1
|
Schmuck B, Greco G, Pessatti TB, Sonavane S, Langwallner V, Arndt T, Rising A. Strategies for Making High-Performance Artificial Spider Silk Fibers. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2305040. [PMID: 39355086 PMCID: PMC11440630 DOI: 10.1002/adfm.202305040] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/08/2023] [Indexed: 10/03/2024]
Abstract
Artificial spider silk is an attractive material for many technical applications since it is a biobased fiber that can be produced under ambient conditions but still outcompetes synthetic fibers (e.g., Kevlar) in terms of toughness. Industrial use of this material requires bulk-scale production of recombinant spider silk proteins in heterologous host and replication of the pristine fiber's mechanical properties. High molecular weight spider silk proteins can be spun into fibers with impressive mechanical properties, but the production levels are too low to allow commercialization of the material. Small spider silk proteins, on the other hand, can be produced at yields that are compatible with industrial use, but the mechanical properties of such fibers need to be improved. Here, the literature on wet-spinning of artificial spider silk fibers is summarized and analyzed with a focus on mechanical performance. Furthermore, several strategies for how to improve the properties of such fibers, including optimized protein composition, smarter spinning setups, innovative protein engineering, chemical and physical crosslinking as well as the incorporation of nanomaterials in composite fibers, are outlined and discussed.
Collapse
Affiliation(s)
- Benjamin Schmuck
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Gabriele Greco
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tomas Bohn Pessatti
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Sumalata Sonavane
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Viktoria Langwallner
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tina Arndt
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Anna Rising
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| |
Collapse
|
2
|
Xie F, Wu D, Huang J, Liu X, Shen Y, Huang J, Su Z, Li J. ZBP1 condensate formation synergizes Z-NAs recognition and signal transduction. Cell Death Dis 2024; 15:487. [PMID: 38982083 PMCID: PMC11233663 DOI: 10.1038/s41419-024-06889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Z-DNA binding protein 1 (ZBP1) is a crucial player in the intracellular recognition of Z-form nucleic acids (Z-NAs) through its Zαβ domain, initiating downstream interactions with RIPK1 and RIPK3 via RHIM domains. This engagement leads to the assembly of PANoptosomes, ultimately inducing programmed cell death to curb pathogen dissemination. How Zαβ and RHIM domain cooperate to trigger Z-NAs recognition and signal transduction remains unclear. Here, we show that ZBP1 condensate formation facilitates Z-NAs binding and antiviral signal transduction. The ZBP1 Zαβ dimerizes in a concentration-dependent manner, forming characteristic condensates in solutions evidenced by DLS and SAXS methods. ZBP1 exhibits a binding preference for 10-bp length CG (10CG) DNA and Z-RNA ligand, which in turn enhanced Zαβ dimerization, expediting the formation of droplet condensates in vitro and amyloid-like puncta in cells. Subsequent investigations reveal that Zαβ could form condensates with liquid-liquid phase separation property upon HSV and IAV infections, while full-length ZBP1 forms amyloid-like puncta with or without infections. Furthermore, ZBP1 RHIM domains show typical amyloidal fibril characterizations and cross-polymerize with RIPK1 depending on the core motif of 206IQIG209, while mutated ZBP1 could impede necroptosis and antiviral immunity in HT-29 cells. Thus, ZBP1 condensate formation facilitates the recognition of viral Z-NAs and activation of downstream signal transduction via synergic action of different domains, revealing its elaborated mechanism in innate immunity.
Collapse
Affiliation(s)
- Feiyan Xie
- Department of Neurology, Huashan Hospital and School of Life Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 200438, Shanghai, China
| | - Di Wu
- Department of Neurology, Huashan Hospital and School of Life Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 200438, Shanghai, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, 410083, Hunan, China
| | - Xuehe Liu
- Department of Neurology, Huashan Hospital and School of Life Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 200438, Shanghai, China
| | - Yanfang Shen
- Department of Neurology, Huashan Hospital and School of Life Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 200438, Shanghai, China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhipeng Su
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jixi Li
- Department of Neurology, Huashan Hospital and School of Life Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 200438, Shanghai, China.
| |
Collapse
|
3
|
Nabi Afjadi M, Aziziyan F, Farzam F, Dabirmanesh B. Biotechnological applications of amyloid fibrils. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:435-472. [PMID: 38811087 DOI: 10.1016/bs.pmbts.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Protein aggregates and amyloid fibrils have special qualities and are used in a variety of biotechnological applications. They are extensively employed in bioremediation, biomaterials, and biocatalysis. Because of their capacity to encapsulate and release pharmaceuticals and their sensitivity to certain molecules, respectively, they are also used in drug delivery and biosensor applications. They have also demonstrated potential in the domains of food and bioremediation. Additionally, amyloid peptides have drawn interest in biological applications, especially in the investigation of illnesses like Parkinson's and Alzheimer's. The unique characteristics of amyloid fibrils, namely their mechanical strength and β-sheet structure, make them adaptable to a wide range of biotechnological uses. Even with their promise, one important factor to keep in mind before widely using modified amyloid materials is their potential toxicity. Thus, current research aims to overcome safety concerns while maximizing their potential.
Collapse
Affiliation(s)
- Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Lamour G, Malo M, Crépin R, Pelta J, Labdi S, Campillo C. Dynamically Mapping the Topography and Stiffness of the Leading Edge of Migrating Cells Using AFM in Fast-QI Mode. ACS Biomater Sci Eng 2024; 10:1364-1378. [PMID: 38330438 DOI: 10.1021/acsbiomaterials.3c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Cell migration profoundly influences cellular function, often resulting in adverse effects in various pathologies including cancer metastasis. Directly assessing and quantifying the nanoscale dynamics of living cell structure and mechanics has remained a challenge. At the forefront of cell movement, the flat actin modules─the lamellipodium and the lamellum─interact to propel cell migration. The lamellipodium extends from the lamellum and undergoes rapid changes within seconds, making measurement of its stiffness a persistent hurdle. In this study, we introduce the fast-quantitative imaging (fast-QI) mode, demonstrating its capability to simultaneously map both the lamellipodium and the lamellum with enhanced spatiotemporal resolution compared with the classic quantitative imaging (QI) mode. Specifically, our findings reveal nanoscale stiffness gradients in the lamellipodium at the leading edge, where it appears to be slightly thinner and significantly softer than the lamellum. Additionally, we illustrate the fast-QI mode's accuracy in generating maps of height and effective stiffness through a streamlined and efficient processing of force-distance curves. These results underscore the potential of the fast-QI mode for investigating the role of motile cell structures in mechanosensing.
Collapse
Affiliation(s)
- Guillaume Lamour
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Michel Malo
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Raphaël Crépin
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Juan Pelta
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Sid Labdi
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Clément Campillo
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| |
Collapse
|
5
|
Wu E, He W, Wu C, Chen Z, Zhou S, Wu X, Hu Z, Jia K, Pan J, Wang L, Qin J, Liu D, Lu J, Wang H, Li J, Wang S, Sun L. HSPA8 acts as an amyloidase to suppress necroptosis by inhibiting and reversing functional amyloid formation. Cell Res 2023; 33:851-866. [PMID: 37580406 PMCID: PMC10624691 DOI: 10.1038/s41422-023-00859-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/13/2023] [Indexed: 08/16/2023] Open
Abstract
Ultra-stable fibrous structure is a hallmark of amyloids. In contrast to canonical disease-related amyloids, emerging research indicates that a significant number of cellular amyloids, termed 'functional amyloids', contribute to signal transduction as temporal signaling hubs in humans. However, it is unclear how these functional amyloids are effectively disassembled to terminate signal transduction. RHIM motif-containing amyloids, the largest functional amyloid family discovered thus far, play an important role in mediating necroptosis signal transduction in mammalian cells. Here, we identify heat shock protein family A member 8 (HSPA8) as a new type of enzyme - which we name as 'amyloidase' - that directly disassembles RHIM-amyloids to inhibit necroptosis signaling in cells and mice. Different from its role in chaperone-mediated autophagy where it selects substrates containing a KFERQ-like motif, HSPA8 specifically recognizes RHIM-containing proteins through a hydrophobic hexapeptide motif N(X1)φ(X3). The SBD domain of HSPA8 interacts with RHIM-containing proteins, preventing proximate RHIM monomers from stacking into functional fibrils; furthermore, with the NBD domain supplying energy via ATP hydrolysis, HSPA8 breaks down pre-formed RHIM-amyloids into non-functional monomers. Notably, HSPA8's amyloidase activity in disassembling functional RHIM-amyloids does not require its co-chaperone system. Using this amyloidase activity, HSPA8 reverses the initiator RHIM-amyloids (formed by RIP1, ZBP1, and TRIF) to prevent necroptosis initiation, and reverses RIP3-amyloid to prevent necroptosis execution, thus eliminating multi-level RHIM-amyloids to effectively prevent spontaneous necroptosis activation. The discovery that HSPA8 acts as an amyloidase dismantling functional amyloids provides a fundamental understanding of the reversibility nature of functional amyloids, a property distinguishing them from disease-related amyloids that are unbreakable in vivo.
Collapse
Affiliation(s)
- Erpeng Wu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenyan He
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chenlu Wu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhangcheng Chen
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Shijie Zhou
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xialian Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhiheng Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kelong Jia
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiasong Pan
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Limin Wang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jie Qin
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dan Liu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junxia Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huayi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, China
| | - Sheng Wang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Liming Sun
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
6
|
Meersman F, Quesada-Cabrera R, Filinchuk Y, Dmitriev V, McMillan PF. Nanomechanical properties of SSTSAA microcrystals are dominated by the inter-sheet packing. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220340. [PMID: 37691469 DOI: 10.1098/rsta.2022.0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/12/2023] [Indexed: 09/12/2023]
Abstract
Amyloid fibrils have been associated with human disease for many decades, but it has also become apparent that they play a functional, non-disease-related role in e.g. bacteria and mammals. Moreover, they have been shown to possess interesting mechanical properties that can be harnessed for future man-made applications. Here, the mechanical behaviour of SSTSAA microcrystals has been investigated. The SSTSAA peptide organization in these microcrystals has been related to that in the corresponding amyloid fibrils. Using high-pressure X-ray diffraction experiments, the bulk modulus K, which is the reciprocal of the compressibility β, has been calculated to be 2.48 GPa. This indicates that the fibrils are tightly packed, although the packing of most native globular proteins is even better. It is shown that the value of the bulk modulus is mainly determined by the compression along the c-axis, that relates to the inter-sheet distance in the fibrils. These findings corroborate earlier data obtained by AFM and molecular dynamics simulations that showed that mechanical resistance varies according to the direction of the applied strain, which can be related to packing and hydrogen bond contributions. Pressure experiments provide complementary information to these techniques and help to acquire a full mechanical characterization of biomolecular assemblies. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.
Collapse
Affiliation(s)
- Filip Meersman
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Raúl Quesada-Cabrera
- Department of Chemistry, Christopher Ingold Laboratory, University College London, 20 Gordon Street, London WC1H 0AJ, UK
- Department of Chemistry, Institute of Environmental Studies and Natural Resources (iUNAT), Universidad de Las Palmas de Gran Canaria, Campus de Tafira, 35017 Las Palmas, Spain
| | - Yaroslav Filinchuk
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Vladimir Dmitriev
- Swiss-Norwegian Beamlines, ESRF, Boite Postale 220, 38043, Grenoble, France
| | - Paul F McMillan
- Department of Chemistry, Christopher Ingold Laboratory, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| |
Collapse
|
7
|
Diaz-Espinoza R. Catalytically Active Amyloids as Future Bionanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3802. [PMID: 36364578 PMCID: PMC9656882 DOI: 10.3390/nano12213802] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Peptides and proteins can aggregate into highly ordered and structured conformations called amyloids. These supramolecular structures generally have convergent features, such as the formation of intermolecular beta sheets, that lead to fibrillary architectures. The resulting fibrils have unique mechanical properties that can be exploited to develop novel nanomaterials. In recent years, sequences of small peptides have been rationally designed to self-assemble into amyloids that catalyze several chemical reactions. These amyloids exhibit reactive surfaces that can mimic the active sites of enzymes. In this review, I provide a state-of-the-art summary of the development of catalytically active amyloids. I will focus especially on catalytic activities mediated by hydrolysis, which are the most studied examples to date, as well as novel types of recently reported activities that promise to expand the possible repertoires. The combination of mechanical properties with catalytic activity in an amyloid scaffold has great potential for the development of future bionanomaterials aimed at specific applications.
Collapse
Affiliation(s)
- Rodrigo Diaz-Espinoza
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 3363, Chile
| |
Collapse
|
8
|
Siemer AB. What makes functional amyloids work? Crit Rev Biochem Mol Biol 2022; 57:399-411. [PMID: 35997712 PMCID: PMC9588633 DOI: 10.1080/10409238.2022.2113030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/29/2022] [Accepted: 08/10/2022] [Indexed: 01/27/2023]
Abstract
Although first described in the context of disease, cross-β (amyloid) fibrils have also been found as functional entities in all kingdoms of life. However, what are the specific properties of the cross-β fibril motif that convey biological function, make them especially suited for their particular purpose, and distinguish them from other fibrils found in biology? This review approaches these questions by arguing that cross-β fibrils are highly periodic, stable, and self-templating structures whose formation is accompanied by substantial conformational change that leads to a multimerization of their core and framing sequences. A discussion of each of these properties is followed by selected examples of functional cross-β fibrils that show how function is usually achieved by leveraging many of these properties.
Collapse
Affiliation(s)
- Ansgar B Siemer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Kell DB, Laubscher GJ, Pretorius E. A central role for amyloid fibrin microclots in long COVID/PASC: origins and therapeutic implications. Biochem J 2022; 479:537-559. [PMID: 35195253 PMCID: PMC8883497 DOI: 10.1042/bcj20220016] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
Post-acute sequelae of COVID (PASC), usually referred to as 'Long COVID' (a phenotype of COVID-19), is a relatively frequent consequence of SARS-CoV-2 infection, in which symptoms such as breathlessness, fatigue, 'brain fog', tissue damage, inflammation, and coagulopathies (dysfunctions of the blood coagulation system) persist long after the initial infection. It bears similarities to other post-viral syndromes, and to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Many regulatory health bodies still do not recognize this syndrome as a separate disease entity, and refer to it under the broad terminology of 'COVID', although its demographics are quite different from those of acute COVID-19. A few years ago, we discovered that fibrinogen in blood can clot into an anomalous 'amyloid' form of fibrin that (like other β-rich amyloids and prions) is relatively resistant to proteolysis (fibrinolysis). The result, as is strongly manifested in platelet-poor plasma (PPP) of individuals with Long COVID, is extensive fibrin amyloid microclots that can persist, can entrap other proteins, and that may lead to the production of various autoantibodies. These microclots are more-or-less easily measured in PPP with the stain thioflavin T and a simple fluorescence microscope. Although the symptoms of Long COVID are multifarious, we here argue that the ability of these fibrin amyloid microclots (fibrinaloids) to block up capillaries, and thus to limit the passage of red blood cells and hence O2 exchange, can actually underpin the majority of these symptoms. Consistent with this, in a preliminary report, it has been shown that suitable and closely monitored 'triple' anticoagulant therapy that leads to the removal of the microclots also removes the other symptoms. Fibrin amyloid microclots represent a novel and potentially important target for both the understanding and treatment of Long COVID and related disorders.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1 Matieland, 7602, South Africa
| | | | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch Private Bag X1 Matieland, 7602, South Africa
| |
Collapse
|
10
|
Cava DG, Vélez M. Study of Amyloid Fibers Using Atomic Force Microscopy. Methods Mol Biol 2022; 2538:1-11. [PMID: 35951289 DOI: 10.1007/978-1-0716-2529-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomic force microscopy (AFM) provides high-resolution images of the topography of amyloid fibers adsorbed on surfaces. This information is very useful to study their molecular assembly under various conditions. This chapter describes the basic protocols required to deposit fibers on flat surfaces and discusses some of the practical issues required to operate a good commercial microscope setup to obtain appropriate high-resolution AFM topographic images of amyloid fibers.
Collapse
Affiliation(s)
- Daniel G Cava
- Instituto de Catálisis y Petroleoquímica (CSIC), (Cantoblanco) Madrid, Spain
| | - Marisela Vélez
- Instituto de Catálisis y Petroleoquímica (CSIC), (Cantoblanco) Madrid, Spain.
| |
Collapse
|
11
|
Klein T, Gruschwitz FV, Kuchenbrod MT, Nischang I, Hoeppener S, Brendel JC. Adjusting the length of supramolecular polymer bottlebrushes by top-down approaches. Beilstein J Org Chem 2021; 17:2621-2628. [PMID: 34760028 PMCID: PMC8551873 DOI: 10.3762/bjoc.17.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/29/2021] [Indexed: 01/09/2023] Open
Abstract
Controlling the length of one-dimensional (1D) polymer nanostructures remains a key challenge on the way toward the applications of these structures. Here, we demonstrate that top-down processing facilitates a straightforward adjustment of the length of polyethylene oxide (PEO)-based supramolecular polymer bottlebrushes (SPBs) in aqueous solutions. These cylindrical structures self-assemble via directional hydrogen bonds formed by benzenetrisurea (BTU) or benzenetrispeptide (BTP) motifs located within the hydrophobic core of the fiber. A slow transition from different organic solvents to water leads first to the formation of µm-long fibers, which can subsequently be fragmented by ultrasonication or dual asymmetric centrifugation. The latter allows for a better adjustment of applied shear stresses, and thus enables access to differently sized fragments depending on time and rotation rate. Extended sonication and scission analysis further allowed an estimation of tensile strengths of around 16 MPa for both the BTU and BTP systems. In combination with the high kinetic stability of these SPBs, the applied top-down methods represent an easily implementable technique toward 1D polymer nanostructures with an adjustable length in the range of interest for perspective biomedical applications.
Collapse
Affiliation(s)
- Tobias Klein
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Franka V Gruschwitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Maren T Kuchenbrod
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
12
|
Nassar R, Dignon GL, Razban RM, Dill KA. The Protein Folding Problem: The Role of Theory. J Mol Biol 2021; 433:167126. [PMID: 34224747 PMCID: PMC8547331 DOI: 10.1016/j.jmb.2021.167126] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 10/20/2022]
Abstract
The protein folding problem was first articulated as question of how order arose from disorder in proteins: How did the various native structures of proteins arise from interatomic driving forces encoded within their amino acid sequences, and how did they fold so fast? These matters have now been largely resolved by theory and statistical mechanics combined with experiments. There are general principles. Chain randomness is overcome by solvation-based codes. And in the needle-in-a-haystack metaphor, native states are found efficiently because protein haystacks (conformational ensembles) are funnel-shaped. Order-disorder theory has now grown to encompass a large swath of protein physical science across biology.
Collapse
Affiliation(s)
- Roy Nassar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA; Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Gregory L Dignon
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Rostam M Razban
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Ken A Dill
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA; Department of Chemistry, Stony Brook University, Stony Brook, NY, USA; Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
13
|
Brown A, Török M. Functional amyloids in the human body. Bioorg Med Chem Lett 2021; 40:127914. [PMID: 33691165 DOI: 10.1016/j.bmcl.2021.127914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 11/18/2022]
Abstract
Amyloids have long been associated with a variety of human degenerative diseases. Discoveries indicate, however, that there are several amyloids that serve functional roles in the human body. These amyloids are involved in a variety of biological processes ranging from storage of peptide hormones to necroptosis of cells. Additionally, there are distinct differences between toxic amyloids and their functional counterparts including kinetics of assembly/disassembly and structural features. This digest article surveys the biological roles of functional amyloids found in the human body, key differences between functional and toxic amyloids, and potential therapeutic applications.
Collapse
Affiliation(s)
- Amy Brown
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Marianna Török
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA.
| |
Collapse
|
14
|
Christoff-Tempesta T, Cho Y, Kim DY, Geri M, Lamour G, Lew AJ, Zuo X, Lindemann WR, Ortony JH. Self-assembly of aramid amphiphiles into ultra-stable nanoribbons and aligned nanoribbon threads. NATURE NANOTECHNOLOGY 2021; 16:447-454. [PMID: 33462430 DOI: 10.1038/s41565-020-00840-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Small-molecule self-assembly is an established route for producing high-surface-area nanostructures with readily customizable chemistries and precise molecular organization. However, these structures are fragile, exhibiting molecular exchange, migration and rearrangement-among other dynamic instabilities-and are prone to dissociation upon drying. Here we show a small-molecule platform, the aramid amphiphile, that overcomes these dynamic instabilities by incorporating a Kevlar-inspired domain into the molecular structure. Strong, anisotropic interactions between aramid amphiphiles suppress molecular exchange and elicit spontaneous self-assembly in water to form nanoribbons with lengths of up to 20 micrometres. Individual nanoribbons have a Young's modulus of 1.7 GPa and tensile strength of 1.9 GPa. We exploit this stability to extend small-molecule self-assembly to hierarchically ordered macroscopic materials outside of solvated environments. Through an aqueous shear alignment process, we organize aramid amphiphile nanoribbons into arbitrarily long, flexible threads that support 200 times their weight when dried. Tensile tests of the dry threads provide a benchmark for Young's moduli (between ~400 and 600 MPa) and extensibilities (between ~0.6 and 1.1%) that depend on the counterion chemistry. This bottom-up approach to macroscopic materials could benefit solid-state applications historically inaccessible by self-assembled nanomaterials.
Collapse
Affiliation(s)
- Ty Christoff-Tempesta
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yukio Cho
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dae-Yoon Kim
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Bondong, Korea
| | - Michela Geri
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Guillaume Lamour
- LAMBE, Université Paris-Saclay, University of Evry, CNRS, Evry-Courcouronnes, France
| | - Andrew J Lew
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiaobing Zuo
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - William R Lindemann
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Julia H Ortony
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
15
|
Raspa A, Carminati L, Pugliese R, Fontana F, Gelain F. Self-assembling peptide hydrogels for the stabilization and sustained release of active Chondroitinase ABC in vitro and in spinal cord injuries. J Control Release 2021; 330:1208-1219. [DOI: 10.1016/j.jconrel.2020.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
|
16
|
Adamcik J, Ruggeri FS, Berryman JT, Zhang A, Knowles TPJ, Mezzenga R. Evolution of Conformation, Nanomechanics, and Infrared Nanospectroscopy of Single Amyloid Fibrils Converting into Microcrystals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002182. [PMID: 33511004 PMCID: PMC7816722 DOI: 10.1002/advs.202002182] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/04/2020] [Indexed: 06/12/2023]
Abstract
Nanomechanical properties of amyloid fibrils and nanocrystals depend on their secondary and quaternary structure, and the geometry of intermolecular hydrogen bonds. Advanced imaging methods based on atomic force microscopy (AFM) have unravelled the morphological and mechanical heterogeneity of amyloids, however a full understanding has been hampered by the limited resolution of conventional spectroscopic methods. Here, it is shown that single molecule nanomechanical mapping and infrared nanospectroscopy (AFM-IR) in combination with atomistic modelling enable unravelling at the single aggregate scale of the morphological, nanomechanical, chemical, and structural transition from amyloid fibrils to amyloid microcrystals in the hexapeptides, ILQINS, IFQINS, and TFQINS. Different morphologies have different Young's moduli, within 2-6 GPa, with amyloid fibrils exhibiting lower Young's moduli compared to amyloid microcrystals. The origins of this stiffening are unravelled and related to the increased content of intermolecular β-sheet and the increased lengthscale of cooperativity following the transition from twisted fibril to flat nanocrystal. Increased stiffness in Young's moduli is correlated with increased density of intermolecular hydrogen bonding and parallel β-sheet structure, which energetically stabilize crystals over the other polymorphs. These results offer additional evidence for the position of amyloid crystals in the minimum of the protein folding and aggregation landscape.
Collapse
Affiliation(s)
- Jozef Adamcik
- Department of Health Sciences and TechnologyETH ZürichZürich8092Switzerland
| | | | - Joshua T. Berryman
- University of LuxembourgDepartment of Physics and Materials Science162a Avenue de la FaïencerieLuxembourgL‐1511Luxembourg
| | - Afang Zhang
- Shanghai University Department of Polymer MaterialsNanchen Street 333Shanghai200444China
| | - Tuomas P. J. Knowles
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Cavendish LaboratoryUniversity of CambridgeJ. J. Thomson AvenueCambridgeCB3 0HEUK
| | - Raffaele Mezzenga
- Department of Health Sciences and TechnologyETH ZürichZürich8092Switzerland
- Department of MaterialsETH ZürichZürich8093Switzerland
| |
Collapse
|
17
|
Abstract
Self-assembly of proteins and peptides into the amyloid fold is a widespread phenomenon in the natural world. The structural hallmark of self-assembly into amyloid fibrillar assemblies is the cross-beta motif, which conveys distinct morphological and mechanical properties. The amyloid fibril formation has contrasting results depending on the organism, in the sense that it can bestow an organism with the advantages of mechanical strength and improved functionality or, on the contrary, could give rise to pathological states. In this chapter we review the existing information on amyloid-like peptide aggregates, which could either be derived from protein sequences, but also could be rationally or de novo designed in order to self-assemble into amyloid fibrils under physiological conditions. Moreover, the development of self-assembled fibrillar biomaterials that are tailored for the desired properties towards applications in biomedical or environmental areas is extensively analyzed. We also review computational studies predicting the amyloid propensity of the natural amino acid sequences and the structure of amyloids, as well as designing novel functional amyloid materials.
Collapse
Affiliation(s)
- C. Kokotidou
- University of Crete, Department of Materials Science and Technology Voutes Campus GR-70013 Heraklion Crete Greece
- FORTH, Institute for Electronic Structure and Laser N. Plastira 100 GR 70013 Heraklion Greece
| | - P. Tamamis
- Texas A&M University, Artie McFerrin Department of Chemical Engineering College Station Texas 77843-3122 USA
| | - A. Mitraki
- University of Crete, Department of Materials Science and Technology Voutes Campus GR-70013 Heraklion Crete Greece
- FORTH, Institute for Electronic Structure and Laser N. Plastira 100 GR 70013 Heraklion Greece
| |
Collapse
|
18
|
Atomic Force Microscopy Imaging and Nanomechanical Properties of Six Tau Isoform Assemblies. Biophys J 2020; 119:2497-2507. [PMID: 33217380 DOI: 10.1016/j.bpj.2020.10.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 11/22/2022] Open
Abstract
The amyloid fibrillar form of the protein Tau is involved in a number of neurodegenerative diseases, also known as tauopathies. In this work, six different fibrillar Tau isoforms were assembled in vitro. The morphological and nanomechanical properties of these isoforms were studied using atomic force microscopy at high resolution in air and buffer. Our results demonstrate that all Tau isoform fibrils exhibit paired-helical-filament-like structures consisting of two protofibrils separated by a shallow groove. Interestingly, whereas the N-terminal inserts do not contribute to any morphological or mechanical difference between the isoforms with the same carboxyl-terminal microtubule-binding domain repeats, isoforms with four microtubule repeats (4R) exhibited a persistence length ranging from 2.0 to 2.8 μm, almost twofold higher than those with three repeats (3R). In addition, the axial Young's modulus values derived from the persistence lengths, as well as their radial ones determined via nanoindentation experiments, were very low compared to amyloid fibrils made of other proteins. This sheds light on the weak intermolecular interaction acting between the paired β-sheets within Tau fibrils. This may play an important role in their association into high molecular weight assemblies, their dynamics, their persistence, their clearance in cells, and their propagation.
Collapse
|
19
|
Rüter A, Kuczera S, Stenhammar J, Zinn T, Narayanan T, Olsson U. Tube to ribbon transition in a self-assembling model peptide system. Phys Chem Chem Phys 2020; 22:18320-18327. [PMID: 32785353 DOI: 10.1039/d0cp03204b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peptides that self-assemble into β-sheet rich aggregates are known to form a large variety of supramolecular shapes, such as ribbons, tubes or sheets. However, the underlying thermodynamic driving forces for such different structures are still not fully understood, limiting their potential applications. In the AnK peptide system (A = alanine, K = lysine), a structural transition from tubes to ribbons has been shown to occur upon an increase of the peptide length, n, from 6 to 8. In this work we analyze this transition by means of a simple thermodynamic model. We consider three energy contributions to the total free energy: an interfacial tension, a penalty for deviating from the optimal β-sheet twist angle, and a hydrogen bond deformation when the β-sheets adopt a specific self-assembled structure. Whilst the first two contributions merely provide similar constant energy offsets, the hydrogen bond deformations differ depending on the studied structure. Consequently, the tube structure is thermodynamically favored for shorter AnK peptides, with a crossover at n≈ 13. This qualitative agreement of the model with the experimental observations shows, that we have achieved a good understanding of the underlying thermodynamic features within the self-assembling AnK system.
Collapse
Affiliation(s)
- Axel Rüter
- Division of Physical Chemistry, Lund University, SE-22100 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
20
|
Lu TY, Huang WC, Chen Y, Baskaran N, Yu J, Wei Y. Effect of varied hair protein fractions on the gel properties of keratin/chitosan hydrogels for the use in tissue engineering. Colloids Surf B Biointerfaces 2020; 195:111258. [PMID: 32683238 DOI: 10.1016/j.colsurfb.2020.111258] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 02/07/2023]
Abstract
Keratin/chitosan composite is a readily available source for a hybrid hydrogel in tissue engineering. While human hair keratins could provide biological functions, chitosan could further enhance the mechanical strength of the hybrid hydrogels. However, hair keratin is a group of natural proteins, and the uncontrolled hair protein contents in a hydrogel may lead to the batch-to-batch inconsistent gel properties. The purpose of this study was to investigate the role of hair protein composition, including the keratin-associated proteins (KAPs, 6-30 kDa) and keratin intermediate filaments (KIFs, 45-60 kDa) on gel characteristics of the keratin/chitosan hydrogel. The various compressive and tensile modulus of the gel was observed based on the selection of different protein fractions as the significant gel components. These results thus suggest a straightforward method of preparing hair keratin/chitosan hydrogel with much more controllable gel properties by merely modulating the KAPs/KIFs ratios in a gel.
Collapse
Affiliation(s)
- Ting-Yu Lu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei, 106, Taiwan
| | - Wen-Chuan Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 106, Taiwan
| | - Yi Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 106, Taiwan
| | - Nareshkumar Baskaran
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 106, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei, 106, Taiwan.
| | - Yang Wei
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 106, Taiwan.
| |
Collapse
|
21
|
Rüter A, Kuczera S, Gentile L, Olsson U. Arrested dynamics in a model peptide hydrogel system. SOFT MATTER 2020; 16:2642-2651. [PMID: 32119019 DOI: 10.1039/c9sm02244a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report here on a peptide hydrogel system, which in contrast to most other such systems, is made up of relatively short fibrillar aggregates, discussing resemblance with colloidal rods. The synthetic model peptides A8K and A10K, where A denotes alanine and K lysine, self-assemble in aqueous solutions into ribbon-like aggregates having an average length 〈L〉 on the order of 100 nm and with a diameter d≈ 6 nm. The aggregates can be seen as weakly charged rigid rods and they undergo an isotropic to nematic phase transition at higher concentrations. Translational motion perpendicular to the rod axis gets strongly hindered when the concentration is increased above the overlap concentration. Similarly, the rotational motion is hindered, leading to very long stress relaxation times. The peptide self-assembly is driven by hydrophobic interactions and due to a net peptide charge the system is colloidally stable. However, at the same time short range, presumably hydrophobic, attractive interactions appear to affect the rheology of the system. Upon screening the long range electrostatic repulsion, with the addition of salt, the hydrophobic attraction becomes more dominant and we observe a transition from a repulsive glassy state to an attractive gel-state of the rod-like peptide aggregates.
Collapse
Affiliation(s)
- Axel Rüter
- Division of Physical Chemistry, Lund University, SE-22100 Lund, Sweden.
| | | | | | | |
Collapse
|
22
|
Sancataldo G, Anselmo S, Vetri V. Phasor-FLIM analysis of Thioflavin T self-quenching in Concanavalin amyloid fibrils. Microsc Res Tech 2020; 83:811-816. [PMID: 32180304 DOI: 10.1002/jemt.23472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022]
Abstract
The formation of amyloid structures has traditionally been related to human neurodegenerative pathologies and, in recent years, the interest in these highly stable nanostructures was extended to biomaterial sciences. A common method to monitor amyloid growth is the analysis of Thioflavin T fluorescence. The use of this highly selective dye, diffused worldwide, allows mechanistic studies of supramolecular assemblies also giving back important insight on the structure of these aggregates. Here we present experimental evidence of self-quenching effect of Thioflavin T in presence of amyloid fibrils. A significant reduction of fluorescence lifetime of this dye which is not related to the properties of analyzed amyloid structures is found. This result is achieved by coupling Fluorescence Lifetime Imaging Microscopy with phasor approach as suitable model-free methods and constitute a serious warning that have to be taken in account if is dye is used for quantitative studies.
Collapse
Affiliation(s)
- Giuseppe Sancataldo
- Dipartimento di Fisica e Chimica - E. Segrè, Università di Palermo, Palermo, Italy
| | - Sara Anselmo
- Dipartimento di Fisica e Chimica - E. Segrè, Università di Palermo, Palermo, Italy
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica - E. Segrè, Università di Palermo, Palermo, Italy
| |
Collapse
|
23
|
Fontana F, Gelain F. Probing mechanical properties and failure mechanisms of fibrils of self-assembling peptides. NANOSCALE ADVANCES 2020; 2:190-198. [PMID: 36133966 PMCID: PMC9416940 DOI: 10.1039/c9na00621d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/16/2019] [Indexed: 05/08/2023]
Abstract
Self-assembling peptides (SAPs) are a promising class of biomaterials amenable to easy molecular design and functionalization. Despite their increasing usage in regenerative medicine, a detailed analysis of their biomechanics at the nanoscale level is still missing. In this work, we propose and validate, in all-atom dynamics, a coarse-grained model to elucidate strain distribution, failure mechanisms and biomechanical effects of functionalization of two SAPs when subjected to both axial stretching and bending forces. We highlight different failure mechanisms for fibril seeds and fibrils, as well as the negligible contribution of the chosen functional motif to the overall system rupture. This approach could lay the basis for the development of "more" coarse-grained models in the long pathway connecting SAP sequences and hydrogel mechanical properties.
Collapse
Affiliation(s)
- Federico Fontana
- Fondazione IRCCS Casa Sollievo della Sofferenza, Unità Ingegneria Tissutale Viale Cappuccini 1, San Giovanni Rotondo 71013 Foggia Italy
| | - Fabrizio Gelain
- Fondazione IRCCS Casa Sollievo della Sofferenza, Unità Ingegneria Tissutale Viale Cappuccini 1, San Giovanni Rotondo 71013 Foggia Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Ospedale Metropolitano Niguarda Piazza dell'Ospedale Maggiore 3 20162 Milan Italy
| |
Collapse
|
24
|
Hadi-Alijanvand H. Complex Stability is Encoded in Binding Patch Softness: a Monomer-Based Approach to Predict Inter-Subunit Affinity of Protein Dimers. J Proteome Res 2019; 19:409-423. [PMID: 31795635 DOI: 10.1021/acs.jproteome.9b00594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Knowledge about the structure and stability of protein-protein interactions is vital to decipher the behavior of protein systems. Prediction of protein complexes' stability is an interesting topic in the field of structural biology. There are some promising published computational approaches that predict the affinity between subunits of protein dimers using 3D structures of both subunits. In the current study, we classify protein complexes with experimentally measured affinities into distinct classes with different mean affinities. By predicting the mechanical stiffness of the protein binding patch (PBP) region on a single subunit, we successfully predict the assigned affinity class of the PBP in the classification step. Now to predict the experimentally measured affinity between protein monomers in solution, we just need the 3D structure of the suggested PBP on one subunit of the proposed dimer. We designed the SEPAS software and have made the software freely available for academic non-commercial research purposes at " http://biophysics.ir/affinity ". SEPAS predicts the stability of the intended dimer in a classwise manner by utilizing the computed mechanical stiffness of the introduced binding site on one subunit with the minimum accuracy of 0.72.
Collapse
Affiliation(s)
- Hamid Hadi-Alijanvand
- Department of Biological Sciences , Institute for Advanced Studies in Basic Sciences (IASBS) , Zanjan 45137-66731 , Iran
| |
Collapse
|
25
|
Jekhmane S, Prachar M, Pugliese R, Fontana F, Medeiros‐Silva J, Gelain F, Weingarth M. Design Parameters of Tissue‐Engineering Scaffolds at the Atomic Scale. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shehrazade Jekhmane
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Marek Prachar
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Raffaele Pugliese
- Fondazione IRCCS Casa Sollievo della SofferenzaUnita' di Ingegneria Tissutale Viale Cappuccini 1 71013 San Giovanni Rotondo Italy
| | - Federico Fontana
- Fondazione IRCCS Casa Sollievo della SofferenzaUnita' di Ingegneria Tissutale Viale Cappuccini 1 71013 San Giovanni Rotondo Italy
- ASST Grande Ospedale Metropolitano NiguardaCenter for Nanomedicine and Tissue Engineering Piazza dell'Ospedale Maggiore 3 20162 Milan Italy
| | - João Medeiros‐Silva
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| | - Fabrizio Gelain
- Fondazione IRCCS Casa Sollievo della SofferenzaUnita' di Ingegneria Tissutale Viale Cappuccini 1 71013 San Giovanni Rotondo Italy
- ASST Grande Ospedale Metropolitano NiguardaCenter for Nanomedicine and Tissue Engineering Piazza dell'Ospedale Maggiore 3 20162 Milan Italy
| | - Markus Weingarth
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchDepartment of ChemistryFaculty of ScienceUtrecht University Padualaan 8, 3584 CH Utrecht The Netherlands
| |
Collapse
|
26
|
Jekhmane S, Prachar M, Pugliese R, Fontana F, Medeiros-Silva J, Gelain F, Weingarth M. Design Parameters of Tissue-Engineering Scaffolds at the Atomic Scale. Angew Chem Int Ed Engl 2019; 58:16943-16951. [PMID: 31573131 PMCID: PMC6899630 DOI: 10.1002/anie.201907880] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/03/2019] [Indexed: 01/08/2023]
Abstract
Stem-cell behavior is regulated by the material properties of the surrounding extracellular matrix, which has important implications for the design of tissue-engineering scaffolds. However, our understanding of the material properties of stem-cell scaffolds is limited to nanoscopic-to-macroscopic length scales. Herein, a solid-state NMR approach is presented that provides atomic-scale information on complex stem-cell substrates at near physiological conditions and at natural isotope abundance. Using self-assembled peptidic scaffolds designed for nervous-tissue regeneration, we show at atomic scale how scaffold-assembly degree, mechanics, and homogeneity correlate with favorable stem cell behavior. Integration of solid-state NMR data with molecular dynamics simulations reveals a highly ordered fibrillar structure as the most favorable stem-cell scaffold. This could improve the design of tissue-engineering scaffolds and other self-assembled biomaterials.
Collapse
Affiliation(s)
- Shehrazade Jekhmane
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Marek Prachar
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Raffaele Pugliese
- Fondazione IRCCS Casa Sollievo della Sofferenza, Unita' di Ingegneria Tissutale, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Italy
| | - Federico Fontana
- Fondazione IRCCS Casa Sollievo della Sofferenza, Unita' di Ingegneria Tissutale, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Italy.,ASST Grande Ospedale Metropolitano Niguarda, Center for Nanomedicine and Tissue Engineering, Piazza dell'Ospedale Maggiore 3, 20162, Milan, Italy
| | - João Medeiros-Silva
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Fabrizio Gelain
- Fondazione IRCCS Casa Sollievo della Sofferenza, Unita' di Ingegneria Tissutale, Viale Cappuccini 1, 71013, San Giovanni Rotondo, Italy.,ASST Grande Ospedale Metropolitano Niguarda, Center for Nanomedicine and Tissue Engineering, Piazza dell'Ospedale Maggiore 3, 20162, Milan, Italy
| | - Markus Weingarth
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| |
Collapse
|
27
|
Olmez TT, Sahin Kehribar E, Isilak ME, Lu TK, Seker UOS. Synthetic Genetic Circuits for Self-Actuated Cellular Nanomaterial Fabrication Devices. ACS Synth Biol 2019; 8:2152-2162. [PMID: 31419103 DOI: 10.1021/acssynbio.9b00235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genetically controlled synthetic biosystems are being developed to create nanoscale materials. These biosystems are modeled on the natural ability of living cells to synthesize materials: many organisms have dedicated proteins that synthesize a wide range of hard tissues and solid materials, such as nanomagnets and biosilica. We designed an autonomous living material synthesizing system consisting of engineered cells with genetic circuits that synthesize nanomaterials. The circuits encode a nanomaterial precursor-sensing module (sensor) coupled with a materials synthesis module. The sensor detects the presence of cadmium, gold, or iron ions, and this detection triggers the synthesis of the related nanomaterial-nucleating extracellular matrix. We demonstrate that when engineered cells sense the availability of a precursor ion, they express the corresponding extracellular matrix to form the nanomaterials. This proof-of-concept study shows that endowing cells with synthetic genetic circuits enables nanomaterial synthesis and has the potential to be extended to the synthesis of a variety of nanomaterials and biomaterials using a green approach.
Collapse
Affiliation(s)
- Tolga Tarkan Olmez
- UNAM- Institute of Materials and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Ebru Sahin Kehribar
- UNAM- Institute of Materials and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Musa Efe Isilak
- UNAM- Institute of Materials and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Timothy K. Lu
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | | |
Collapse
|
28
|
Hadi-Alijanvand H. Soft regions of protein surface are potent for stable dimer formation. J Biomol Struct Dyn 2019; 38:3587-3598. [PMID: 31476974 DOI: 10.1080/07391102.2019.1662328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
By having knowledge about the characteristics of protein interaction interfaces, we will be able to manipulate protein complexes for therapies. Dimer state is considered as the primary alphabet of the most proteins' quaternary structure. The properties of binding interface between subunits and of noninterface region define the specificity and stability of the intended protein complex. Considering some topological properties and amino acids' affinity for binding in interfaces of protein dimers, we construct the interface-specific recurrence plots. The data obtained from recurrence quantitative analysis, and accessibility-related metrics help us to classify the protein dimers into four distinct classes. Some mechanical properties of binding interfaces are computed for each predefined class of the dimers. The computed mechanical characteristics of binding patch region are compared with those of nonbinding region of proteins. Our observations indicate that the mechanical properties of protein binding sites have a decisive impact on determining the dimer stability. We introduce a new concept in analyzing protein structure by considering mechanical properties of protein structure. We conclude that the interface region between subunits of stable dimers is usually mechanically softer than the interface of unstable protein dimers. AbbreviationsAABaverage affinity for bindingANManisotropic network modelAPCaffinity propagation clusteringASAaccessible surface areaCCDinter residues distanceCSCcomplex stability codeDMdistance matrixΔGdissPISA-computed dissociation free energyGNMGaussian normal mode analysisNMAnormal mode analysisPBPprotein binding patchPISAproteins, interfaces, structures and assembliesrASArelative accessible area in respect to unfolded state of residuesRMrecurrence matrixrPrelative protrusionRPrecurrence plotRQArecurrence quantitative analysisSEMstandard error of meanCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hamid Hadi-Alijanvand
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| |
Collapse
|
29
|
Kawasaki T, Tsukiyama K, Irizawa A. Dissolution of a fibrous peptide by terahertz free electron laser. Sci Rep 2019; 9:10636. [PMID: 31337794 PMCID: PMC6650392 DOI: 10.1038/s41598-019-47011-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/09/2019] [Indexed: 11/09/2022] Open
Abstract
Fibrous peptides such as amyloid fibrils have various roles in biological system, e.g., as causal factor of serious amyloidosis in human and as functional regulator of cell formation in bacteria and eukaryotes. In addition, the fiber-type format is promising as biocompatible scaffold. Therefore, the dissolution method of peptide fibril is potentially useful at many scenes in medical and material fields: as reductive way of pathogenic amyloid, as modification technique of cell structure, and as fabrication tool of biomaterials. However, the fibril structure is generally difficult to be dissociated due to its rigid stacked conformation. Here, we propose a physical engineering technology using terahertz free electron laser (FEL) at far-infrared wavelengths from 70 to 80 μm. Infrared microscopy analysis of the irradiated fibril of calcitonin peptide as a model showed that β-sheet was decreased, and α-helix, turn, and others were increased, compared to those of the fibril before the FEL irradiation. Interestingly, the dissociative effect by the far-infrared laser was remarkable than that by the mid-infrared laser tuned to 6.1 μm that corresponds to amide I. In addition, simple heating at 363 K deformed the fibril state but increased the amount of β-sheet, which was contrast with the action by the FEL, and scanning-electron microscopy and Congo-red staining revealed that the fibril was collapsed power-dependently within a range from 25 to 900 mJ energies supplied with the FEL at 74 μm. It can be considered that irradiation of intense terahertz wave can dissociate fibrous conformation of peptide with little influence of thermal effect.
Collapse
Affiliation(s)
- Takayasu Kawasaki
- IR Free Electron Laser Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| | - Koichi Tsukiyama
- IR Free Electron Laser Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Akinori Irizawa
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| |
Collapse
|
30
|
Lim J, Park H, Heisler J, Maculins T, Roose-Girma M, Xu M, Mckenzie B, van Lookeren Campagne M, Newton K, Murthy A. Autophagy regulates inflammatory programmed cell death via turnover of RHIM-domain proteins. eLife 2019; 8:44452. [PMID: 31287416 PMCID: PMC6615860 DOI: 10.7554/elife.44452] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
RIPK1, RIPK3, ZBP1 and TRIF, the four mammalian proteins harboring RIP homotypic interaction motif (RHIM) domains, are key components of inflammatory signaling and programmed cell death. RHIM-domain protein activation is mediated by their oligomerization; however, mechanisms that promote a return to homeostasis remain unknown. Here we show that autophagy is critical for the turnover of all RHIM-domain proteins. Macrophages lacking the autophagy gene Atg16l1accumulated highly insoluble forms of RIPK1, RIPK3, TRIF and ZBP1. Defective autophagy enhanced necroptosis by Tumor necrosis factor (TNF) and Toll-like receptor (TLR) ligands. TNF-mediated necroptosis was mediated by RIPK1 kinase activity, whereas TLR3- or TLR4-mediated death was dependent on TRIF and RIPK3. Unexpectedly, combined deletion of Atg16l1 and Zbp1 accelerated LPS-mediated necroptosis and sepsis in mice. Thus, ZBP1 drives necroptosis in the absence of the RIPK1-RHIM, but suppresses this process when multiple RHIM-domain containing proteins accumulate. These findings identify autophagy as a central regulator of innate inflammation governed by RHIM-domain proteins.
Collapse
Affiliation(s)
- Junghyun Lim
- Department of Cancer Immunology, Genentech, South San Francisco, United States
| | - Hyunjoo Park
- Department of Translational Immunology, Genentech, South San Francisco, United States
| | - Jason Heisler
- Department of Translational Immunology, Genentech, South San Francisco, United States
| | - Timurs Maculins
- Department of Cancer Immunology, Genentech, South San Francisco, United States
| | - Merone Roose-Girma
- Department of Molecular Biology, Genentech, South San Francisco, United States
| | - Min Xu
- Department of Translational Immunology, Genentech, South San Francisco, United States
| | - Brent Mckenzie
- Department of Translational Immunology, Genentech, South San Francisco, United States
| | | | - Kim Newton
- Department of Physiological Chemistry, Genentech, South San Francisco, United States
| | - Aditya Murthy
- Department of Cancer Immunology, Genentech, South San Francisco, United States
| |
Collapse
|
31
|
Ruggeri FS, Šneideris T, Vendruscolo M, Knowles TPJ. Atomic force microscopy for single molecule characterisation of protein aggregation. Arch Biochem Biophys 2019; 664:134-148. [PMID: 30742801 PMCID: PMC6420408 DOI: 10.1016/j.abb.2019.02.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022]
Abstract
The development of atomic force microscopy (AFM) has opened up a wide range of novel opportunities in nanoscience and new modalities of observation in complex biological systems. AFM imaging has been widely employed to resolve the complex and heterogeneous conformational states involved in protein aggregation at the single molecule scale and shed light onto the molecular basis of a variety of human pathologies, including neurodegenerative disorders. The study of individual macromolecules at nanoscale, however, remains challenging, especially when fully quantitative information is required. In this review, we first discuss the principles of AFM with a special emphasis on the fundamental factors defining its sensitivity and accuracy. We then review the fundamental parameters and approaches to work at the limit of AFM resolution in order to perform single molecule statistical analysis of biomolecules and nanoscale protein aggregates. This single molecule statistical approach has proved to be powerful to unravel the molecular and hierarchical assembly of the misfolded species present transiently during protein aggregation, to visualise their dynamics at the nanoscale, as well to study the structural properties of amyloid-inspired functional nanomaterials.
Collapse
Affiliation(s)
- Francesco Simone Ruggeri
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom.
| | - Tomas Šneideris
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom; Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Michele Vendruscolo
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom; Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom.
| |
Collapse
|
32
|
Razbin M, Benetatos P, Moosavi-Movahedi AA. A first-passage approach to the thermal breakage of a discrete one-dimensional chain. SOFT MATTER 2019; 15:2469-2478. [PMID: 30810126 DOI: 10.1039/c8sm02421a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Using the first passage method for a Markov process, we theoretically study the fragmentation rate of a discrete one-dimensional chain (Rouse model). The fragmentation occurs due to thermal fluctuations. Assuming equilibrium initial conditions, we obtain an expression for the fragmentation rate of the one-dimensional filament as a function of the number of monomers, the position of the breaking point along the filament, the ratio of the bond energy to the thermal energy, and the Rouse relaxation time. We also obtain the fragmentation rate for a fixed initial configuration of the chain by numerically solving a Volterra equation. Our results reduce to those of previous theoretical studies at the appropriate limits, and spell out the role of the relevant time scales. The prediction of our model for the fragmentation rate of insulin fibrils under optimal growth conditions for the solution appears to be consistent with experimental data from other studies.
Collapse
|
33
|
Nassar R, Wong E, Gsponer J, Lamour G. Inverse Correlation between Amyloid Stiffness and Size. J Am Chem Soc 2018; 141:58-61. [PMID: 30562031 DOI: 10.1021/jacs.8b10142] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We reveal that the axial stiffness of amyloid fibrils is inversely correlated with their cross-sectional area. Because amyloid fibrils' stiffness is determined by hydrogen bond (H-bond) density with a linear correlation, our finding implies that amyloid fibrils with larger radial sizes are generally softer and have lower density H-bond networks. In silico calculations show that the stiffness-size relationship of amyloid fibrils is, indeed, driven by the packing densities of residues and H-bonds. Our results suggest that polypeptide chains which form amyloid fibrils with narrow cross sections can optimize packing densities in the fibrillar core structure, in contrast to those forming wide amyloid fibrils. Consequently, the density of residues and H-bonds that contribute to mechanical stability is higher in amyloid fibrils with narrow cross sections. This size dependence of nanomechanics appears to be a global property of amyloid fibrils, just like the well-known cross-β sheet topology.
Collapse
Affiliation(s)
- Roy Nassar
- Laufer Center for Physical and Quantitative Biology , Stony Brook University , Stony Brook , New York 11794-5252 , United States.,Department of Chemistry , Stony Brook University , Stony Brook , New York 11790-3400 , United States.,Michael Smith Laboratories , The University of British Colombia , Vancouver , British Columbia V6T 1Z4 , Canada
| | - Eric Wong
- Michael Smith Laboratories , The University of British Colombia , Vancouver , British Columbia V6T 1Z4 , Canada.,Department of Biochemistry & Molecular Biology , The University of British Colombia , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Jörg Gsponer
- Michael Smith Laboratories , The University of British Colombia , Vancouver , British Columbia V6T 1Z4 , Canada.,Department of Biochemistry & Molecular Biology , The University of British Colombia , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Guillaume Lamour
- Laboratoire d'Analyse et Modélisation pour la Biologie et l'Environnement LAMBE-CNRS, UMR 8587 , Université d'Evry , 91025 Evry , France
| |
Collapse
|
34
|
Son G, Lee SH, Wang D, Park CB. Thioflavin T-Amyloid Hybrid Nanostructure for Biocatalytic Photosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801396. [PMID: 30198161 DOI: 10.1002/smll.201801396] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Amyloidogenic peptides can self-assemble into highly ordered nanostructures consisting of cross β-sheet-rich networks that exhibit unique physicochemical properties and high stability. Light-harvesting amyloid nanofibrils are constructed by employing insulin as a building block and thioflavin T (ThT) as a amyloid-specific photosensitizer. The ability of the self-assembled amyloid scaffold to accommodate and align ThT in high density on its surface allows for efficient energy transfer from the chromophores to the catalytic units in a similar way to natural photosystems. Insulin nanofibrils significantly enhance the photoactivity of ThT by inhibiting nonradiative conformational relaxation around the central CC bonds and narrowing the distance between ThT molecules that are bound to the β-sheet-rich amyloid structure. It is demonstrated that the ThT-amyloid hybrid nanostructure is suitable for biocatalytic solar-to-chemical conversion by integrating the light-harvesting amyloid module (for nicotinamide cofactor regeneration) with a redox biocatalytic module (for enzymatic reduction).
Collapse
Affiliation(s)
- Giyeong Son
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Ding Wang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
35
|
Nassar R, Wong E, Bui JM, Yip CK, Li H, Gsponer J, Lamour G. Mechanical Anisotropy in GNNQQNY Amyloid Crystals. J Phys Chem Lett 2018; 9:4901-4909. [PMID: 30102541 DOI: 10.1021/acs.jpclett.8b02027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Mapping the nanomechanical properties of amyloids can provide valuable insights into structure and assembly mechanisms of protein aggregates that underlie the development of various human diseases. Although it is well-known that amyloids exhibit an intrinsic stiffness comparable to that of silk (1-10 GPa), a detailed understanding of the directional dependence (anisotropy) of the stiffness of amyloids and how it relates to structural features in these protein aggregates is missing. Here we used steered molecular dynamics (SMD) simulations and amplitude modulation-frequency modulation (AM-FM) atomic force microscopy to measure the directional variation in stiffness of GNNQQNY amyloid crystals. We reveal that individual crystals display significant mechanical anisotropy and relate this anisotropy to subtle but mechanically important differences in interactions between interfaces that define the crystal architecture. Our results provide detailed insights into the structure-mechanics relationship of amyloid that may help in designing amyloid-based nanomaterials with tailored mechanical properties.
Collapse
Affiliation(s)
- Roy Nassar
- Michael Smith Laboratories , The University of British Colombia , Vancouver , BC Canada V6T 1Z4
- Department of Biochemistry & Molecular Biology , The University of British Colombia , Vancouver , BC Canada V6T 1Z3
| | - Eric Wong
- Michael Smith Laboratories , The University of British Colombia , Vancouver , BC Canada V6T 1Z4
- Department of Biochemistry & Molecular Biology , The University of British Colombia , Vancouver , BC Canada V6T 1Z3
| | - Jennifer M Bui
- Michael Smith Laboratories , The University of British Colombia , Vancouver , BC Canada V6T 1Z4
- Department of Biochemistry & Molecular Biology , The University of British Colombia , Vancouver , BC Canada V6T 1Z3
| | - Calvin K Yip
- Department of Biochemistry & Molecular Biology , The University of British Colombia , Vancouver , BC Canada V6T 1Z3
| | - Hongbin Li
- Department of Chemistry , The University of British Columbia , Vancouver , BC Canada V6T 1Z1
| | - Jörg Gsponer
- Michael Smith Laboratories , The University of British Colombia , Vancouver , BC Canada V6T 1Z4
- Department of Biochemistry & Molecular Biology , The University of British Colombia , Vancouver , BC Canada V6T 1Z3
| | - Guillaume Lamour
- Michael Smith Laboratories , The University of British Colombia , Vancouver , BC Canada V6T 1Z4
- Department of Biochemistry & Molecular Biology , The University of British Colombia , Vancouver , BC Canada V6T 1Z3
- Department of Chemistry , The University of British Columbia , Vancouver , BC Canada V6T 1Z1
| |
Collapse
|
36
|
Zhao W, Xing X, Kang B, Zhu X, Ai H. Positive effect of strong acidity on the twist of Aβ 42 fibrils and the counteraction of Aβ 42 N-terminus. J Mol Graph Model 2018; 82:59-66. [PMID: 29698798 DOI: 10.1016/j.jmgm.2018.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 11/28/2022]
Abstract
pH is a crucial factor in terms of affecting the aggregation and morphology of β-Amyloid and hence a focus of study. In this study, structural and mechanical properties of a series of models (5, 6, …, 30 layer) of one-fold Aβ42 fibrils at pH 1.5, 3.0 and 7.5, have been computed by using all-atom molecular dynamics simulations. 12, 14, and 15 layers are established to be the smallest realistic models for Aβ42 fibrils at pH 1.5, 3.0 and 7.5, with twist angles of 0.40°, 0.34°, 0.31° respectively, disclosing the favorable effect of strong acidity on fibril twist. However, these angles are all lower than that (0.48°) determined for the truncated Aβ17-42 fibril at pH 7.5, indicating that the disordered N-terminal depresses greatly the fibril twist and the lower pH disfavors the depression. Three commonly used indices to measure the fibril properties, namely number of H-bonds, interstrand distance and β-sheet content have imperceptible changes with the pH alternation, therefore changes in fibril twist can be taken as a probe to monitor fibril properties. By contrast, N-terminus is determined not only to inhibit the U-shaped fibril twist by hampering the stagger between β1 and β2 strands, but also to play a vital carrier role in feeling solution (i.e., pH, salt) changes. These results can help design the nextgeneration of amyloid materials for state-of-the-art bio-nano-med applications by changing the solution pH or modifying chain length.
Collapse
Affiliation(s)
- Wei Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xiaofeng Xing
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Baotao Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xueying Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
37
|
Trovatti E, Tang H, Hajian A, Meng Q, Gandini A, Berglund LA, Zhou Q. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide. Carbohydr Polym 2018; 181:256-263. [DOI: 10.1016/j.carbpol.2017.10.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/19/2017] [Accepted: 10/22/2017] [Indexed: 11/29/2022]
|
38
|
Samie M, Lim J, Verschueren E, Baughman JM, Peng I, Wong A, Kwon Y, Senbabaoglu Y, Hackney JA, Keir M, Mckenzie B, Kirkpatrick DS, van Lookeren Campagne M, Murthy A. Selective autophagy of the adaptor TRIF regulates innate inflammatory signaling. Nat Immunol 2018; 19:246-254. [PMID: 29358708 DOI: 10.1038/s41590-017-0042-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/15/2017] [Indexed: 12/17/2022]
Abstract
Defective autophagy is linked to diseases such as rheumatoid arthritis, lupus and inflammatory bowel disease (IBD). However, the mechanisms by which autophagy limits inflammation remain poorly understood. Here we found that loss of the autophagy-related gene Atg16l1 promoted accumulation of the adaptor TRIF and downstream signaling in macrophages. Multiplex proteomic profiling identified SQSTM1 and Tax1BP1 as selective autophagy-related receptors that mediated the turnover of TRIF. Knockdown of Tax1bp1 increased production of the cytokines IFN-β and IL-1β. Mice lacking Atg16l1 in myeloid cells succumbed to lipopolysaccharide-mediated sepsis but enhanced their clearance of intestinal Salmonella typhimurium in an interferon receptor-dependent manner. Human macrophages with the Crohn's disease-associated Atg16l1 variant T300A exhibited more production of IFN-β and IL-1β. An elevated interferon-response gene signature was observed in patients with IBD who were resistant to treatment with an antibody to the cytokine TNF. These findings identify selective autophagy as a key regulator of signaling via the innate immune system.
Collapse
Affiliation(s)
- Mohammad Samie
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Junghyun Lim
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Erik Verschueren
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, South San Francisco, CA, USA
| | - Joshua M Baughman
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, South San Francisco, CA, USA
| | - Ivan Peng
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Aaron Wong
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Youngsu Kwon
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Yasin Senbabaoglu
- Department of Bioinformatics & Computational Biology, Genentech, South San Francisco, CA, USA
| | - Jason A Hackney
- Department of Bioinformatics & Computational Biology, Genentech, South San Francisco, CA, USA
| | - Mary Keir
- Biomarker Discovery OMNI, Genentech, South San Francisco, CA, USA
| | - Brent Mckenzie
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Donald S Kirkpatrick
- Department of Microchemistry, Proteomics & Lipidomics, Genentech, South San Francisco, CA, USA
| | | | - Aditya Murthy
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
39
|
Peng Z, Parker AS, Peralta MDR, Ravikumar KM, Cox DL, Toney MD. High Tensile Strength of Engineered β-Solenoid Fibrils via Sonication and Pulling. Biophys J 2017; 113:1945-1955. [PMID: 29117519 DOI: 10.1016/j.bpj.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/17/2017] [Accepted: 09/06/2017] [Indexed: 01/17/2023] Open
Abstract
We present estimates of ultimate tensile strength (UTS) for two engineered β-solenoid protein mutant fibril structures (spruce budworm and Rhagium inquisitor antifreeze proteins) derived from sonication-based measurements and from force pulling molecular dynamics simulations, both in water. Sonication experiments generate limiting scissioned fibrils with a well-defined length-to-width correlation for the mutant spruce budworm protein and the resultant UTS estimate is 0.66 ± 0.08 GPa. For fibrils formed from engineered R. inquisitor antifreeze protein, depending upon geometry, we estimate UTSs of 3.5 ± 3.2-5.5 ± 5.1 GPa for proteins with interfacial disulfide bonds, and 1.6 ± 1.5-2.5 ± 2.3 GPa for the reduced form. The large error bars for the R. inquisitor structures are intrinsic to the broad distribution of limiting scission lengths. Simulations provide pulling velocity-dependent UTSs increasing from 0.2 to 1 GPa in the available speed range, and 1.5 GPa extrapolated to the speeds expected in the sonication experiments. Simulations yield low-velocity values for the Young's modulus of 6.0 GPa. Without protein optimization, these mechanical parameters are similar to those of spider silk and Kevlar, but in contrast to spider silk, these proteins have a precisely known sequence-structure relationship.
Collapse
Affiliation(s)
- Zeyu Peng
- Department of Chemistry, University of California, Davis, Davis, California
| | - Amanda S Parker
- Department of Physics, University of California, Davis, Davis, California
| | - Maria D R Peralta
- Department of Chemistry, University of California, Davis, Davis, California
| | | | - Daniel L Cox
- Department of Physics, University of California, Davis, Davis, California.
| | - Michael D Toney
- Department of Chemistry, University of California, Davis, Davis, California
| |
Collapse
|