1
|
Zhang CY, Zhang NH. Temperature-dependent ejection evolution arising from active and passive effects in DNA viruses. Biophys J 2024; 123:3317-3330. [PMID: 39091028 PMCID: PMC11480759 DOI: 10.1016/j.bpj.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/25/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Recent experiments have demonstrated that the ejection velocity of different species of DNA viruses is temperature dependent, potentially influencing the cellular infection mechanisms of these viruses. However, due to the challenge in quantifying the multiscale characteristics of DNA virus systems, there is currently a lack of systematic theoretical research on the temperature-dependent evolution of ejection dynamics. This work presents a multiscale model to quantitatively explore the temperature-dependent mechanical properties during the virus ejection process, and unveil the underlying mechanisms. Two different assumptions of DNA structures, featuring two or single domains, are used for the early and later stages of ejection, respectively. Temperature is introduced as an influencing variable into the mesoscopic energy model by considering the temperature dependence of Debye length, DNA persistence length, molecular kinetic energy, and other parameters. The results indicate that temperature variations alter the energy landscape associated with DNA structure, leading to the changes in the energy minimum and corresponding DNA structure remaining in the capsid. These changes affect both the active ejection force and passive friction during the DNA ejection, ultimately leading to a significant increase in ejection velocity at higher temperatures. Furthermore, our model supports the previous hypothesis that temperature-induced changes in the size of viral portal pore could dramatically enhance DNA ejection velocity.
Collapse
Affiliation(s)
- Cheng-Yin Zhang
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, School of Mechanics and Engineering Science, Shanghai University, Shanghai, China; Department of Engineering Mechanics, Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Neng-Hui Zhang
- Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, School of Mechanics and Engineering Science, Shanghai University, Shanghai, China.
| |
Collapse
|
2
|
Bong S, Park CB, Cho SG, Bae J, Hapsari N, Jin X, Heo S, Lee JE, Hashiya K, Bando T, Sugiyama H, Jung KH, Sung B, Jo K. AT-specific DNA visualization revisits the directionality of bacteriophage λ DNA ejection. Nucleic Acids Res 2023; 51:5634-5646. [PMID: 37158237 PMCID: PMC10287942 DOI: 10.1093/nar/gkad340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/14/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
In this study, we specifically visualized DNA molecules at their AT base pairs after in vitro phage ejection. Our AT-specific visualization revealed that either end of the DNA molecule could be ejected first with a nearly 50% probability. This observation challenges the generally accepted theory of Last In First Out (LIFO), which states that the end of the phage λ DNA that enters the capsid last during phage packaging is the first to be ejected, and that both ends of the DNA are unable to move within the extremely condensed phage capsid. To support our observations, we conducted computer simulations that revealed that both ends of the DNA molecule are randomized, resulting in the observed near 50% probability. Additionally, we found that the length of the ejected DNA by LIFO was consistently longer than that by First In First Out (FIFO) during in vitro phage ejection. Our simulations attributed this difference in length to the stiffness difference of the remaining DNA within the phage capsid. In conclusion, this study demonstrates that a DNA molecule within an extremely dense phage capsid exhibits a degree of mobility, allowing it to switch ends during ejection.
Collapse
Affiliation(s)
- Serang Bong
- Department of Chemistry, Sogang University, Seoul 04107, Korea
| | - Chung Bin Park
- Department of Chemistry, Sogang University, Seoul 04107, Korea
| | - Shin-Gyu Cho
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Jaeyoung Bae
- Department of Chemistry, Sogang University, Seoul 04107, Korea
| | - Natalia Diyah Hapsari
- Department of Chemistry, Sogang University, Seoul 04107, Korea
- Chemistry Education Program, Department of Mathematics and Science Education, Sanata Dharma University, Yogyakarta 55282, Indonesia
| | - Xuelin Jin
- Department of Chemistry, Sogang University, Seoul 04107, Korea
- College of Agriculture, Yanbian University, Yanji133000, China
| | - Sujung Heo
- Department of Chemistry, Sogang University, Seoul 04107, Korea
| | - Ji-eun Lee
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-Ku, Kyoto606-8502, Japan
| | - Kwang-Hwan Jung
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Bong June Sung
- Department of Chemistry, Sogang University, Seoul 04107, Korea
| | - Kyubong Jo
- Department of Chemistry, Sogang University, Seoul 04107, Korea
| |
Collapse
|
3
|
Zhang CY, Zhang NH. Mechanical Constraint Effect on DNA Persistence Length. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227769. [PMID: 36431871 PMCID: PMC9696218 DOI: 10.3390/molecules27227769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Persistence length is a significant criterion to characterize the semi-flexibility of DNA molecules. The mechanical constraints applied on DNA chains in new single-molecule experiments play a complex role in measuring DNA persistence length; however, there is a difficulty in quantitatively characterizing the mechanical constraint effects due to their complex interactions with electrostatic repulsions and thermal fluctuations. In this work, the classical buckling theory of Euler beam and Manning's statistical theories of electrostatic force and thermal fluctuation force are combined for an isolated DNA fragment to formulate a quantitative model, which interprets the relationship between DNA persistence length and critical buckling length. Moreover, this relationship is further applied to identify the mechanical constraints in different DNA experiments by fitting the effective length factors of buckled fragments. Then, the mechanical constraint effects on DNA persistence lengths are explored. A good agreement among the results by theoretical models, previous experiments, and present molecular dynamics simulations demonstrates that the new superposition relationship including three constraint-dependent terms can effectively characterize changes in DNA persistence lengths with environmental conditions, and the strong constraint-environment coupling term dominates the significant changes of persistence lengths; via fitting effective length factors, the weakest mechanical constraints on DNAs in bulk experiments and stronger constraints on DNAs in single-molecule experiments are identified, respectively. Moreover, the consideration of DNA buckling provides a new perspective to examine the bendability of short-length DNA.
Collapse
Affiliation(s)
- Cheng-Yin Zhang
- Department of Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China
| | - Neng-Hui Zhang
- Department of Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China
- Correspondence:
| |
Collapse
|
4
|
Tiwari C, Sharma V, Jha PK, Pratap A. Effect of aqueous medium on low -frequency dynamics, chemical activity and physical properties of a spherical virus. J Biomol Struct Dyn 2019; 38:2207-2214. [PMID: 31179877 DOI: 10.1080/07391102.2019.1626286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this work, we have studied the effect of size and aqueous medium on the low-frequency dynamics, physical properties like melting temperature and glass transition temperature and chemical properties like catalytic activation energy of spherical virus using Lindemann's criteria and Arrhenius relation under their dynamic limit. The melting temperature and catalytic activation energy decrease with decreasing size of spherical virus. The glass transition temperature which increases with decreasing size of the virus is analyzed through the size dependent melting temperature. The melting temperature and catalytic activation energy of spherical virus of particular size increases when it is embedded in glycerol or water due to mismatch of the physical properties at the interface of virus and surrounding medium. In addition, the glass transition temperature of free and glycerol/water embedded virus using low-frequency vibrational modes has been calculated under the framework of elastic continuum approximation model. The glass transition temperature of spherical virus decreases with size when embedded in glycerol or water. A correlation between [Formula: see text] and [Formula: see text] is also drawn for spherical viruses. The study can be useful for spherical virus borne therapy i.e. in detecting and killing of the spherical viruses using a principle based on acoustic phonons (sound waves) resonance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chetna Tiwari
- Department of Applied Physics, Faculty of Technology and Engineering, The M. S. University of Baroda, Vadodara, India.,Department of Physics, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Vaishali Sharma
- Department of Physics, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Prafulla K Jha
- Department of Physics, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Arun Pratap
- Department of Applied Physics, Faculty of Technology and Engineering, The M. S. University of Baroda, Vadodara, India
| |
Collapse
|