1
|
Izard T. Environmental Toxicants and Their Disruption of Integrin Signaling in Lipid Rafts. Bioessays 2025; 47:e202400276. [PMID: 40012268 DOI: 10.1002/bies.202400276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
Talin, a key integrin activator, is essential for cellular adhesion, signal transduction, and mechanical stability. Its transition between autoinhibited and active conformations allows dynamic regulation of adhesion in response to environmental cues. Cholesterol-rich membrane microdomains, such as lipid rafts, organize and stabilize signaling platforms, influencing talin and integrin conformational states. Cholesterol is a switch modulating talin activation, integrin binding, and adhesion. Environmental pollutants, including heavy metals and air toxins, disrupt cholesterol homeostasis, destabilize lipid rafts, and interfere with talin-integrin interactions. These disruptions impair adhesion, tissue repair, and signaling fidelity, contributing to atherosclerosis and cancer metastasis. Understanding talin's interaction with cholesterol-rich domains offers critical insights into adhesion regulation and reveals the broader impact of environmental toxicants on cellular function. This framework emphasizes the importance of membrane composition, particularly cholesterol, in mediating the effects of environmental stressors and suggests potential therapeutic interventions.
Collapse
Affiliation(s)
- Tina Izard
- Cell Adhesion Laboratory, UF Scripps, Jupiter, Florida, USA
- The Skaggs Graduate School, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
2
|
Bernauer L, Berzak P, Lehmayer L, Messenlehner J, Oberdorfer G, Zellnig G, Wolinski H, Augustin C, Baeck M, Emmerstorfer-Augustin A. Sterol interactions influence the function of Wsc sensors. J Lipid Res 2023; 64:100466. [PMID: 37918524 PMCID: PMC10722382 DOI: 10.1016/j.jlr.2023.100466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023] Open
Abstract
The Wsc1, Wsc2, and Wsc3 proteins are essential cell surface sensors that respond to cell wall perturbation by activating the cell wall integrity pathway (CWIP). We show here that in situ production of cholesterol (in place of ergosterol) induces hyper-phosphorylation of Slt2, the MAPK of the CWIP, and upregulates cell wall biosynthesis. Deletion of all three Wsc genes in K. phaffii reverts these phenotypes. In the cholesterol-producing strain, both Wsc1 and Wsc3 accumulate in the plasma membrane. Close inspection of the transmembrane domains of all three Wsc proteins predicted by AlphaFold2 revealed the presence of CRAC sterol-binding motifs. Experiments using a photoreactive cholesterol derivative indicate intimate interaction of this sterol with the Wsc transmembrane domain, and this apparent sterol binding was abrogated in Wsc mutants with substitutions in the CRAC motif. We also observed cholesterol interaction with CRAC-like motifs in the transmembrane domains of mammalian integrins, analogs of Wsc proteins. Our results suggest that proper signaling of the Wsc sensors requires highly specific binding of the native endogenous terminal sterol, ergosterol.
Collapse
Affiliation(s)
- Lukas Bernauer
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Paula Berzak
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Leonie Lehmayer
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Julia Messenlehner
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Gustav Oberdorfer
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Günther Zellnig
- Institute of Biology, Plant Sciences, University of Graz, NAWI Graz, Graz, Austria
| | - Heimo Wolinski
- BioTechMed-Graz, Graz, Austria; Department of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
| | - Christoph Augustin
- Gottfried Schatz Research Center, Medical University Graz, Graz, Austria
| | - Melanie Baeck
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Anita Emmerstorfer-Augustin
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria; Austrian Centre of Industrial Biotechnology, acib GmbH, Graz, Austria.
| |
Collapse
|
3
|
Chen X, Yang Q, Kong W, Ge Y, He J, Yan A, Li D. High spatial-resolved heat manipulating membrane heterogeneity alters cellular migration and signaling. Proc Natl Acad Sci U S A 2023; 120:e2312603120. [PMID: 37983503 PMCID: PMC10691225 DOI: 10.1073/pnas.2312603120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
Plasma membrane heterogeneity is a key biophysical regulatory principle of membrane protein dynamics, which further influences downstream signal transduction. Although extensive biophysical and cell biology studies have proven membrane heterogeneity is essential to cell fate, the direct link between membrane heterogeneity regulation to cellular function remains unclear. Heterogeneous structures on plasma membranes, such as lipid rafts, are transiently assembled, thus hard to study via regular techniques. Indeed, it is nearly impossible to perturb membrane heterogeneity without changing plasma membrane compositions. In this study, we developed a high-spatial resolved DNA-origami-based nanoheater system with specific lipid heterogeneity targeting to manipulate the local lipid environmental temperature under near-infrared (NIR) laser illumination. Our results showed that the targeted heating of the local lipid environment influences the membrane thermodynamic properties, which further triggers an integrin-associated cell migration change. Therefore, the nanoheater system was further applied as an optimized therapeutic agent for wound healing. Our strategy provides a powerful tool to dynamically manipulate membrane heterogeneity and has the potential to explore cellular function through changes in plasma membrane biophysical properties.
Collapse
Affiliation(s)
- Xiaoqing Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200241, China
| | - Qianyun Yang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200241, China
| | - Wenyan Kong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201210, China
| | - Yifan Ge
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201210, China
| | - Jie He
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200241, China
| | - An Yan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200241, China
| | - Di Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200241, China
| |
Collapse
|
4
|
Tachibana H, Minoura K, Omachi T, Nagao K, Ichikawa T, Kimura Y, Kono N, Shimanaka Y, Arai H, Ueda K, Kioka N. The plasma membrane of focal adhesions has a high content of cholesterol and phosphatidylcholine with saturated acyl chains. J Cell Sci 2023; 136:jcs260763. [PMID: 37470177 DOI: 10.1242/jcs.260763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Cellular functions, such as differentiation and migration, are regulated by the extracellular microenvironment, including the extracellular matrix (ECM). Cells adhere to ECM through focal adhesions (FAs) and sense the surrounding microenvironments. Although FA proteins have been actively investigated, little is known about the lipids in the plasma membrane at FAs. In this study, we examine the lipid composition at FAs with imaging and biochemical approaches. Using the cholesterol-specific probe D4 with total internal reflection fluorescence microscopy and super-resolution microscopy, we show an enrichment of cholesterol at FAs simultaneously with FA assembly. Furthermore, we establish a method to isolate the lipid from FA-rich fractions, and biochemical quantification of the lipids reveals that there is a higher content of cholesterol and phosphatidylcholine with saturated fatty acid chains in the lipids of the FA-rich fraction than in either the plasma membrane fraction or the whole-cell membrane. These results demonstrate that plasma membrane at FAs has a locally distinct lipid composition compared to the bulk plasma membrane.
Collapse
Affiliation(s)
- Hiroshi Tachibana
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kodai Minoura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Tomohiro Omachi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kohjiro Nagao
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan
| | - Takafumi Ichikawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yasuhisa Kimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Nozomu Kono
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuta Shimanaka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Arai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazumitsu Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|
5
|
Wu A, Mazurkiewicz E, Donizy P, Kotowski K, Pieniazek M, Mazur AJ, Czogalla A, Trombik T. ABCA1 transporter promotes the motility of human melanoma cells by modulating their plasma membrane organization. Biol Res 2023; 56:32. [PMID: 37312227 DOI: 10.1186/s40659-023-00443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Melanoma is one of the most aggressive and deadliest skin tumor. Cholesterol content in melanoma cells is elevated, and a portion of it accumulates into lipid rafts. Therefore, the plasma membrane cholesterol and its lateral organization might be directly linked with tumor development. ATP Binding Cassette A1 (ABCA1) transporter modulates physico-chemical properties of the plasma membrane by modifying cholesterol distribution. Several studies linked the activity of the transporter with a different outcome of tumor progression depending on which type. However, no direct link between human melanoma progression and ABCA1 activity has been reported yet. METHODS An immunohistochemical study on the ABCA1 level in 110 patients-derived melanoma tumors was performed to investigate the potential association of the transporter with melanoma stage of progression and prognosis. Furthermore, proliferation, migration and invasion assays, extracellular-matrix degradation assay, immunochemistry on proteins involved in migration processes and a combination of biophysical microscopy analysis of the plasma membrane organization of Hs294T human melanoma wild type, control (scrambled), ABCA1 Knockout (ABCA1 KO) and ABCA1 chemically inactivated cells were used to study the impact of ABCA1 activity on human melanoma metastasis processes. RESULTS The immunohistochemical analysis of clinical samples showed that high level of ABCA1 transporter in human melanoma is associated with a poor prognosis. Depletion or inhibition of ABCA1 impacts invasion capacities of aggressive melanoma cells. Loss of ABCA1 activity partially prevented cellular motility by affecting active focal adhesions formation via blocking clustering of phosphorylated focal adhesion kinases and active integrin β3. Moreover, ABCA1 activity regulated the lateral organization of the plasma membrane in melanoma cells. Disrupting this organization, by increasing the content of cholesterol, also blocked active focal adhesion formation. CONCLUSION Human melanoma cells reorganize their plasma membrane cholesterol content and organization via ABCA1 activity to promote motility processes and aggressiveness potential. Therefore, ABCA1 may contribute to tumor progression and poor prognosis, suggesting ABCA1 to be a potential metastatic marker in melanoma.
Collapse
Affiliation(s)
- Ambroise Wu
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Ewa Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wrocław Medical University, Borowska 213, 50-556, Wrocław, Poland
| | - Krzysztof Kotowski
- Department of Clinical and Experimental Pathology, Wrocław Medical University, Borowska 213, 50-556, Wrocław, Poland
| | - Małgorzata Pieniazek
- Department of Oncology and Division of Surgical Oncology, Wrocław Medical University, Pl. Hirszfelda 12, 53-413, Wrocław, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Tomasz Trombik
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland.
- Department of Biochemistry and Molecular Biology, Faculty of Medical Sciences, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| |
Collapse
|
6
|
Woodward X, Javanainen M, Fábián B, Kelly CV. Nanoscale membrane curvature sorts lipid phases and alters lipid diffusion. Biophys J 2023; 122:2203-2215. [PMID: 36604961 PMCID: PMC10257122 DOI: 10.1016/j.bpj.2023.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The precise spatiotemporal control of nanoscale membrane shape and composition is the result of a complex interplay of individual and collective molecular behaviors. Here, we employed single-molecule localization microscopy and computational simulations to observe single-lipid diffusion and sorting in model membranes with varying compositions, phases, temperatures, and curvatures. Supported lipid bilayers were created over 50-nm-radius nanoparticles to mimic the size of naturally occurring membrane buds, such as endocytic pits and the formation of viral envelopes. The curved membranes recruited liquid-disordered lipid phases while altering the diffusion and sorting of tracer lipids. Disorder-preferring fluorescent lipids sorted to and experienced faster diffusion on the nanoscale curvature only when embedded in a membrane capable of sustaining lipid phase separation at low temperatures. The curvature-induced sorting and faster diffusion even occurred when the sample temperature was above the miscibility temperature of the planar membrane, implying that the nanoscale curvature could induce phase separation in otherwise homogeneous membranes. Further confirmation and understanding of these results are provided by continuum and coarse-grained molecular dynamics simulations with explicit and spontaneous curvature-phase coupling, respectively. The curvature-induced membrane compositional heterogeneity and altered dynamics were achieved only with a coupling of the curvature with a lipid phase separation. These cross-validating results demonstrate the complex interplay of lipid phases, molecular diffusion, and nanoscale membrane curvature that are critical for membrane functionality.
Collapse
Affiliation(s)
- Xinxin Woodward
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Balázs Fábián
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Christopher V Kelly
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan.
| |
Collapse
|
7
|
Chan NN, Yamazaki M, Maruyama S, Abé T, Haga K, Kawaharada M, Izumi K, Kobayashi T, Tanuma JI. Cholesterol Is a Regulator of CAV1 Localization and Cell Migration in Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24076035. [PMID: 37047005 PMCID: PMC10093846 DOI: 10.3390/ijms24076035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Cholesterol plays an important role in cancer progression, as it is utilized in membrane biogenesis and cell signaling. Cholesterol-lowering drugs have exhibited tumor-suppressive effects in oral squamous cell carcinoma (OSCC), suggesting that cholesterol is also essential in OSCC pathogenesis. However, the direct effects of cholesterol on OSCC cells remain unclear. Here, we investigated the role of cholesterol in OSCC with respect to caveolin-1 (CAV1), a cholesterol-binding protein involved in intracellular cholesterol transport. Cholesterol levels in OSCC cell lines were depleted using methyl-β-cyclodextrin and increased using the methyl-β-cyclodextrin-cholesterol complex. Functional analysis was performed using timelapse imaging, and CAV1 expression in cholesterol-manipulated cells was investigated using immunofluorescence and immunoblotting assays. CAV1 immunohistochemistry was performed on surgical OSCC samples. We observed that cholesterol addition induced polarized cell morphology, along with CAV1 localization at the trailing edge, and promoted cell migration. Moreover, CAV1 was upregulated in the lipid rafts and formed aggregates in the plasma membrane in cholesterol-added cells. High membranous CAV1 expression in tissue specimens was associated with OSCC recurrence. Therefore, cholesterol promotes the migration of OSCC cells by regulating cell polarity and CAV1 localization to the lipid raft. Furthermore, membranous CAV1 expression is a potential prognostic marker for OSCC patients.
Collapse
Affiliation(s)
- Nyein Nyein Chan
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Manabu Yamazaki
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Satoshi Maruyama
- Oral Pathology Section, Department of Surgical Pathology, Niigata University Hospital, Niigata 951-8520, Japan
| | - Tatsuya Abé
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Kenta Haga
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Masami Kawaharada
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Kenji Izumi
- Division of Biomimetics, Department of Oral Health Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Tadaharu Kobayashi
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Jun-Ichi Tanuma
- Division of Oral Pathology, Department of Tissue Regeneration and Reconstruction, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
- Oral Pathology Section, Department of Surgical Pathology, Niigata University Hospital, Niigata 951-8520, Japan
| |
Collapse
|
8
|
Cholesterol and Sphingomyelin Polarize at the Leading Edge of Migrating Myoblasts and Involve Their Clustering in Submicrometric Domains. Biomolecules 2023; 13:biom13020319. [PMID: 36830688 PMCID: PMC9953279 DOI: 10.3390/biom13020319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Myoblast migration is crucial for myogenesis and muscular tissue homeostasis. However, its spatiotemporal control remains elusive. Here, we explored the involvement of plasma membrane cholesterol and sphingolipids in this process. In resting C2C12 mouse myoblasts, those lipids clustered in sphingomyelin/cholesterol/GM1 ganglioside (SM/chol/GM1)- and cholesterol (chol)-enriched domains, which presented a lower stiffness than the bulk membrane. Upon migration, cholesterol and sphingomyelin polarized at the front, forming cholesterol (chol)- and sphingomyelin/cholesterol (SM/chol)-enriched domains, while GM1-enriched domains polarized at the rear. A comparison of domain proportion suggested that SM/chol- and GM1-enriched domains originated from the SM/chol/GM1-coenriched domains found at resting state. Modulation of domain proportion (through cholesterol depletion, combined or not with actin polymerization inhibition, or sphingolipid synthesis inhibition) revealed that the higher the chol- and SM/chol-enriched domains, the higher the myoblast migration. At the front, chol- and SM/chol-enriched domains were found in proximity with F-actin fibers and the lateral mobility of sphingomyelin in domains was specifically restricted in a cholesterol- and cytoskeleton-dependent manner while domain abrogation impaired F-actin and focal adhesion polarization. Altogether, we showed the polarization of cholesterol and sphingomyelin and their clustering in chol- and SM/chol-enriched domains with differential properties and roles, providing a mechanism for the spatial and functional control of myoblast migration.
Collapse
|
9
|
Rezende L, Couto NFD, Fernandes-Braga W, Epshtein Y, Alvarez-Leite JI, Levitan I, Andrade LDO. OxLDL induces membrane structure rearrangement leading to biomechanics alteration and migration deficiency in macrophage. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183951. [PMID: 35504320 DOI: 10.1016/j.bbamem.2022.183951] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Cholesterol sequestration from plasma membrane has been shown to induce lipid packing disruption, causing actin cytoskeleton reorganization and polymerization, increasing cell stiffness and inducing lysosomal exocytosis in non-professional phagocytes. Similarly, oxidized form of low-density lipoprotein (oxLDL) has also been shown to disrupt lipid organization and packing in endothelial cells, leading to biomechanics alterations that interfere with membrane injury and repair. For macrophages, much is known about oxLDL effects in cell activation, cytokine production and foam cell formation. However, little is known about its impact in the organization of macrophage membrane structured domains and cellular mechanics, the focus of the present study. Treatment of bone marrow-derived macrophages (BMDM) with oxLDL not only altered membrane structure, and potentially the distribution of raft domains, but also induced actin rearrangement, diffuse integrin distribution and cell shrinkage, similarly to observed upon treatment of these cells with MβCD. Those alterations led to decreased migration efficiency. For both treatments, higher co-localization of actin cytoskeleton and GM1 was observed, indicating a similar mechanism of action involving raft-like domain dynamics. Lastly, like MβCD treatment, oxLDL also induced lysosomal spreading in BMDM. We propose that OxLDL induced re-organization of membrane/cytoskeleton complex in macrophages can be attributed to the insertion of oxysterols into the membrane, which lead to changes in lipid organization and disruption of membrane structure, similar to the effect of cholesterol depletion by MβCD treatment. These results indicate that oxLDL can induce physical alterations in the complex membrane/cytoskeleton of macrophages, leading to significant biomechanical changes that compromise cell behavior.
Collapse
Affiliation(s)
- Luisa Rezende
- Department of Morphology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Natalia Fernanda Do Couto
- Department of Morphology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Yulia Epshtein
- Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | | | - Irena Levitan
- Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | | |
Collapse
|
10
|
Morzy D, Bastings M. Significance of Receptor Mobility in Multivalent Binding on Lipid Membranes. Angew Chem Int Ed Engl 2022; 61:e202114167. [PMID: 34982497 PMCID: PMC9303963 DOI: 10.1002/anie.202114167] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Indexed: 01/16/2023]
Abstract
Numerous key biological processes rely on the concept of multivalency, where ligands achieve stable binding only upon engaging multiple receptors. These processes, like viral entry or immune synapse formation, occur on the diffusive cellular membrane. One crucial, yet underexplored aspect of multivalent binding is the mobility of coupled receptors. Here, we discuss the consequences of mobility in multivalent processes from four perspectives: (I) The facilitation of receptor recruitment by the multivalent ligand due to their diffusivity prior to binding. (II) The effects of receptor preassembly, which allows their local accumulation. (III) The consequences of changes in mobility upon the formation of receptor/ligand complex. (IV) The changes in the diffusivity of lipid environment surrounding engaged receptors. We demonstrate how understanding mobility is essential for fully unravelling the principles of multivalent membrane processes, leading to further development in studies on receptor interactions, and guide the design of new generations of multivalent ligands.
Collapse
Affiliation(s)
- Diana Morzy
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015, Lausanne, Switzerland
| | - Maartje Bastings
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015, Lausanne, Switzerland
| |
Collapse
|
11
|
Morzy D, Bastings M. Significance of Receptor Mobility in Multivalent Binding on Lipid Membranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Diana Morzy
- Programmable Biomaterials Laboratory Institute of Materials School of Engineering École Polytechnique Fédérale de Lausanne Route Cantonale 1015 Lausanne Switzerland
| | - Maartje Bastings
- Programmable Biomaterials Laboratory Institute of Materials School of Engineering École Polytechnique Fédérale de Lausanne Route Cantonale 1015 Lausanne Switzerland
| |
Collapse
|
12
|
Plant Sterol Clustering Correlates with Membrane Microdomains as Revealed by Optical and Computational Microscopy. MEMBRANES 2021; 11:membranes11100747. [PMID: 34677513 PMCID: PMC8539253 DOI: 10.3390/membranes11100747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/26/2022]
Abstract
Local inhomogeneities in lipid composition play a crucial role in the regulation of signal transduction and membrane traffic. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids. Nevertheless, most evidence for microdomains in cells remains indirect, and the nature of membrane inhomogeneities has been difficult to characterize. We used a new push–pull pyrene probe and fluorescence lifetime imaging microscopy (FLIM) combined with all-atom multiscale molecular dynamics simulations to provide a detailed view on the interaction between phospholipids and phytosterol and the effect of modulating cellular phytosterols on membrane-associated microdomains and phase separation formation. Our understanding of the organization principles of biomembranes is limited mainly by the challenge to measure distributions and interactions of lipids and proteins within the complex environment of living cells. Comparing phospholipids/phytosterol compositions typical of liquid-disordered (Ld) and liquid-ordered (Lo) domains, we furthermore show that phytosterols play crucial roles in membrane homeostasis. The simulation work highlights how state-of-the-art modeling alleviates some of the prior concerns and how unrefuted discoveries can be made through a computational microscope. Altogether, our results support the role of phytosterols in the lateral structuring of the PM of plant cells and suggest that they are key compounds for the formation of plant PM microdomains and the lipid-ordered phase.
Collapse
|
13
|
Roney JC, Li S, Farfel-Becker T, Huang N, Sun T, Xie Y, Cheng XT, Lin MY, Platt FM, Sheng ZH. Lipid-mediated motor-adaptor sequestration impairs axonal lysosome delivery leading to autophagic stress and dystrophy in Niemann-Pick type C. Dev Cell 2021; 56:1452-1468.e8. [PMID: 33878344 PMCID: PMC8137671 DOI: 10.1016/j.devcel.2021.03.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/28/2021] [Accepted: 03/28/2021] [Indexed: 01/18/2023]
Abstract
Niemann-Pick disease type C (NPC) is a neurodegenerative lysosomal storage disorder characterized by lipid accumulation in endolysosomes. An early pathologic hallmark is axonal dystrophy occurring at presymptomatic stages in NPC mice. However, the mechanisms underlying this pathologic change remain obscure. Here, we demonstrate that endocytic-autophagic organelles accumulate in NPC dystrophic axons. Using super-resolution and live-neuron imaging, we reveal that elevated cholesterol on NPC lysosome membranes sequesters kinesin-1 and Arl8 independent of SKIP and Arl8-GTPase activity, resulting in impaired lysosome transport into axons, contributing to axonal autophagosome accumulation. Pharmacologic reduction of lysosomal membrane cholesterol with 2-hydroxypropyl-β-cyclodextrin (HPCD) or elevated Arl8b expression rescues lysosome transport, thereby reducing axonal autophagic stress and neuron death in NPC. These findings demonstrate a pathological mechanism by which altered membrane lipid composition impairs lysosome delivery into axons and provide biological insights into the translational application of HPCD in restoring axonal homeostasis at early stages of NPC disease.
Collapse
Affiliation(s)
- Joseph C Roney
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA; Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Sunan Li
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Tamar Farfel-Becker
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Tao Sun
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Yuxiang Xie
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Xiu-Tang Cheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Mei-Yao Lin
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
14
|
Lietha D, Izard T. Roles of Membrane Domains in Integrin-Mediated Cell Adhesion. Int J Mol Sci 2020; 21:ijms21155531. [PMID: 32752284 PMCID: PMC7432473 DOI: 10.3390/ijms21155531] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
The composition and organization of the plasma membrane play important functional and regulatory roles in integrin signaling, which direct many physiological and pathological processes, such as development, wound healing, immunity, thrombosis, and cancer metastasis. Membranes are comprised of regions that are thick or thin owing to spontaneous partitioning of long-chain saturated lipids from short-chain polyunsaturated lipids into domains defined as ordered and liquid-disorder domains, respectively. Liquid-ordered domains are typically 100 nm in diameter and sometimes referred to as lipid rafts. We posit that integrin β senses membrane thickness and that mechanical force on the membrane regulates integrin activation through membrane thinning. This review examines what we know about the nature and mechanism of the interaction of integrins with the plasma membrane and its effects on regulating integrins and its binding partners.
Collapse
Affiliation(s)
- Daniel Lietha
- Cell Signaling and Adhesion Group, Structural and Chemical Biology, Margarita Salas Center for Biological Research (CIB-CSIC), E-28040 Madrid, Spain;
| | - Tina Izard
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
- Correspondence:
| |
Collapse
|
15
|
Ceramide Synthase 5 Deficiency Aggravates Dextran Sodium Sulfate-Induced Colitis and Colon Carcinogenesis and Impairs T-Cell Activation. Cancers (Basel) 2020; 12:cancers12071753. [PMID: 32630271 PMCID: PMC7409364 DOI: 10.3390/cancers12071753] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
Ceramide synthase 5 is one of six enzymes that catalyze the production of ceramides from sphingosine or sphinganine. Ceramides are important components of cell membranes and act as signaling molecules. Previously it has been shown that ceramide synthase 6 and 2 influence colitis in several animal models with sometimes opposite effects. Here, we investigated the disease course of dextran sodium sulfate-induced acute colitis and azoxymethane/dextran sodium sulfate-induced colitis-associated colon cancer in mice with global ceramide synthase 5 knockout (CerS5-ko) or with ceramide synthase 5 knockout restricted to the colon epithelium (CerS5fl/fl VilCre). We monitored disease development and analyzed colon barrier function as well as the immune cell status in these mice. CerS5-ko mice but not CerS5fl/fl-VilCre mice were more susceptible to acute and chronic inflammation. However, the cell barrier function of colon epithelial cells was not disturbed by downregulation of ceramide synthase 5. Instead, untreated CerS5-ko mice displayed reduced numbers of CD3+ immune cells in the spleen, colon, and blood, especially of intraepithelial CD8+ T-cells, which was not obvious in CerS5fl/fl Vil Cre mice. Reduced T-cell number in colon tissue of CerS5-ko mice was accompanied by a reduced expression of IL-1β, IFNγ, and IL-4. In vitro investigations revealed that knockdown of ceramide synthase 5 in T-cells impaired T-cell activation. In summary, we show that CerS5-ko mice were more susceptible to dextran sodium sulfate-induced colitis and azoxymethane/dextran sodium sulfate-induced colitis-associated colon cancer. A reduced number of T-cells in the colon epithelium that was already the case in untreated CerS5-ko mice might have contributed to this effect.
Collapse
|
16
|
Kalappurakkal JM, Sil P, Mayor S. Toward a new picture of the living plasma membrane. Protein Sci 2020; 29:1355-1365. [PMID: 32297381 DOI: 10.1002/pro.3874] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 01/08/2023]
Abstract
Our understanding of the plasma membrane structure has undergone a major change since the proposal of the fluid mosaic model of Singer and Nicholson in the 1970s. In this model, the membrane, composed of over thousand lipid and protein species, is organized as a well-equilibrated two-dimensional fluid. Here, the distribution of lipids is largely expected to reflect a multicomponent system, and proteins are expected to be surrounded by an annulus of specialized lipid species. With the recognition that a multicomponent lipid membrane is capable of phase segregation, the membrane is expected to appear as patchwork quilt pattern of membrane domains. However, the constituents of a living membrane are far from being well equilibrated. The living cell membrane actively maintains a trans-bilayer asymmetry of composition, and its constituents are subject to a number of dynamic processes due to synthesis, lipid transfer as well as membrane traffic and turnover. Moreover, membrane constituents engage with the dynamic cytoskeleton of a living cell, and are both passively as well as actively manipulated by this engagement. The extracellular matrix and associated elements also interact with membrane proteins contributing to another layer of interaction. At the nano- and mesoscale, the organization of lipids and proteins emerge from these encounters, as well as from protein-protein, protein-lipid, and lipid-lipid interactions in the membrane. New methods to study the organization of membrane components at these scales have also been developed, and provide an opportunity to synthesize a new picture of the living cell surface as an active membrane composite.
Collapse
Affiliation(s)
- Joseph Mathew Kalappurakkal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Parijat Sil
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| |
Collapse
|
17
|
Molugu TR, Brown MF. Cholesterol Effects on the Physical Properties of Lipid Membranes Viewed by Solid-state NMR Spectroscopy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:99-133. [PMID: 30649757 DOI: 10.1007/978-3-030-04278-3_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this chapter, we review the physical properties of lipid/cholesterol mixtures involving studies of model membranes using solid-state NMR spectroscopy. The approach allows one to quantify the average membrane structure, fluctuations, and elastic deformation upon cholesterol interaction. Emphasis is placed on understanding the membrane structural deformation and emergent fluctuations at an atomistic level. Lineshape measurements using solid-state NMR spectroscopy give equilibrium structural properties, while relaxation time measurements study the molecular dynamics over a wide timescale range. The equilibrium properties of glycerophospholipids, sphingolipids, and their binary and tertiary mixtures with cholesterol are accessible. Nonideal mixing of cholesterol with other lipids explains the occurrence of liquid-ordered domains. The entropic loss upon addition of cholesterol to sphingolipids is less than for glycerophospholipids, and may drive formation of lipid rafts. The functional dependence of 2H NMR spin-lattice relaxation (R 1Z) rates on segmental order parameters (S CD) for lipid membranes is indicative of emergent viscoelastic properties. Addition of cholesterol shows stiffening of the bilayer relative to the pure lipids and this effect is diminished for lanosterol. Opposite influences of cholesterol and detergents on collective dynamics and elasticity at an atomistic scale can potentially affect lipid raft formation in cellular membranes.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA. .,Department of Physics, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
18
|
Lorson T, Lübtow MM, Wegener E, Haider MS, Borova S, Nahm D, Jordan R, Sokolski-Papkov M, Kabanov AV, Luxenhofer R. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials 2018; 178:204-280. [DOI: 10.1016/j.biomaterials.2018.05.022] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023]
|