to shearing motions, the calculations yield predictions for the effective surface viscosity of dilute rigid-body-laden membranes. In the case of cylindrical proteins, effective viscosity calculations are compared to two prior analytical predictions from the literature. Effective viscosity predictions for a dilute suspension of rod-shaped objects in the membrane are also presented.
Collapse
Affiliation(s)
- Brian A Camley
- Departments of Physics & Astronomy and Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Frank L H Brown
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
9
|
Zgorski A, Pastor RW, Lyman E. Surface Shear Viscosity and Interleaflet Friction from Nonequilibrium Simulations of Lipid Bilayers. J Chem Theory Comput 2019; 15:6471-6481. [PMID: 31476126 DOI: 10.1021/acs.jctc.9b00683] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonequilibrium simulation protocols based on shear deformations are applied to determine the surface viscosity and interleaflet friction of lipid bilayers. At high shear rates, a non-Newtonian shear thinning regime is observed, but lower shear rates yield a Newtonian plateau and results that are consistent with equilibrium measurements based on fluctuation-dissipation theorems. Application to all-atom bilayers modeled with the CHARMM36 parameter set yields values for the surface viscosity that are consistent with microscopic measurements based on membrane protein diffusion but are approximately 10 times lower than more macroscopic experimental measurements. The interleaflet friction is about 10 times lower than experimental measurements. Trends across different lipids, temperatures, and ternary liquid-disordered phase mixtures produce results that are consistent with experimental diffusion constants. Application of the protocol to the liquid-ordered phase fails to yield a Newtonian plateau, suggesting more complex rheology.
Collapse
Affiliation(s)
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | | |
Collapse
|
10
|
Recent Progress towards Chemically-Specific Coarse-Grained Simulation Models with Consistent Dynamical Properties. COMPUTATION 2019. [DOI: 10.3390/computation7030042] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Coarse-grained (CG) models can provide computationally efficient and conceptually simple characterizations of soft matter systems. While generic models probe the underlying physics governing an entire family of free-energy landscapes, bottom-up CG models are systematically constructed from a higher-resolution model to retain a high level of chemical specificity. The removal of degrees of freedom from the system modifies the relationship between the relative time scales of distinct dynamical processes through both a loss of friction and a “smoothing” of the free-energy landscape. While these effects typically result in faster dynamics, decreasing the computational expense of the model, they also obscure the connection to the true dynamics of the system. The lack of consistent dynamics is a serious limitation for CG models, which not only prevents quantitatively accurate predictions of dynamical observables but can also lead to qualitatively incorrect descriptions of the characteristic dynamical processes. With many methods available for optimizing the structural and thermodynamic properties of chemically-specific CG models, recent years have seen a stark increase in investigations addressing the accurate description of dynamical properties generated from CG simulations. In this review, we present an overview of these efforts, ranging from bottom-up parameterizations of generalized Langevin equations to refinements of the CG force field based on a Markov state modeling framework. We aim to make connections between seemingly disparate approaches, while laying out some of the major challenges as well as potential directions for future efforts.
Collapse
|
11
|
Marrink SJ, Corradi V, Souza PC, Ingólfsson HI, Tieleman DP, Sansom MS. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019; 119:6184-6226. [PMID: 30623647 PMCID: PMC6509646 DOI: 10.1021/acs.chemrev.8b00460] [Citation(s) in RCA: 470] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
Collapse
Affiliation(s)
- Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Paulo C.T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
12
|
Abstract
This Review illustrates the evaluation of permeability of lipid membranes from molecular dynamics (MD) simulation primarily using water and oxygen as examples. Membrane entrance, translocation, and exit of these simple permeants (one hydrophilic and one hydrophobic) can be simulated by conventional MD, and permeabilities can be evaluated directly by Fick's First Law, transition rates, and a global Bayesian analysis of the inhomogeneous solubility-diffusion model. The assorted results, many of which are applicable to simulations of nonbiological membranes, highlight the limitations of the homogeneous solubility diffusion model; support the utility of inhomogeneous solubility diffusion and compartmental models; underscore the need for comparison with experiment for both simple solvent systems (such as water/hexadecane) and well-characterized membranes; and demonstrate the need for microsecond simulations for even simple permeants like water and oxygen. Undulations, subdiffusion, fractional viscosity dependence, periodic boundary conditions, and recent developments in the field are also discussed. Last, while enhanced sampling methods and increasingly sophisticated treatments of diffusion add substantially to the repertoire of simulation-based approaches, they do not address directly the critical need for force fields with polarizability and multipoles, and constant pH methods.
Collapse
Affiliation(s)
- Richard M Venable
- Laboratory of Computational Biology, National Lung, Heart, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Andreas Krämer
- Laboratory of Computational Biology, National Lung, Heart, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Richard W Pastor
- Laboratory of Computational Biology, National Lung, Heart, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| |
Collapse
|
13
|
Visualizing Biological Membrane Organization and Dynamics. J Mol Biol 2019; 431:1889-1919. [DOI: 10.1016/j.jmb.2019.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 11/22/2022]
|
14
|
Miocchi P, Derreumaux P, Sterpone F, Melchionna S. Mesoscale biosimulations within a unified framework: from proteins to plasmids. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2018.1560439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Paolo Miocchi
- CNR-ISC, Institute for Complex Systems, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS Université Denis Diderot, Sorbonne Paris Cité, IBPC, Paris, France
- IUF, Institut Universitaire de France, Boulevard Saint Michel, Paris, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, UPR 9080, CNRS Université Denis Diderot, Sorbonne Paris Cité, IBPC, Paris, France
| | - Simone Melchionna
- CNR-ISC, Institute for Complex Systems, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
15
|
Smith DJ, Klauda JB, Sodt AJ. Simulation Best Practices for Lipid Membranes [Article v1.0]. LIVING JOURNAL OF COMPUTATIONAL MOLECULAR SCIENCE 2019; 1:5966. [PMID: 36204133 PMCID: PMC9534443 DOI: 10.33011/livecoms.1.1.5966] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
We establish a reliable and robust standardization of settings for practical molecular dynamics (MD) simulations of pure and mixed (single- and multi-component) lipid bilayer membranes. In lipid membranes research, particle-based molecular simulations are a powerful tool alongside continuum theory, lipidomics, and model, in vitro, and in vivo experiments. Molecular simulations can provide precise and reproducible spatiotemporal (atomic- and femtosecond-level) information about membrane structure, mechanics, thermodynamics, kinetics, and dynamics. Yet the simulation of lipid membranes can be a daunting task, given the uniqueness of lipid membranes relative to conventional liquid-liquid and solid-liquid interfaces, the immense and complex thermodynamic and statistical mechanical theory, the diversity of multiscale lipid models, limitations of modern computing power, the difficulty and ambiguity of simulation controls, finite size effects, competitive continuum simulation alternatives, and the desired application, including vesicle experiments and biological membranes. These issues can complicate an essential understanding of the field of lipid membranes, and create major bottlenecks to simulation advancement. In this article, we clarify these issues and present a consistent, thorough, and user-friendly framework for the design of state-of-the-art lipid membrane MD simulations. We hope to allow early-career researchers to quickly overcome common obstacles in the field of lipid membranes and reach maximal impact in their simulations.
Collapse
Affiliation(s)
- David J. Smith
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jeffery B. Klauda
- Department of Chemical and Biomolecular Engineering and Biophysics Program, University of Maryland, College Park, MD, USA
| | - Alexander J. Sodt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Angelescu DG. Coarse-grained simulation studies on the adsorption of polyelectrolyte complexes upon lipid membranes. Phys Chem Chem Phys 2019; 21:12446-12459. [DOI: 10.1039/c9cp01448a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Conformations of a polyelectrolyte complex irreversibly bound to a zwitterionic lipid bilayer.
Collapse
Affiliation(s)
- Daniel G. Angelescu
- Romanian Academy
- “Ilie Murgulescu” Institute of Physical Chemistry
- 060021 Bucharest
- Romania
| |
Collapse
|
17
|
Lyman E, Hsieh CL, Eggeling C. From Dynamics to Membrane Organization: Experimental Breakthroughs Occasion a "Modeling Manifesto". Biophys J 2018; 115:595-604. [PMID: 30075850 PMCID: PMC6103736 DOI: 10.1016/j.bpj.2018.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 11/19/2022] Open
Abstract
New experimental techniques, especially in the context of observing molecular dynamics, reveal the plasma membrane to be heterogeneous and "scale rich," from nanometers to microns and from microseconds to seconds. This is critical information, which shows that scale-dependent transport governs the molecular encounters that underlie cellular signaling. The data are rich and reaffirm the importance of the cortical cytoskeleton, protein aggregates, and lipidomic complexity on the statistics of molecular encounters. Moreover, the data demand simulation approaches with a particular set of features, hence the "manifesto." Together with the experimental data, simulations that satisfy these requirements hold the promise of a deeper understanding of membrane spatiotemporal organization. Several experimental breakthroughs in measuring molecular membrane dynamics are reviewed, the constraints that they place on simulations are discussed, and the status of simulation approaches that aim to meet them are detailed.
Collapse
Affiliation(s)
- Edward Lyman
- Department of Physics and Astrophysics, University of Delaware, Newark, Delaware; Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware.
| | - Chia-Lung Hsieh
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; Institute of Applied Optics, Friedrich-Schiller-University Jena, Jena, Germany; Leibniz Institute of Photonic Technology, Jena, Germany
| |
Collapse
|
18
|
Molecular dynamics simulations of lipid nanodiscs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2094-2107. [PMID: 29729280 DOI: 10.1016/j.bbamem.2018.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/02/2023]
Abstract
A lipid nanodisc is a discoidal lipid bilayer stabilized by proteins, peptides, or polymers on its edge. Nanodiscs have two important connections to structural biology. The first is associated with high-density lipoprotein (HDL), a particle with a variety of functionalities including lipid transport. Nascent HDL (nHDL) is a nanodisc stabilized by Apolipoprotein A-I (APOA1). Determining the structure of APOA1 and its mimetic peptides in nanodiscs is crucial to understanding pathologies related to HDL maturation and designing effective therapies. Secondly, nanodiscs offer non-detergent membrane-mimicking environments and greatly facilitate structural studies of membrane proteins. Although seemingly similar, natural and synthetic nanodiscs are different in that nHDL is heterogeneous in size, due to APOA1 elasticity, and gradually matures to become spherical. Synthetic nanodiscs, in contrast, should be homogenous, stable, and size-tunable. This report reviews previous molecular dynamics (MD) simulation studies of nanodiscs and illustrates convergence and accuracy issues using results from new multi-microsecond atomistic MD simulations. These new simulations reveal that APOA1 helices take 10-20 μs to rearrange on the nanodisc, while peptides take 2 μs to migrate from the disc surfaces to the edge. These systems can also become kinetically trapped depending on the initial conditions. For example, APOA1 was trapped in a biologically irrelevant conformation for the duration of a 10 μs trajectory; the peptides were similarly trapped for 5 μs. It therefore remains essential to validate MD simulations of these systems with experiments due to convergence and accuracy issues. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
|