1
|
Qiao P, Odenkirk MT, Zheng W, Wang Y, Chen J, Xu W, Baker ES. Elucidating the role of lipid interactions in stabilizing the membrane protein KcsA. Biophys J 2024; 123:3205-3216. [PMID: 39030907 PMCID: PMC11427772 DOI: 10.1016/j.bpj.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024] Open
Abstract
The significant effects of lipid binding on the functionality of potassium channel KcsA have been validated by brilliant studies. However, the specific interactions between lipids and KcsA, such as binding parameters for each binding event, have not been fully elucidated. In this study, we employed native mass spectrometry to investigate the binding of lipids to KcsA and their effects on the channel. The tetrameric structure of KcsA remains intact even in the absence of lipid binding. However, the subunit architecture of the E71A mutant, which is constantly open at low pH, relies on tightly associated copurified lipids. Furthermore, we observed that lipids exhibit weak binding to KcsA at high pH when the channel is at a closed/inactivation state in the absence of permeant cation K+. This feeble interaction potentially facilitates the association of K+ ions, leading to the transition of the channel to a resting closed/open state. Interestingly, both anionic and zwitterionic lipids strongly bind to KcsA at low pH when the channel is in an open/inactivation state. We also investigated the binding patterns of KcsA with natural lipids derived from E. coli and Streptomyces lividans. Interestingly, lipids from E. coli exhibited much stronger binding affinity compared to the lipids from S. lividans. Among the natural lipids from S. lividans, free fatty acids and triacylglycerols demonstrated the tightest binding to KcsA, whereas no detectable binding events were observed with natural phosphatidic acid lipids. These findings suggest that the lipid association pattern in S. lividans, the natural host for KcsA, warrants further investigation. In conclusion, our study sheds light on the role of lipids in stabilizing KcsA and highlights the importance of specific lipid-protein interactions in modulating its conformational states.
Collapse
Affiliation(s)
- Pei Qiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas.
| | - Melanie T Odenkirk
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Weiyi Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuchen Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jinhui Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Wenhao Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
2
|
Sawczyc H, Tatsuta T, Öster C, Kosteletos S, Lange S, Bohg C, Langer T, Lange A. Lipid-polymer nanoparticles to probe the native-like environment of intramembrane rhomboid protease GlpG and its activity. Nat Commun 2024; 15:7533. [PMID: 39215029 PMCID: PMC11364529 DOI: 10.1038/s41467-024-51989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Polymers can facilitate detergent-free extraction of membrane proteins into nanodiscs (e.g., SMALPs, DIBMALPs), incorporating both integral membrane proteins as well as co-extracted native membrane lipids. Lipid-only SMALPs and DIBMALPs have been shown to possess a unique property; the ability to exchange lipids through 'collisional lipid mixing'. Here we expand upon this mixing to include protein-containing DIBMALPs, using the rhomboid protease GlpG. Through lipidomic analysis before and after incubation with DMPC or POPC DIBMALPs, we show that lipids are rapidly exchanged between protein and lipid-only DIBMALPs, and can be used to identify bound or associated lipids through 'washing-in' exogenous lipids. Additionally, through the requirement of rhomboid proteases to cleave intramembrane substrates, we show that this mixing can be performed for two protein-containing DIBMALP populations, assessing the native function of intramembrane proteolysis and demonstrating that this mixing has no deleterious effects on protein stability or structure.
Collapse
Affiliation(s)
- Henry Sawczyc
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Takashi Tatsuta
- Max-Planck-Institute for Biology of Ageing, Department of Mitochondrial Proteostasis, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
| | - Carl Öster
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Spyridon Kosteletos
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Sascha Lange
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Claudia Bohg
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Thomas Langer
- Max-Planck-Institute for Biology of Ageing, Department of Mitochondrial Proteostasis, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
| | - Adam Lange
- Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany.
- Institut für Biologie, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115, Berlin, Germany.
| |
Collapse
|
3
|
Iwamoto M, Morito M, Oiki S, Nishitani Y, Yamamoto D, Matsumori N. Cardiolipin binding enhances KcsA channel gating via both its specific and dianion-monoanion interchangeable sites. iScience 2023; 26:108471. [PMID: 38077151 PMCID: PMC10709135 DOI: 10.1016/j.isci.2023.108471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 01/17/2024] Open
Abstract
KcsA is a potassium channel with a plethora of structural and functional information, but its activity in the KcsA-producing actinomycete membranes remains elusive. To determine lipid species involved in channel-modulation, a surface plasmon resonance (SPR)-based methodology, characterized by immobilization of membrane proteins under a membrane environment, was applied. Dianionic cardiolipin (CL) showed extremely higher affinity for KcsA than monoanionic lipids. The SPR experiments further demonstrated that CL bound not only to the N-terminal M0 helix, a lipid-sensor domain, but to the M0 helix-deleted mutant. In contrast, monoanionic lipids interacted primarily with the M0 helix. This indicates the presence of an alternative CL-binding site, plausibly in the transmembrane domain. Single-channel recordings demonstrated that CL enhanced channel opening in an M0-independent manner. Taken together, the action of monoanionic lipids is exclusively mediated by the M0 helix, while CL binds both the M0 helix and its specific site, further enhancing the channel activity.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Masayuki Morito
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 819-0395 Japan
| | - Shigetoshi Oiki
- Biomedial Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| | - Yudai Nishitani
- Department of Applied Physics, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Daisuke Yamamoto
- Department of Applied Physics, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 819-0395 Japan
| |
Collapse
|
4
|
Renart ML, Giudici AM, Coll-Díez C, González-Ros JM, Poveda JA. Anionic Phospholipids Shift the Conformational Equilibrium of the Selectivity Filter in the KcsA Channel to the Conductive Conformation: Predicted Consequences on Inactivation. Biomedicines 2023; 11:biomedicines11051376. [PMID: 37239046 DOI: 10.3390/biomedicines11051376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Here, we report an allosteric effect of an anionic phospholipid on a model K+ channel, KcsA. The anionic lipid in mixed detergent-lipid micelles specifically induces a change in the conformational equilibrium of the channel selectivity filter (SF) only when the channel inner gate is in the open state. Such change consists of increasing the affinity of the channel for K+, stabilizing a conductive-like form by maintaining a high ion occupancy in the SF. The process is highly specific in several aspects: First, lipid modifies the binding of K+, but not that of Na+, which remains unperturbed, ruling out a merely electrostatic phenomenon of cation attraction. Second, no lipid effects are observed when a zwitterionic lipid, instead of an anionic one, is present in the micelles. Lastly, the effects of the anionic lipid are only observed at pH 4.0, when the inner gate of KcsA is open. Moreover, the effect of the anionic lipid on K+ binding to the open channel closely emulates the K+ binding behaviour of the non-inactivating E71A and R64A mutant proteins. This suggests that the observed increase in K+ affinity caused by the bound anionic lipid should result in protecting the channel against inactivation.
Collapse
Affiliation(s)
- María Lourdes Renart
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain
| | - Ana Marcela Giudici
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain
| | - Carlos Coll-Díez
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain
| | - José M González-Ros
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain
| | - José A Poveda
- IDiBE-Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, 03202 Elche, Spain
| |
Collapse
|
5
|
Becker N, Frieg B, Gremer L, Kupreichyk T, Gardon L, Freiburg P, Neudecker P, Willbold D, Gohlke H, Heise H. Atomic Resolution Insights into pH Shift Induced Deprotonation Events in LS-Shaped Aβ(1-42) Amyloid Fibrils. J Am Chem Soc 2023; 145:2161-2169. [PMID: 36653015 PMCID: PMC9896559 DOI: 10.1021/jacs.2c09231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Alzheimer's disease is a neurodegenerative disorder associated with the deposition of misfolded aggregates of the amyloid-β protein (Aβ). Aβ(1-42) is one of the most aggregation-prone components in senile plaques of AD patients. We demonstrated that relatively homogeneous Aβ(1-42) fibrils with one predominant fold visible in solid-state NMR spectra can be obtained at acidic pH. The structure of these fibrils differs remarkably from some other polymorphs obtained at neutral pH. In particular, the entire N-terminal region is part of the rigid fibril core. Here, we investigate the effects of a pH shift on the stability and the fold of these fibrils at higher pH values. Fibril bundling at neutral pH values renders cryo-EM studies impractical, but solid-state NMR spectroscopy, molecular dynamics simulations, and biophysical methods provide residue-specific structural information under these conditions. The LS-fold of the Aβ(1-42) fibrils does not change over the complete pH range from pH 2 to pH 7; in particular, the N-terminus remains part of the fibril core. We observe changes in the protonation state of charged residues starting from pH 5 on a residue-specific level. The deprotonation of the C-terminal carboxyl group of A42 in the intermolecular salt bridge with D1 and K28 is slow on the NMR time scale, with a local pKa of 5.4, and local conformations of the involved residues are affected by deprotonation of A42. Thus, we demonstrate that this fibril form is stable at physiological pH values.
Collapse
Affiliation(s)
- Nina Becker
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry)
and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany,Physikalische
Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Benedikt Frieg
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry)
and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany,John
von Neumann Institute for Computing (NIC), Jülich Supercomputing
Centre (JSC), Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany
| | - Lothar Gremer
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry)
and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany,Physikalische
Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Tatsiana Kupreichyk
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry)
and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany,Physikalische
Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Luis Gardon
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry)
and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany,Physikalische
Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Patrick Freiburg
- Physikalische
Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Neudecker
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry)
and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany,Physikalische
Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Dieter Willbold
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry)
and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany,Physikalische
Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry)
and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany,John
von Neumann Institute for Computing (NIC), Jülich Supercomputing
Centre (JSC), Forschungszentrum Jülich
GmbH, 52425 Jülich, Germany,Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany,
| | - Henrike Heise
- Institute
of Biological Information Processing (IBI-7: Structural Biochemistry)
and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany,Physikalische
Biologie, Heinrich-Heine-Universität
Düsseldorf, 40225 Düsseldorf, Germany,
| |
Collapse
|
6
|
Kurauskas V, Tonelli M, Henzler-Wildman K. Full opening of helix bundle crossing does not lead to NaK channel activation. J Gen Physiol 2022; 154:213659. [PMID: 36326620 PMCID: PMC9640265 DOI: 10.1085/jgp.202213196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/11/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
A critical part of ion channel function is the ability to open and close in response to stimuli and thus conduct ions in a regulated fashion. While x-ray diffraction studies of ion channels suggested a general steric gating mechanism located at the helix bundle crossing (HBC), recent functional studies on several channels indicate that the helix bundle crossing is wide-open even in functionally nonconductive channels. Two NaK channel variants were crystallized in very different open and closed conformations, which served as important models of the HBC gating hypothesis. However, neither of these NaK variants is conductive in liposomes unless phenylalanine 92 is mutated to alanine (F92A). Here, we use NMR to probe distances at near-atomic resolution of the two NaK variants in lipid bicelles. We demonstrate that in contrast to the crystal structures, both NaK variants are in a fully open conformation, akin to Ca2+-bound MthK channel structure where the HBC is widely open. While we were not able to determine what a conductive NaK structure is like, our further inquiry into the gating mechanism suggests that the selectivity filter and pore helix are coupled to the M2 helix below and undergo changes in the structure when F92 is mutated. Overall, our data show that NaK exhibits coupling between the selectivity filter and HBC, similar to K+ channels, and has a more complex gating mechanism than previously thought, where the full opening of HBC does not lead to channel activation.
Collapse
Affiliation(s)
- Vilius Kurauskas
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin—Madison, Madison, WI
| | - Katherine Henzler-Wildman
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI
- National Magnetic Resonance Facility at Madison, University of Wisconsin—Madison, Madison, WI
- Correspondence to Katherine Henzler-Wildman:
| |
Collapse
|
7
|
Barret L, Schubeis T, Kugler V, Guyot L, Pintacuda G, Wagner R. Production and Preparation of Isotopically Labeled Human Membrane Proteins in Pichia pastoris for Fast-MAS-NMR Analyses. Methods Mol Biol 2022; 2507:201-221. [PMID: 35773584 DOI: 10.1007/978-1-0716-2368-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Membrane proteins (MPs) comprise about one-third of the human proteome, playing critical roles in many physiological processes and associated disorders. Consistently, they represent one of the largest classes of targets for the pharmaceutical industry. Their study at the molecular level is however particularly challenging, resulting in a severe lack of structural and dynamic information that is hindering their detailed functional characterization and the identification of novel potent drug candidates.Magic Angle Spinning (MAS) NMR is a reliable and efficient method for the determination of protein structures and dynamics and for the identification of ligand binding sites and equilibria. MAS-NMR is particularly well suited for MPs since they can be directly analysed in a native-like lipid bilayer environment but used to require aggravating large amounts of isotope enriched material. The frequent toxicity of human MP overexpression in bacterial cultures poses an additional hurdle, resulting in the need for alternative (and often more costly) expression systems. The recent development of very fast (up to 150 kHz) MAS probes has revolutionized the field of biomolecular solid-state NMR enabling higher spectral resolution with significant reduction of the required sample, rendering eukaryotic expression systems cost-effective.Here is presented a set of accessible procedures validated for the production and preparation of eukaryotic MPs for Fast-MAS 1H-detected NMR analysis. The methodology is illustrated with the human copper uptake protein hCTR1 recombinantly produced and 13C-15N uniformly labeled with the versatile and affordable Pichia pastoris system. Subsequent purification procedures allow the recovery of mg amounts that are then reconstituted into liposome formulations compatible with solid-state NMR handling and analysis.
Collapse
Affiliation(s)
- Lina Barret
- Biotechnology and Cell Signalling, IMPReSs Protein Facility, UMR7242 CNRS-University of Strasbourg, Illkirch, France
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs de Lyon (UMR 5082-CNRS, Université Claude Bernard Lyon 1, École Normale Supérieure Lyon), Université de Lyon, Villeurbanne, France
| | - Tobias Schubeis
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs de Lyon (UMR 5082-CNRS, Université Claude Bernard Lyon 1, École Normale Supérieure Lyon), Université de Lyon, Villeurbanne, France
| | - Valérie Kugler
- Biotechnology and Cell Signalling, IMPReSs Protein Facility, UMR7242 CNRS-University of Strasbourg, Illkirch, France
| | - Lucile Guyot
- Biotechnology and Cell Signalling, IMPReSs Protein Facility, UMR7242 CNRS-University of Strasbourg, Illkirch, France
- NovAliX, Illkirch, France
| | - Guido Pintacuda
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs de Lyon (UMR 5082-CNRS, Université Claude Bernard Lyon 1, École Normale Supérieure Lyon), Université de Lyon, Villeurbanne, France
| | - Renaud Wagner
- Biotechnology and Cell Signalling, IMPReSs Protein Facility, UMR7242 CNRS-University of Strasbourg, Illkirch, France.
| |
Collapse
|
8
|
Hendriks K, Öster C, Lange A. Structural Plasticity of the Selectivity Filter in Cation Channels. Front Physiol 2021; 12:792958. [PMID: 34950061 PMCID: PMC8689586 DOI: 10.3389/fphys.2021.792958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Ion channels allow for the passage of ions across biological membranes, which is essential for the functioning of a cell. In pore loop channels the selectivity filter (SF) is a conserved sequence that forms a constriction with multiple ion binding sites. It is becoming increasingly clear that there are several conformations and dynamic states of the SF in cation channels. Here we outline specific modes of structural plasticity observed in the SFs of various pore loop channels: disorder, asymmetry, and collapse. We summarize the multiple atomic structures with varying SF conformations as well as asymmetric and more dynamic states that were discovered recently using structural biology, spectroscopic, and computational methods. Overall, we discuss here that structural plasticity within the SF is a key molecular determinant of ion channel gating behavior.
Collapse
Affiliation(s)
- Kitty Hendriks
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Carl Öster
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
9
|
Mechanisms underlying drug-mediated regulation of membrane protein function. Proc Natl Acad Sci U S A 2021; 118:2113229118. [PMID: 34753824 DOI: 10.1073/pnas.2113229118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
The hydrophobic coupling between membrane proteins and their host lipid bilayer provides a mechanism by which bilayer-modifying drugs may alter protein function. Drug regulation of membrane protein function thus may be mediated by both direct interactions with the protein and drug-induced alterations of bilayer properties, in which the latter will alter the energetics of protein conformational changes. To tease apart these mechanisms, we examine how the prototypical, proton-gated bacterial potassium channel KcsA is regulated by bilayer-modifying drugs using a fluorescence-based approach to quantify changes in both KcsA function and lipid bilayer properties (using gramicidin channels as probes). All tested drugs inhibited KcsA activity, and the changes in the different gating steps varied with bilayer thickness, suggesting a coupling to the bilayer. Examining the correlations between changes in KcsA gating steps and bilayer properties reveals that drug-induced regulation of membrane protein function indeed involves bilayer-mediated mechanisms. Both direct, either specific or nonspecific, binding and bilayer-mediated mechanisms therefore are likely to be important whenever there is overlap between the concentration ranges at which a drug alters membrane protein function and bilayer properties. Because changes in bilayer properties will impact many diverse membrane proteins, they may cause indiscriminate changes in protein function.
Collapse
|
10
|
Function-Related Dynamics in Multi-Spanning Helical Membrane Proteins Revealed by Solution NMR. MEMBRANES 2021; 11:membranes11080604. [PMID: 34436367 PMCID: PMC8398610 DOI: 10.3390/membranes11080604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 01/02/2023]
Abstract
A primary biological function of multi-spanning membrane proteins is to transfer information and/or materials through a membrane by changing their conformations. Therefore, particular dynamics of the membrane proteins are tightly associated with their function. The semi-atomic resolution dynamics information revealed by NMR is able to discriminate function-related dynamics from random fluctuations. This review will discuss several studies in which quantitative dynamics information by solution NMR has contributed to revealing the structural basis of the function of multi-spanning membrane proteins, such as ion channels, GPCRs, and transporters.
Collapse
|
11
|
Pérez-Conesa S, Keeler EG, Zhang D, Delemotte L, McDermott AE. Informing NMR experiments with molecular dynamics simulations to characterize the dominant activated state of the KcsA ion channel. J Chem Phys 2021; 154:165102. [PMID: 33940802 PMCID: PMC9250420 DOI: 10.1063/5.0040649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/26/2021] [Indexed: 11/14/2022] Open
Abstract
As the first potassium channel with an x-ray structure determined, and given its homology to eukaryotic channels, the pH-gated prokaryotic channel KcsA has been extensively studied. Nevertheless, questions related, in particular, to the allosteric coupling between its gates remain open. The many currently available x-ray crystallography structures appear to correspond to various stages of activation and inactivation, offering insights into the molecular basis of these mechanisms. Since these studies have required mutations, complexation with antibodies, and substitution of detergents in place of lipids, examining the channel under more native conditions is desirable. Solid-state nuclear magnetic resonance (SSNMR) can be used to study the wild-type protein under activating conditions (low pH), at room temperature, and in bacteriomimetic liposomes. In this work, we sought to structurally assign the activated state present in SSNMR experiments. We used a combination of molecular dynamics (MD) simulations, chemical shift prediction algorithms, and Bayesian inference techniques to determine which of the most plausible x-ray structures resolved to date best represents the activated state captured in SSNMR. We first identified specific nuclei with simulated NMR chemical shifts that differed significantly when comparing partially open vs fully open ensembles from MD simulations. The simulated NMR chemical shifts for those specific nuclei were then compared to experimental ones, revealing that the simulation of the partially open state was in good agreement with the SSNMR data. Nuclei that discriminate effectively between partially and fully open states belong to residues spread over the sequence and provide a molecular level description of the conformational change.
Collapse
Affiliation(s)
- Sergio Pérez-Conesa
- KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Eric G. Keeler
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Dongyu Zhang
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Lucie Delemotte
- KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Ann E. McDermott
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
12
|
Zhang D, Howarth GS, Parkin LA, McDermott AE. NMR studies of lipid regulation of the K + channel KcsA. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183491. [PMID: 33065136 PMCID: PMC9189731 DOI: 10.1016/j.bbamem.2020.183491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 11/18/2022]
Abstract
The membrane environment, including specific lipid characteristics, plays important roles in the folding, stability, and gating of the prokaryotic potassium channel KcsA. Here we study the effect of membrane composition on the population of various functional states of KcsA. The spectra provide support for the previous observation of copurifying phospholipids with phosphoglycerol headgroups. Additional, exogenously added anionic lipids do not appear to be required to stabilize the open conductive conformation of KcsA, which was previously thought to be the case. On the contrary, NMR-based binding studies indicate that including anionic lipids in proteoliposomes at acidic pH leads to a weaker potassium ion affinity at the selectivity filter. Since K+ ion loss leads to channel inactivation, these results suggest that anionic lipids promote channel inactivation.
Collapse
Affiliation(s)
- Dongyu Zhang
- Department of Chemistry, Columbia University, New York, NY, 10027, United States of America
| | - Gary S Howarth
- Department of Chemistry, Columbia University, New York, NY, 10027, United States of America
| | - Lia A Parkin
- Department of Chemistry, Columbia University, New York, NY, 10027, United States of America
| | - Ann E McDermott
- Department of Chemistry, Columbia University, New York, NY, 10027, United States of America.
| |
Collapse
|
13
|
Miao Y, Lam D, Zhuang J, Zhu J, Poget SF, Tang M. Membrane Topology of an Ion Channel Detected by Solid-State Nuclear Magnetic Resonance and Paramagnetic Effects. J Phys Chem Lett 2020; 11:9795-9801. [PMID: 33151058 DOI: 10.1021/acs.jpclett.0c02014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ion channels are often targeted by toxins or other ligands to modify their channel activities and alter ion conductance. Interactions between toxins and ion channels could result in changes in membrane insertion depth for residues close to the binding site. Paramagnetic solid-state nuclear magnetic resonance (SSNMR) has shown great potential in providing structural information on membrane samples. We used KcsA as a model ion channel to investigate how the paramagnetic effects of Mn2+ and Dy3+ ions with headgroup-modified chelator lipids would influence the SSNMR signals of membrane proteins in proteoliposomes. Spectral comparisons have shown significant changes of peak intensities for the residues in the loop or terminal regions due to paramagnetic effects corresponding to the close proximity to the membrane surface. Hence, these results demonstrate that paramagnetic SSNMR can be used to detect surface residues based on the topology and membrane insertion properties for integral membrane proteins.
Collapse
Affiliation(s)
- Yimin Miao
- Department of Chemistry, College of Staten Island-Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Dennis Lam
- Department of Chemistry, College of Staten Island-Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Jianqin Zhuang
- Department of Chemistry, College of Staten Island-Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Jing Zhu
- Department of Chemistry, College of Staten Island-Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Sebastien F Poget
- Department of Chemistry, College of Staten Island-Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Ming Tang
- Department of Chemistry, College of Staten Island-Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
14
|
Yeh V, Goode A, Bonev BB. Membrane Protein Structure Determination and Characterisation by Solution and Solid-State NMR. BIOLOGY 2020; 9:E396. [PMID: 33198410 PMCID: PMC7697852 DOI: 10.3390/biology9110396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022]
Abstract
Biological membranes define the interface of life and its basic unit, the cell. Membrane proteins play key roles in membrane functions, yet their structure and mechanisms remain poorly understood. Breakthroughs in crystallography and electron microscopy have invigorated structural analysis while failing to characterise key functional interactions with lipids, small molecules and membrane modulators, as well as their conformational polymorphism and dynamics. NMR is uniquely suited to resolving atomic environments within complex molecular assemblies and reporting on membrane organisation, protein structure, lipid and polysaccharide composition, conformational variations and molecular interactions. The main challenge in membrane protein studies at the atomic level remains the need for a membrane environment to support their fold. NMR studies in membrane mimetics and membranes of increasing complexity offer close to native environments for structural and molecular studies of membrane proteins. Solution NMR inherits high resolution from small molecule analysis, providing insights from detergent solubilised proteins and small molecular assemblies. Solid-state NMR achieves high resolution in membrane samples through fast sample spinning or sample alignment. Recent developments in dynamic nuclear polarisation NMR allow signal enhancement by orders of magnitude opening new opportunities for expanding the applications of NMR to studies of native membranes and whole cells.
Collapse
Affiliation(s)
| | | | - Boyan B. Bonev
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; (V.Y.); (A.G.)
| |
Collapse
|
15
|
Iwahashi Y, Toyama Y, Imai S, Itoh H, Osawa M, Inoue M, Shimada I. Conformational equilibrium shift underlies altered K + channel gating as revealed by NMR. Nat Commun 2020; 11:5168. [PMID: 33057011 PMCID: PMC7560842 DOI: 10.1038/s41467-020-19005-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/23/2020] [Indexed: 01/30/2023] Open
Abstract
The potassium ion (K+) channel plays a fundamental role in controlling K+ permeation across the cell membrane and regulating cellular excitabilities. Mutations in the transmembrane pore reportedly affect the gating transitions of K+ channels, and are associated with the onset of neural disorders. However, due to the lack of structural and dynamic insights into the functions of K+ channels, the structural mechanism by which these mutations cause K+ channel dysfunctions remains elusive. Here, we used nuclear magnetic resonance spectroscopy to investigate the structural mechanism underlying the decreased K+-permeation caused by disease-related mutations, using the prokaryotic K+ channel KcsA. We demonstrated that the conformational equilibrium in the transmembrane region is shifted toward the non-conductive state with the closed intracellular K+-gate in the disease-related mutant. We also demonstrated that this equilibrium shift is attributable to the additional steric contacts in the open-conductive structure, which are evoked by the increased side-chain bulkiness of the residues lining the transmembrane helix. Our results suggest that the alteration in the conformational equilibrium of the intracellular K+-gate is one of the fundamental mechanisms underlying the dysfunctions of K+ channels caused by disease-related mutations. Potassium ion channels control K+ permeation across cell membranes and mutations that cause cardiovascular and neural diseases are known. Here, the authors perform NMR measurements with the prototypical K+ channel from Streptomyces lividans, KcsA and characterise the effects of disease causing mutations on the conformational dynamics of K+ channels in a physiological solution environment.
Collapse
Affiliation(s)
- Yuta Iwahashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuki Toyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shunsuke Imai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Keio University Faculty of Pharmacy, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,RIKEN Center for Biosystems Dynamics Research, Kanagawa, 230-0045, Japan.
| |
Collapse
|
16
|
Yang L, Pierce S, Chatterjee I, Craviso GL, Leblanc N. Paradoxical effects on voltage-gated Na+ conductance in adrenal chromaffin cells by twin vs single high intensity nanosecond electric pulses. PLoS One 2020; 15:e0234114. [PMID: 32516325 PMCID: PMC7282663 DOI: 10.1371/journal.pone.0234114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/19/2020] [Indexed: 01/17/2023] Open
Abstract
We previously reported that a single 5 ns high intensity electric pulse (NEP) caused an E-field-dependent decrease in peak inward voltage-gated Na+ current (INa) in isolated bovine adrenal chromaffin cells. This study explored the effects of a pair of 5 ns pulses on INa recorded in the same cell type, and how varying the E-field amplitude and interval between the pulses altered its response. Regardless of the E-field strength (5 to 10 MV/m), twin NEPs having interpulse intervals ≥ than 5 s caused the inhibition of TTX-sensitive INa to approximately double relative to that produced by a single pulse. However, reducing the interval from 1 s to 10 ms between twin NEPs at E-fields of 5 and 8 MV/m but not 10 MV/m decreased the magnitude of the additive inhibitory effect by the second pulse in a pair on INa. The enhanced inhibitory effects of twin vs single NEPs on INa were not due to a shift in the voltage-dependence of steady-state activation and inactivation but were associated with a reduction in maximal Na+ conductance. Paradoxically, reducing the interval between twin NEPs at 5 or 8 MV/m but not 10 MV/m led to a progressive interval-dependent recovery of INa, which after 9 min exceeded the level of INa reached following the application of a single NEP. Disrupting lipid rafts by depleting membrane cholesterol with methyl-β-cyclodextrin enhanced the inhibitory effects of twin NEPs on INa and ablated the progressive recovery of this current at short twin pulse intervals, suggesting a complete dissociation of the inhibitory effects of twin NEPs on this current from their ability to stimulate its recovery. Our results suggest that in contrast to a single NEP, twin NEPs may influence membrane lipid rafts in a manner that enhances the trafficking of newly synthesized and/or recycling of endocytosed voltage-gated Na+ channels, thereby pointing to novel means to regulate ion channels in excitable cells.
Collapse
Affiliation(s)
- Lisha Yang
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Sophia Pierce
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Indira Chatterjee
- Department of Electrical and Biomedical Engineering, College of Engineering, University of Nevada, Reno, NV, United States of America
| | - Gale L. Craviso
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Normand Leblanc
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| |
Collapse
|
17
|
Poveda JA, Giudici AM, Renart ML, Millet O, Morales A, González-Ros JM, Oakes V, Furini S, Domene C. Modulation of the potassium channel KcsA by anionic phospholipids: Role of arginines at the non-annular lipid binding sites. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183029. [PMID: 31351058 DOI: 10.1016/j.bbamem.2019.183029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 10/26/2022]
Abstract
The role of arginines R64 and R89 at non-annular lipid binding sites of KcsA, on the modulation of channel activity by anionic lipids has been investigated. In wild-type (WT) KcsA reconstituted into asolectin lipid membranes, addition of phosphatidic acid (PA) drastically reduces inactivation in macroscopic current recordings. Consistent to this, PA increases current amplitude, mean open time and open probability at the single channel level. Moreover, kinetic analysis reveals that addition of PA causes longer open channel lifetimes and decreased closing rate constants. Effects akin to those of PA on WT-KcsA are observed when R64 and/or R89 are mutated to alanine, regardless of the added anionic lipids. We interpret these results as a consequence of interactions between the arginines and the anionic PA bound to the non-annular sites. NMR data shows indeed that at least R64 is involved in binding PA. Moreover, molecular dynamics (MD) simulations predict that R64, R89 and surrounding residues such as T61, mediate persistent binding of PA to the non-annular sites. Channel inactivation depends on interactions within the inactivation triad (E71-D80-W67) behind the selectivity filter. Therefore, it is expected that such interactions are affected when PA binds the arginines at the non-annular sites. In support of this, MD simulations reveal that PA binding prevents interaction between R89 and D80, which seems critical to the effectiveness of the inactivation triad. This mechanism depends on the stability of the bound lipid, favoring anionic headgroups such as that of PA, which thrive on the positive charge of the arginines.
Collapse
Affiliation(s)
- José A Poveda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, E-03202, Alicante, Spain
| | - A Marcela Giudici
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, E-03202, Alicante, Spain
| | - M Lourdes Renart
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, E-03202, Alicante, Spain
| | - Oscar Millet
- Structural Biology Unit, CICbioGUNE, Bizkaia Technology Park, Derio, 48160, Vizcaya, Spain
| | - Andrés Morales
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, E-03080 Alicante, Spain
| | - José M González-Ros
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, E-03202, Alicante, Spain.
| | - Victoria Oakes
- Department of Chemistry, University of Bath, 1 South Bldg., Claverton Down, Bath BA2 7AY, United Kingdom
| | - Simone Furini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Carmen Domene
- Department of Chemistry, University of Bath, 1 South Bldg., Claverton Down, Bath BA2 7AY, United Kingdom; Department of Chemistry, University of Oxford, Oxford OX1 3TA, Oxford, United Kingdom.
| |
Collapse
|
18
|
Xu Y, McDermott AE. Inactivation in the potassium channel KcsA. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 3:100009. [PMID: 32647814 PMCID: PMC7337057 DOI: 10.1016/j.yjsbx.2019.100009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 05/17/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
C-type inactivation in potassium channels is a nearly universal regulatory mechanism. A major hypothesis states that C-type inactivation involves ion loss at the selectivity filter as an allosteric response to activation. NMR is used to probe protein conformational changes in response to pH and [K+], demonstrating that H+ and K+ binding are allosterically coupled in KcsA. The lipids are integrated parts of potassium channels in terms of structure, energetics and function.
Inactivation, the slow cessation of transmission after activation, is a general feature of potassium channels. It is essential for their function, and malfunctions in inactivation leads to numerous pathologies. The detailed mechanism for the C-type inactivation, distinct from the N-type inactivation, remains an active area of investigation. Crystallography, computational simulations, and NMR have greatly enriched our understanding of the process. Here we review the major hypotheses regarding C-type inactivation, particularly focusing on the key role played by NMR studies of the prokaryotic potassium channel KcsA, which serves as a good model for voltage gated mammalian channels.
Collapse
Affiliation(s)
- Yunyao Xu
- Department of Chemistry, Columbia University, New York, NY 10027, United States
| | - Ann E McDermott
- Department of Chemistry, Columbia University, New York, NY 10027, United States
| |
Collapse
|
19
|
Formation of the β-barrel assembly machinery complex in lipid bilayers as seen by solid-state NMR. Nat Commun 2018; 9:4135. [PMID: 30297837 PMCID: PMC6175958 DOI: 10.1038/s41467-018-06466-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/04/2018] [Indexed: 11/27/2022] Open
Abstract
The β-barrel assembly machinery (BAM) is a pentameric complex (BamA–E), which catalyzes the essential process of β-barrel protein insertion into the outer membrane of E. coli. Thus far, a detailed understanding of the insertion mechanism has been elusive but recent results suggest that local protein motion, in addition to the surrounding membrane environment, may be of critical relevance. We have devised a high-sensitivity solid-state NMR approach to directly probe protein motion and the structural changes associated with BAM complex assembly in lipid bilayers. Our results reveal how essential BamA domains, such as the interface formed by the polypeptide transport associated domains P4 and P5 become stabilized after complex formation and suggest that BamA β-barrel opening and P5 reorientation is directly related to complex formation in membranes. Both the lateral gate, as well as P5, exhibit local dynamics, a property that could play an integral role in substrate recognition and insertion. The β-barrel assembly machinery (BAM) catalyzes β-barrel protein insertion into the outer membrane of E.coli. Here authors employ high-sensitivity solid-state NMR to reveal how the lipid environment and formation of the BamA-BamCDE complex affect BamA structure and dynamics with regards to the lateral gate and the β-barrel associated domains.
Collapse
|
20
|
Delemotte L. Opening leads to closing: Allosteric crosstalk between the activation and inactivation gates in KcsA. J Gen Physiol 2018; 150:1356-1359. [PMID: 30143551 PMCID: PMC6168244 DOI: 10.1085/jgp.201812161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Delemotte appraises new computational work revealing that the intracellular activation gate must open for C-type inactivation to occur in K+ channels.
Collapse
Affiliation(s)
- Lucie Delemotte
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
21
|
Li J, Ostmeyer J, Cuello LG, Perozo E, Roux B. Rapid constriction of the selectivity filter underlies C-type inactivation in the KcsA potassium channel. J Gen Physiol 2018; 150:1408-1420. [PMID: 30072373 PMCID: PMC6168234 DOI: 10.1085/jgp.201812082] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/12/2018] [Indexed: 12/27/2022] Open
Abstract
C-type inactivation in K+ channels is thought to be a result of constriction of the selectivity filter. By using MD simulations, Li et al. show that rapid constriction occurs within 1–2 s when the intracellular activation gate is fully open, but not when the gate is closed or partially open. C-type inactivation is a time-dependent process observed in many K+ channels whereby prolonged activation by an external stimulus leads to a reduction in ionic conduction. While C-type inactivation is thought to be a result of a constriction of the selectivity filter, the local dynamics of the process remain elusive. Here, we use molecular dynamics (MD) simulations of the KcsA channel to elucidate the nature of kinetically delayed activation/inactivation gating coupling. Microsecond-scale MD simulations based on the truncated form of the KcsA channel (C-terminal domain deleted) provide a first glimpse of the onset of C-type inactivation. We observe over multiple trajectories that the selectivity filter consistently undergoes a spontaneous and rapid (within 1–2 µs) transition to a constricted conformation when the intracellular activation gate is fully open, but remains in the conductive conformation when the activation gate is closed or partially open. Multidimensional umbrella sampling potential of mean force calculations and nonequilibrium voltage-driven simulations further confirm these observations. Electrophysiological measurements show that the truncated form of the KcsA channel inactivates faster and greater than full-length KcsA, which is consistent with truncated KcsA opening to a greater degree because of the absence of the C-terminal domain restraint. Together, these results imply that the observed kinetics underlying activation/inactivation gating reflect a rapid conductive-to-constricted transition of the selectivity filter that is allosterically controlled by the slow opening of the intracellular gate.
Collapse
Affiliation(s)
- Jing Li
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Jared Ostmeyer
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Eduardo Perozo
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| |
Collapse
|
22
|
Klaerke DA, Tejada MDLA, Christensen VG, Lassen M, Pedersen PA, Calloe K. Reconstitution and Electrophysiological Characterization of Ion Channels in Lipid Bilayers. ACTA ACUST UNITED AC 2018; 81:e37. [PMID: 29927074 DOI: 10.1002/cpph.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Detergent-solubilized purified ion channels can be reconstituted into lipid bilayers for electrophysiological analysis. Traditionally, ion channels were inserted into vesicles and subsequently fused with planar "black lipid membranes" formed from lipids dissolved in a hydrophobic solvent such as decane. Provided in this article is a step-by-step guide to reconstitute purified ion channel proteins into giant unilamellar vesicles (GUVs). This procedure results in the formation of proteoliposomes that can be used for planar bilayer formation and electrophysiological characterization of single-channel currents. By using preformed GUVs it is possible to omit the membrane solvent. Compared to traditional preparations, the lipid bilayers formed from GUVs provide an environment that more closely resembles the native cell membrane. Also described is an alternate protocol that entails the production of planar lipid bilayers from GUVs onto which proteins in detergent are added. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Dan A Klaerke
- Department of Veterinary and Animal Sciences, Section for Anatomy, Biochemistry, and Physiology, University of Copenhagen, Frederiksberg, Denmark
| | - Maria de Los Angeles Tejada
- Department of Veterinary and Animal Sciences, Section for Anatomy, Biochemistry, and Physiology, University of Copenhagen, Frederiksberg, Denmark
| | - Vibeke Grøsfjeld Christensen
- Department of Veterinary and Animal Sciences, Section for Anatomy, Biochemistry, and Physiology, University of Copenhagen, Frederiksberg, Denmark
| | - Mette Lassen
- Department of Veterinary and Animal Sciences, Section for Anatomy, Biochemistry, and Physiology, University of Copenhagen, Frederiksberg, Denmark
| | - Per Amstrup Pedersen
- Department of Biology, Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine Calloe
- Department of Veterinary and Animal Sciences, Section for Anatomy, Biochemistry, and Physiology, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
23
|
Abstract
Solid-state nuclear magnetic resonance (SSNMR) spectroscopy elucidates membrane protein structures and dynamics in atomic detail to yield mechanistic insights. By interrogating membrane proteins in phospholipid bilayers that closely resemble biological membranes, SSNMR spectroscopists have revealed ion conduction mechanisms, substrate transport dynamics, and oligomeric interfaces of seven-transmembrane helix proteins. Research has also identified conformational plasticity underlying virus-cell membrane fusions by complex protein machineries, and β-sheet folding and assembly by amyloidogenic proteins bound to lipid membranes. These studies collectively show that membrane proteins exhibit extensive structural plasticity to carry out their functions. Because of the inherent dependence of NMR frequencies on molecular orientations and the sensitivity of NMR frequencies to dynamical processes on timescales from nanoseconds to seconds, SSNMR spectroscopy is ideally suited to elucidate such structural plasticity, local and global conformational dynamics, protein-lipid and protein-ligand interactions, and protonation states of polar residues. New sensitivity-enhancement techniques, resolution enhancement by ultrahigh magnetic fields, and the advent of 3D and 4D correlation NMR techniques are increasingly aiding these mechanistically important structural studies.
Collapse
Affiliation(s)
- Venkata S Mandala
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Jonathan K Williams
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| |
Collapse
|
24
|
Visscher KM, Medeiros-Silva J, Mance D, Rodrigues JPGLM, Daniëls M, Bonvin AMJJ, Baldus M, Weingarth M. Supramolekulare Organisation und funktionale Auswirkungen von Ballungen von K +
-Kanälen in Membranen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Koen M. Visscher
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Deni Mance
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - João P. G. L. M. Rodrigues
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Mark Daniëls
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Alexandre M. J. J. Bonvin
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry; Utrecht University; Pandualaan 8 3584 CH Utrecht Niederlande
| |
Collapse
|
25
|
Visscher KM, Medeiros‐Silva J, Mance D, Rodrigues JPGLM, Daniëls M, Bonvin AMJJ, Baldus M, Weingarth M. Supramolecular Organization and Functional Implications of K + Channel Clusters in Membranes. Angew Chem Int Ed Engl 2017; 56:13222-13227. [PMID: 28685953 PMCID: PMC5655921 DOI: 10.1002/anie.201705723] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/29/2017] [Indexed: 11/19/2022]
Abstract
The segregation of cellular surfaces in heterogeneous patches is considered to be a common motif in bacteria and eukaryotes that is underpinned by the observation of clustering and cooperative gating of signaling membrane proteins such as receptors or channels. Such processes could represent an important cellular strategy to shape signaling activity. Hence, structural knowledge of the arrangement of channels or receptors in supramolecular assemblies represents a crucial step towards a better understanding of signaling across membranes. We herein report on the supramolecular organization of clusters of the K+ channel KcsA in bacterial membranes, which was analyzed by a combination of DNP-enhanced solid-state NMR experiments and MD simulations. We used solid-state NMR spectroscopy to determine the channel-channel interface and to demonstrate the strong correlation between channel function and clustering, which suggests a yet unknown mechanism of communication between K+ channels.
Collapse
Affiliation(s)
- Koen M. Visscher
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - João Medeiros‐Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - Deni Mance
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - João P. G. L. M. Rodrigues
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - Mark Daniëls
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - Alexandre M. J. J. Bonvin
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of ChemistryUtrecht UniversityPandualaan 83584CHUtrechtThe Netherlands
| |
Collapse
|
26
|
Medeiros-Silva J, Jekhmane S, Baldus M, Weingarth M. Hydrogen bond strength in membrane proteins probed by time-resolved 1H-detected solid-state NMR and MD simulations. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 87:80-85. [PMID: 28342732 DOI: 10.1016/j.ssnmr.2017.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 06/06/2023]
Abstract
1H-detected solid-state NMR in combination with 1H/2D exchange steps allows for the direct identification of very strong hydrogen bonds in membrane proteins. On the example of the membrane-embedded potassium channel KcsA, we quantify the longevity of such very strong hydrogen bonds by combining time-resolved 1H-detected solid-state NMR experiments and molecular dynamics simulations. In particular, we show that the carboxyl-side chain of the highly conserved residue Glu51 is involved in ultra-strong hydrogen bonds, which are fully-water-exposed and yet stable for weeks. The astonishing stability of these hydrogen bonds is important for the structural integrity of potassium channels, which we further corroborate by computational studies.
Collapse
Affiliation(s)
- João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH Utrecht, The Netherlands
| | - Shehrazade Jekhmane
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH Utrecht, The Netherlands
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Pandualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
27
|
Hysteresis of KcsA potassium channel's activation- deactivation gating is caused by structural changes at the channel's selectivity filter. Proc Natl Acad Sci U S A 2017; 114:3234-3239. [PMID: 28265056 DOI: 10.1073/pnas.1618101114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mode-shift or hysteresis has been reported in ion channels. Voltage-shift for gating currents is well documented for voltage-gated cation channels (VGCC), and it is considered a voltage-sensing domain's (VSD) intrinsic property. However, uncoupling the Shaker K+ channel's pore domain (PD) from the VSD prevented the mode-shift of the gating currents. Consequently, it was proposed that an open-state stabilization of the PD imposes a mechanical load on the VSD, which causes its mode-shift. Furthermore, the mode-shift displayed by hyperpolarization-gated cation channels is likely caused by structural changes at the channel's PD similar to those underlying C-type inactivation. To demonstrate that the PD of VGCC undergoes hysteresis, it is imperative to study its gating process in the absence of the VSD. A back-door strategy is to use KcsA (a K+ channel from the bacteria Streptomyces lividans) as a surrogate because it lacks a VSD and exhibits an activation coupled to C-type inactivation. By directly measuring KcsA's activation gate opening and closing in conditions that promote or halt C-type inactivation, we have found (i) that KcsA undergoes mode-shift of gating when having K+ as the permeant ion; (ii) that Cs+ or Rb+, known to halt C-inactivation, prevented mode-shift of gating; and (iii) that, in the total absence of C-type inactivation, KcsA's mode-shift was prevented. Finally, our results demonstrate that an allosteric communication causes KcsA's activation gate to "remember" the conformation of the selectivity filter, and hence KcsA requires a different amount of energy for opening than for closing.
Collapse
|