1
|
Purali N. Mechanosensitive Ion Channels: The Unending Riddle of Mechanotransduction. Bioelectricity 2025; 7:58-70. [PMID: 40342940 PMCID: PMC12054614 DOI: 10.1089/bioe.2024.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025] Open
Abstract
Sensation begins at the periphery, where distinct transducer proteins, activated by specific physical stimuli, initiate biological events to convert the stimulus into electrical activity. These evoked pulse trains encode various properties of the stimulus and travel to higher centers, enabling perception of the physical environment. Transduction is an essential process in all of the five senses described by Aristotle. A substantial amount of information is already available on how G-protein coupled receptor proteins transduce exposure to light, odors, and tastants. Functional studies have revealed the presence of mechanosensitive (MS) ion channels, which act as force transducers, in a wide range of organisms from archaea to mammals. However, the molecular basis of mechanosensitivity is incompletely understood. Recently, the structure of a few MS channels and the molecular mechanisms linking mechanical force to channel gating have been partially revealed. This article reviews recent developments focusing on the molecular basis of mechanosensitivity and emerging methods to investigate MS channels.
Collapse
Affiliation(s)
- Nuhan Purali
- Faculty of Medicine, Department of Biophysics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Lim XR, Willemse L, Harraz OF. Amyloid beta Aβ 1-40 activates Piezo1 channels in brain capillary endothelial cells. Biophys J 2024:S0006-3495(24)04106-7. [PMID: 39722451 DOI: 10.1016/j.bpj.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024] Open
Abstract
Amyloid beta (Aβ) peptide accumulation on blood vessels in the brain is a hallmark of neurodegeneration. While Aβ peptides constrict cerebral arteries and arterioles, their impact on capillaries is less understood. Aβ was recently shown to constrict brain capillaries through pericyte contraction, but whether-and if so how-Aβ affects endothelial cells (ECs) remains unknown. ECs represent the predominant vascular cell type in the cerebral circulation, and we recently showed that the mechanosensitive ion channel Piezo1 is functionally expressed in the plasma membrane of ECs. Since Aβ disrupts membrane structures, we hypothesized that Aβ1-40, the predominantly deposited isoform in the cerebral circulation, alters endothelial Piezo1 function. Using patch-clamp electrophysiology and freshly isolated capillary ECs, we assessed the impact of the Aβ1-40 peptide on single-channel Piezo1 activity. We show that Aβ1-40 increased Piezo1 open probability and channel open time. Aβ1-40 effects were absent when Piezo1 was genetically deleted or when a superoxide dismutase/catalase mimetic was used. Further, Aβ1-40 enhanced Piezo1 mechanosensitivity and lowered the pressure of half-maximal Piezo1 activation. Our data collectively suggest that Aβ1-40 facilitates higher Piezo1-mediated cation influx in brain ECs. These novel findings have the potential to unravel the possible involvement of Piezo1 modulation in the pathophysiology of neurodegenerative diseases characterized by Aβ accumulation.
Collapse
Affiliation(s)
- Xin Rui Lim
- Department of Pharmacology, Larner College of Medicine, Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont
| | - Luc Willemse
- Department of Pharmacology, Larner College of Medicine, Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine, Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont.
| |
Collapse
|
3
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
4
|
Gürbüz A, Pak OS, Taylor M, Sivaselvan MV, Sachs F. Effects of membrane viscoelasticity on the red blood cell dynamics in a microcapillary. Biophys J 2023:S0006-3495(23)00026-7. [PMID: 36639868 DOI: 10.1016/j.bpj.2023.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/11/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The mechanical properties of red blood cells (RBCs) play key roles in their biological functions in microcirculation. In particular, RBCs must deform significantly to travel through microcapillaries with sizes comparable with or even smaller than their own. Although the dynamics of RBCs in microcapillaries have received considerable attention, the effect of membrane viscoelasticity has been largely overlooked. In this work, we present a computational study based on the boundary integral method and thin-shell mechanics to examine how membrane viscoelasticity influences the dynamics of RBCs flowing through straight and constricted microcapillaries. Our results reveal that the cell with a viscoelastic membrane undergoes substantially different motion and deformation compared with results based on a purely elastic membrane model. Comparisons with experimental data also suggest the importance of accounting for membrane viscoelasticity to properly capture the transient dynamics of an RBC flowing through a microcapillary. Taken together, these findings demonstrate the significant effects of membrane viscoelasticity on RBC dynamics in different microcapillary environments. The computational framework also lays the groundwork for more accurate quantitative modeling of the mechanical response of RBCs in their mechanotransduction process in subsequent investigations.
Collapse
Affiliation(s)
- Ali Gürbüz
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, California.
| | - On Shun Pak
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, California
| | - Michael Taylor
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, California
| | - Mettupalayam V Sivaselvan
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, New York
| | - Frederick Sachs
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York
| |
Collapse
|
5
|
Cowan LM, Strege PR, Rusinova R, Andersen OS, Farrugia G, Beyder A. Capsaicin as an amphipathic modulator of Na V1.5 mechanosensitivity. Channels (Austin) 2022; 16:9-26. [PMID: 35412435 PMCID: PMC9009938 DOI: 10.1080/19336950.2022.2026015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SCN5A-encoded NaV1.5 is a voltage-gated Na+ channel that drives the electrical excitability of cardiac myocytes and contributes to slow waves of the human gastrointestinal smooth muscle cells. NaV1.5 is mechanosensitive: mechanical force modulates several facets of NaV1.5’s voltage-gated function, and some NaV1.5 channelopathies are associated with abnormal NaV1.5 mechanosensitivity (MS). A class of membrane-active drugs, known as amphiphiles, therapeutically target NaV1.5’s voltage-gated function and produce off-target effects including alteration of MS. Amphiphiles may provide a novel option for therapeutic modulation of NaV1.5’s mechanosensitive operation. To more selectively target NaV1.5 MS, we searched for a membrane-partitioning amphipathic agent that would inhibit MS with minimal closed-state inhibition of voltage-gated currents. Among the amphiphiles tested, we selected capsaicin for further study. We used two methods to assess the effects of capsaicin on NaV1.5 MS: (1) membrane suction in cell-attached macroscopic patches and (2) fluid shear stress on whole cells. We tested the effect of capsaicin on NaV1.5 MS by examining macro-patch and whole-cell Na+ current parameters with and without force. Capsaicin abolished the pressure- and shear-mediated peak current increase and acceleration; and the mechanosensitive shifts in the voltage-dependence of activation (shear) and inactivation (pressure and shear). Exploring the recovery from inactivation and use-dependent entry into inactivation, we found divergent stimulus-dependent effects that could potentiate or mitigate the effect of capsaicin, suggesting that mechanical stimuli may differentially modulate NaV1.5 MS. We conclude that selective modulation of NaV1.5 MS makes capsaicin a promising candidate for therapeutic interventions targeting MS.
Collapse
Affiliation(s)
- Luke M Cowan
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Mn, USA
| | - Peter R Strege
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Mn, USA
| | - Radda Rusinova
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Olaf S Andersen
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Mn, USA
| | - Arthur Beyder
- Division of Gastroenterology and Hepatology, Enteric Neuroscience Program (ENSP), Mayo Clinic, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Mn, USA
| |
Collapse
|
6
|
Mendoza C, Mizrachi D. Using the Power of Junctional Adhesion Molecules Combined with the Target of CAR-T to Inhibit Cancer Proliferation, Metastasis and Eradicate Tumors. Biomedicines 2022; 10:biomedicines10020381. [PMID: 35203590 PMCID: PMC8962422 DOI: 10.3390/biomedicines10020381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Decades of evidence suggest that alterations in the adhesion properties of neoplastic cells endow them with an invasive and migratory phenotype. Tight junctions (TJs) are present in endothelial and epithelial cells. Tumors arise from such tissues, thus, the role of TJ proteins in the tumor microenvironment is highly relevant. In the TJ, junctional adhesion molecules (JAM) play a key role in assembly of the TJ and control of cell–cell adhesion. Reprogramming of immune cells using chimeric antigen receptors (CAR) to allow for target recognition and eradication of tumors is an FDA approved therapy. The best-studied CAR-T cells recognize CD19, a B-cell surface molecule. CD19 is not a unique marker for tumors, liquid or solid. To address this limitation, we developed a biologic containing three domains: (1) pH-low-insertion peptide (pHLIP), which recognizes the low pH of the cancer cells, leading to the insertion of the peptide into the plasma membrane. (2) An extracellular domain of JAM proteins that fosters cell–cell interactions. (3) CD19 to be targeted by CAR-T cells. Our modular design only targets cancer cells and when coupled with anti-CD19 CAR-T cells, it decreases proliferation and metastasis in at least two cancer cell lines.
Collapse
|
7
|
Pfeffermann J, Eicher B, Boytsov D, Hannesschlaeger C, Galimzyanov TR, Glasnov TN, Pabst G, Akimov SA, Pohl P. Photoswitching of model ion channels in lipid bilayers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 224:112320. [PMID: 34600201 DOI: 10.1016/j.jphotobiol.2021.112320] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 11/19/2022]
Abstract
Membrane proteins can be regulated by alterations in material properties intrinsic to the hosting lipid bilayer. Here, we investigated whether the reversible photoisomerization of bilayer-embedded diacylglycerols (OptoDArG) with two azobenzene-containing acyl chains may trigger such regulatory events. We observed an augmented open probability of the mechanosensitive model channel gramicidin A (gA) upon photoisomerizing OptoDArG's acyl chains from trans to cis: integral planar bilayer conductance brought forth by hundreds of simultaneously conducting gA dimers increased by typically >50% - in good agreement with the observed increase in single-channel lifetime. Further, (i) increments in the electrical capacitance of planar lipid bilayers and protrusion length of aspirated giant unilamellar vesicles into suction pipettes, as well as (ii) changes of small-angle X-ray scattering of multilamellar vesicles indicated that spontaneous curvature, hydrophobic thickness, and bending elasticity decreased upon switching from trans- to cis-OptoDArG. Our bilayer elasticity model for gA supports the causal relationship between changes in gA activity and bilayer material properties upon photoisomerization. Thus, we conclude that photolipids are deployable for converting bilayers of potentially diverse origins into light-gated actuators for mechanosensitive proteins.
Collapse
Affiliation(s)
- Juergen Pfeffermann
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, Linz 4020, Austria
| | - Barbara Eicher
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, Graz, Austria; BioTechMed Graz, Austria
| | - Danila Boytsov
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, Linz 4020, Austria
| | | | - Timur R Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/5 Leninskiy prospekt, Moscow 119071, Russia
| | - Toma N Glasnov
- University of Graz, Institute of Chemistry, NAWI Graz, Graz, Austria
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, Graz, Austria; BioTechMed Graz, Austria
| | - Sergey A Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/5 Leninskiy prospekt, Moscow 119071, Russia
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, Linz 4020, Austria.
| |
Collapse
|
8
|
de Coulon E, Dellenbach C, Rohr S. Advancing mechanobiology by performing whole-cell patch clamp recording on mechanosensitive cells subjected simultaneously to dynamic stretch events. iScience 2021; 24:102041. [PMID: 33532717 PMCID: PMC7822953 DOI: 10.1016/j.isci.2021.102041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Accepted: 01/04/2021] [Indexed: 11/05/2022] Open
Abstract
A comprehensive understanding of mechano-electrical coupling requires continuous intracellular electrical recordings being performed on cells undergoing simultaneously in vivo like strain events. Here, we introduce a linear strain single-cell electrophysiology (LSSE) system that meets these requirements by delivering highly reproducible unidirectional strain events with magnitudes up to 12% and strain rates exceeding 200%s−1 to adherent cells kept simultaneously in whole-cell patch-clamp recording configuration. Proof-of-concept measurements with NIH3T3 cells demonstrate that stable recording conditions are maintained over tens of strain cycles at maximal amplitudes and strain rates thereby permitting a full electrophysiological characterization of mechanically activated ion currents. Because mechano-electrical responses to predefined strain patterns can be investigated using any adherent wild-type or genetically modified cell type of interest, the LSSE system offers the perspective of providing advanced insights into mechanosensitive ion channel function that can finally be compared quantitatively among different types of channels and cells. The methodology presented enables investigations of adherent mechanosensitive cells Whole-cell patch-clamp recording is performed while cells are dynamically stretched Continuous recording of sequences of physiological mechanical stimuli is practicable Experiments with NIH3T3 cells reveal a robust atypical mechanosensitive current
Collapse
Affiliation(s)
- Etienne de Coulon
- Department of Physiology, University of Bern, Bühlplatz 5, Bern, CH-3012, Switzerland
| | - Christian Dellenbach
- Department of Physiology, University of Bern, Bühlplatz 5, Bern, CH-3012, Switzerland
| | - Stephan Rohr
- Department of Physiology, University of Bern, Bühlplatz 5, Bern, CH-3012, Switzerland
| |
Collapse
|
9
|
Roy D, Steinkühler J, Zhao Z, Lipowsky R, Dimova R. Mechanical Tension of Biomembranes Can Be Measured by Super Resolution (STED) Microscopy of Force-Induced Nanotubes. NANO LETTERS 2020; 20:3185-3191. [PMID: 32320255 PMCID: PMC7304919 DOI: 10.1021/acs.nanolett.9b05232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/20/2020] [Indexed: 05/26/2023]
Abstract
Membrane tension modulates the morphology of plasma-membrane tubular protrusions in cells but is difficult to measure. Here, we propose to use microscopy imaging to assess the membrane tension. We report direct measurement of membrane nanotube diameters with unprecedented resolution using stimulated emission depletion (STED) microscopy. For this purpose, we integrated an optical tweezers setup in a commercial microscope equipped for STED imaging and established micropipette aspiration of giant vesicles. Membrane nanotubes were pulled from the vesicles at specific membrane tension imposed by the aspiration pipet. Tube diameters calculated from the applied tension using the membrane curvature elasticity model are in excellent agreement with data measured directly with STED. Our approach can be extended to cellular membranes and will then allow us to estimate the mechanical membrane tension within the force-induced nanotubes.
Collapse
|
10
|
Arbore C, Perego L, Sergides M, Capitanio M. Probing force in living cells with optical tweezers: from single-molecule mechanics to cell mechanotransduction. Biophys Rev 2019; 11:765-782. [PMID: 31612379 PMCID: PMC6815294 DOI: 10.1007/s12551-019-00599-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/05/2019] [Indexed: 01/12/2023] Open
Abstract
The invention of optical tweezers more than three decades ago has opened new avenues in the study of the mechanical properties of biological molecules and cells. Quantitative force measurements still represent a challenging task in living cells due to the complexity of the cellular environment. Here, we review different methodologies to quantitatively measure the mechanical properties of living cells, the strength of adhesion/receptor bonds, and the active force produced during intracellular transport, cell adhesion, and migration. We discuss experimental strategies to attain proper calibration of optical tweezers and molecular resolution in living cells. Finally, we show recent studies on the transduction of mechanical stimuli into biomolecular and genetic signals that play a critical role in cell health and disease.
Collapse
Affiliation(s)
- Claudia Arbore
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - Laura Perego
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - Marios Sergides
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - Marco Capitanio
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
11
|
Le Roux AL, Quiroga X, Walani N, Arroyo M, Roca-Cusachs P. The plasma membrane as a mechanochemical transducer. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180221. [PMID: 31431176 PMCID: PMC6627014 DOI: 10.1098/rstb.2018.0221] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Cells are constantly submitted to external mechanical stresses, which they must withstand and respond to. By forming a physical boundary between cells and their environment that is also a biochemical platform, the plasma membrane (PM) is a key interface mediating both cellular response to mechanical stimuli, and subsequent biochemical responses. Here, we review the role of the PM as a mechanosensing structure. We first analyse how the PM responds to mechanical stresses, and then discuss how this mechanical response triggers downstream biochemical responses. The molecular players involved in PM mechanochemical transduction include sensors of membrane unfolding, membrane tension, membrane curvature or membrane domain rearrangement. These sensors trigger signalling cascades fundamental both in healthy scenarios and in diseases such as cancer, which cells harness to maintain integrity, keep or restore homeostasis and adapt to their external environment. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Anabel-Lise Le Roux
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Xarxa Quiroga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Nikhil Walani
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| | - Marino Arroyo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
- Department of Biomedical Sciences, Universitat de Barcelona, Barcelona 08036, Spain
| |
Collapse
|
12
|
Maneshi MM, Ziegler L, Sachs F, Hua SZ, Gottlieb PA. Enantiomeric Aβ peptides inhibit the fluid shear stress response of PIEZO1. Sci Rep 2018; 8:14267. [PMID: 30250223 PMCID: PMC6155315 DOI: 10.1038/s41598-018-32572-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/06/2018] [Indexed: 01/23/2023] Open
Abstract
Traumatic brain injury (TBI) elevates Abeta (Aβ) peptides in the brain and cerebral spinal fluid. Aβ peptides are amphipathic molecules that can modulate membrane mechanics. Because the mechanosensitive cation channel PIEZO1 is gated by membrane tension and curvature, it prompted us to test the effects of Aβ on PIEZO1. Using precision fluid shear stress as a stimulus, we found that Aβ monomers inhibit PIEZO1 at femtomolar to picomolar concentrations. The Aβ oligomers proved much less potent. The effect of Aβs on Piezo gating did not involve peptide-protein interactions since the D and L enantiomers had similar effects. Incubating a fluorescent derivative of Aβ and a fluorescently tagged PIEZO1, we showed that Aβ can colocalize with PIEZO1, suggesting that they both had an affinity for particular regions of the bilayer. To better understand the PIEZO1 inhibitory effects of Aβ, we examined their effect on wound healing. We observed that over-expression of PIEZO1 in HEK293 cells increased cell migration velocity ~10-fold, and both enantiomeric Aβ peptides and GsMTx4 independently inhibited migration, demonstrating involvement of PIEZO1 in cell motility. As part of the motility study we examined the correlation of PIEZO1 function with tension in the cytoskeleton using a genetically encoded fluorescent stress probe. Aβ peptides increased resting stress in F-actin, and is correlated with Aβ block of PIEZO1-mediated Ca2+ influx. Aβ inhibition of PIEZO1 in the absence of stereospecific peptide-protein interactions shows that Aβ peptides modulate both cell membrane and cytoskeletal mechanics to control PIEZO1-triggered Ca2+ influx.
Collapse
Affiliation(s)
- Mohammad M Maneshi
- Department of Physiology and Biophysics, 302 Cary Hall, State University of New York at Buffalo, Buffalo, NY, 14214, USA
- Department of Mechanical and Aerospace Engineering, 340 Jarvis Hall, State University of New York at Buffalo, Buffalo, New York, 14260, USA
- 745 N Fairbanks, Tarry 7-718, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Lynn Ziegler
- Department of Physiology and Biophysics, 302 Cary Hall, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Frederick Sachs
- Department of Physiology and Biophysics, 302 Cary Hall, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Susan Z Hua
- Department of Physiology and Biophysics, 302 Cary Hall, State University of New York at Buffalo, Buffalo, NY, 14214, USA
- Department of Mechanical and Aerospace Engineering, 340 Jarvis Hall, State University of New York at Buffalo, Buffalo, New York, 14260, USA
| | - Philip A Gottlieb
- Department of Physiology and Biophysics, 302 Cary Hall, State University of New York at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|