1
|
Guelfi G, Capaccia C, Ratto VF, Bufalari A, Leonardi L, Mechelli L, Cenci S, Maranesi M. The Emerging Role of Water Loss in Dog Aging. Cells 2025; 14:545. [PMID: 40214498 PMCID: PMC11988356 DOI: 10.3390/cells14070545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Aging involves progressive physiological changes, including the dysregulation of water homeostasis, essential for cellular function, neuronal signaling, and musculoskeletal integrity. This review explores the emerging role of water loss as a central and underestimated driver of functional decline in aging, with a focus on the dog, both as a clinically relevant target species and as a model for human aging. Age-related alterations in water metabolism-driven by changes in body composition, aquaporin (AQP) expression, electrolyte imbalances, reduced thirst perception, and impaired urine concentration-lead to intracellular and extracellular dehydration, exacerbating functional decline. We examine molecular mechanisms of water regulation involving AQPs and osmolytes, and describe how dehydration contributes to structural and metabolic dysfunction across key biological compartments, including the kidney, brain, bone, and skeletal muscle. Physiological dehydration, a hallmark of aging, intensifies inflammaging, accelerating tissue degeneration. In particular, we highlight how water loss impairs solvent capacity, solute transport, protein conformation, and cellular communication. Despite the known role of macronutrients in geriatric nutrition, hydration remains an often-overlooked factor in aging management. We argue for its inclusion as a fourth pillar in the nutritional approach to veterinary geriatrics, alongside protein, fat, and fiber. By investigating aging-associated water loss in dogs-species that share environments and lifestyle patterns with humans-we propose hydration-centered strategies to promote healthy aging in both veterinary and comparative medicine.
Collapse
Affiliation(s)
- Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy; (C.C.); (V.F.R.); (A.B.); (L.L.); (L.M.); (M.M.)
| | - Camilla Capaccia
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy; (C.C.); (V.F.R.); (A.B.); (L.L.); (L.M.); (M.M.)
| | - Vicente Francisco Ratto
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy; (C.C.); (V.F.R.); (A.B.); (L.L.); (L.M.); (M.M.)
| | - Antonello Bufalari
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy; (C.C.); (V.F.R.); (A.B.); (L.L.); (L.M.); (M.M.)
| | - Leonardo Leonardi
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy; (C.C.); (V.F.R.); (A.B.); (L.L.); (L.M.); (M.M.)
| | - Luca Mechelli
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy; (C.C.); (V.F.R.); (A.B.); (L.L.); (L.M.); (M.M.)
| | - Simone Cenci
- Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Vita-Salute San Raffaele, Genetics and Cell Biology Division, University, 20132 Milano, Italy;
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, 06132 Perugia, Italy; (C.C.); (V.F.R.); (A.B.); (L.L.); (L.M.); (M.M.)
| |
Collapse
|
2
|
Shen Y, Maxson R, McKenney RJ, Ori-McKenney KM. Microtubule acetylation is a biomarker of cytoplasmic health during cellular senescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646469. [PMID: 40236247 PMCID: PMC11996481 DOI: 10.1101/2025.03.31.646469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Cellular senescence is marked by cytoskeletal dysfunction, yet the role of microtubule post-translational modifications (PTMs) remains unclear. We demonstrate that microtubule acetylation increases during drug-induced senescence in human cells and during natural aging in Drosophila . Elevating acetylation via HDAC6 inhibition or α TAT1 overexpression in BEAS-2B cells disrupts anterograde Rab6A vesicle transport, but spares retrograde transport of Rab5 endosomes. Hyperacetylation results in slowed microtubule polymerization and decreased cytoplasmic fluidity, impeding diffusion of micron-sized condensates. These effects are distinct from enhanced detyrosination, and correlate with altered viscoelasticity and resistance to osmotic stress. Modulating cytoplasmic viscosity reciprocally perturbs microtubule dynamics, revealing bidirectional mechanical regulation. Senescent cells phenocopy hyperacetylated cells, exhibiting analogous effects on transport and microtubule polymerization. Our findings establish acetylation as a biomarker for cytoplasmic health and a potential driver of age-related cytoplasmic densification and organelle transport decline, linking microtubule PTMs to biomechanical feedback loops that exacerbate senescence. This work highlights the role of acetylation in bridging cytoskeletal changes to broader aging hallmarks.
Collapse
|
3
|
Li HY, Zhang B, Wang ZY. Conformational and static properties of tagged chains in solvents: effect of chain connectivity in solvent molecules. SOFT MATTER 2024; 20:3073-3081. [PMID: 38265776 DOI: 10.1039/d3sm01473h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Polymer chains immersed in different solvent molecules exhibit diverse properties due to multiple spatiotemporal scales and complex interactions. Using molecular dynamics simulations, we study the conformational and static properties of tagged chains in different solvent molecules. Two types of solvent molecules were examined: one type consisted of chain molecules connected by bonds, while the other type consisted of individual bead molecules without any bonds. The only difference between the two solvent molecules lies in the chain connectivity. Our results show a compression of the tagged chains with the addition of bead or chain molecules. Chain molecule confinement induces a stronger compression compared to bead molecule confinement. In chain solvent molecules, the tagged chain's radius of gyration reached a minimum at a monomer volume fraction of ∼0.3. Notably, the probability distributions of chain size remain unchanged at different solvent densities, irrespective of whether the solvent consists of beads or polymers. Furthermore, as solvent density increases, a crossover from a unimodal to a bimodal distribution of bond angles is observed, indicating the presence of both compressed and expanded regions within the chain. The effective monomer-solvent interaction is obtained by calculating the partial radial distribution function and the potential of the mean force. In chain solvents, the correlation hole effect results in a reduced number of nearest neighbors around tagged monomers compared to bead solvents. The calculation of pore size distribution reveals that the solvent nonhomogeneity induced by chain connectivity leads to a broader distribution of pore sizes and larger pore dimensions at low volume fractions. These findings provide a deeper understanding of the conformational behavior of polymer chains in different solvent environments.
Collapse
Affiliation(s)
- Hong-Yao Li
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Micro-Nano Structure Optoelectronics, Chongqing 400715, China
| | - Bokai Zhang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Micro-Nano Structure Optoelectronics, Chongqing 400715, China
| | - Zhi-Yong Wang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
- Chongqing Key Laboratory of Micro-Nano Structure Optoelectronics, Chongqing 400715, China
| |
Collapse
|
4
|
Liu AY. A perspective on age-related changes in cell environment and risk of neurodegenerative diseases. Neural Regen Res 2024; 19:719-720. [PMID: 37843201 PMCID: PMC10664131 DOI: 10.4103/1673-5374.382234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/25/2023] [Accepted: 06/27/2023] [Indexed: 10/17/2023] Open
Affiliation(s)
- Alice Y. Liu
- Department of Cell Biology and Neuroscience, Rutgers State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
5
|
Marakhova II, Yurinskaya VE, Domnina AP. The Role of Intracellular Potassium in Cell Quiescence, Proliferation, and Death. Int J Mol Sci 2024; 25:884. [PMID: 38255956 PMCID: PMC10815214 DOI: 10.3390/ijms25020884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
This brief review explores the role of intracellular K+ during the transition of cells from quiescence to proliferation and the induction of apoptosis. We focus on the relationship between intracellular K+ and the growth and proliferation rates of different cells, including transformed cells in culture as well as human quiescent T cells and mesenchymal stem cells, and analyze the concomitant changes in K+ and water content in both proliferating and apoptotic cells. Evidence is discussed indicating that during the initiation of cell proliferation and apoptosis changes in the K+ content in cells occur in parallel with changes in water content and therefore do not lead to significant changes in the intracellular K+ concentration. We conclude that K+, as a dominant intracellular ion, is involved in the regulation of cell volume during the transit from quiescence, and the content of K+ and water in dividing cells is higher than in quiescent or differentiated cells, which can be considered to be a hallmark of cell proliferation and transformation.
Collapse
Affiliation(s)
- Irina I. Marakhova
- Department of Intracellular Signalling and Transport, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Avenue 4, 194064 Saint-Petersburg, Russia
| | - Valentina E. Yurinskaya
- Department of Molecular Cell Physiology, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Avenue 4, 194064 Saint-Petersburg, Russia
| | - Alisa P. Domnina
- Department of Intracellular Signalling and Transport, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Avenue 4, 194064 Saint-Petersburg, Russia
| |
Collapse
|
6
|
Skóra T, Janssen M, Carlson A, Kondrat S. Crowding-Regulated Binding of Divalent Biomolecules. PHYSICAL REVIEW LETTERS 2023; 130:258401. [PMID: 37418731 DOI: 10.1103/physrevlett.130.258401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/08/2023] [Indexed: 07/09/2023]
Abstract
Macromolecular crowding affects biophysical processes as diverse as diffusion, gene expression, cell growth, and senescence. Yet, there is no comprehensive understanding of how crowding affects reactions, particularly multivalent binding. Herein, we use scaled particle theory and develop a molecular simulation method to investigate the binding of monovalent to divalent biomolecules. We find that crowding can increase or reduce cooperativity-the extent to which the binding of a second molecule is enhanced after binding a first molecule-by orders of magnitude, depending on the sizes of the involved molecular complexes. Cooperativity generally increases when a divalent molecule swells and then shrinks upon binding two ligands. Our calculations also reveal that, in some cases, crowding enables binding that does not occur otherwise. As an immunological example, we consider immunoglobulin G-antigen binding and show that crowding enhances its cooperativity in bulk but reduces it when an immunoglobulin G binds antigens on a surface.
Collapse
Affiliation(s)
- Tomasz Skóra
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Mathijs Janssen
- Department of Mathematics, Mechanics Division, University of Oslo, N-0851 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
- Norwegian University of Life Sciences, Faculty of Science and Technology, Pb 5003, 1433 Ås, Norway
| | - Andreas Carlson
- Department of Mathematics, Mechanics Division, University of Oslo, N-0851 Oslo, Norway
| | - Svyatoslav Kondrat
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Institute for Computational Physics, University of Stuttgart, Stuttgart 70569, Germany
| |
Collapse
|
7
|
Fuentes-Lemus E, Davies MJ. Effect of crowding, compartmentalization and nanodomains on protein modification and redox signaling - current state and future challenges. Free Radic Biol Med 2023; 196:81-92. [PMID: 36657730 DOI: 10.1016/j.freeradbiomed.2023.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Biological milieus are highly crowded and heterogeneous systems where organization of macromolecules within nanodomains (e.g. membraneless compartments) is vital to the regulation of metabolic processes. There is an increasing interest in understanding the effects that such packed environments have on different biochemical and biological processes. In this context, the redox biochemistry and redox signaling fields are moving towards investigating oxidative processes under conditions that exhibit these key features of biological systems in order to solve existing paradigms including those related to the generation and transmission of specific redox signals within and between cells in both normal physiology and under conditions of oxidative stress. This review outlines the effects that crowding, nanodomain formation and altered local viscosities can have on biochemical processes involving proteins, and then discusses some of the reactions and pathways involving proteins and oxidants that may, or are known to, be modulated by these factors. We postulate that knowledge of protein modification processes (e.g. kinetics, pathways and product formation) under conditions that mimic biological milieus, will provide a better understanding of the response of cells to endogenous and exogenous stressors, and their role in ageing, signaling, health and disease.
Collapse
Affiliation(s)
- Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark.
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark
| |
Collapse
|
8
|
Isaev FI, Sadykov AR, Moskalev A. Blood Markers of Biological Age Evaluates Clinic Complex Medical Spa Programs. Biomedicines 2023; 11:biomedicines11020625. [PMID: 36831161 PMCID: PMC9953453 DOI: 10.3390/biomedicines11020625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Kivach Clinic has developed a special medical spa program to prevent aging-related conditions in metabolic, cardio-vascular, and neurological states. Spa programs modify diet, physical activity, and lymphatic drainage, as it deteriorates with aging. We investigated its influence on the blood markers of biological age of patients during their stay to objectify the potential of spa treatment for influencing the risk of age-related events. METHODS The artificial deep learning model Aging.ai 3.0 was based on blood parameters. The change in the biological age of 43 patients was assessed after their 14-day spa treatment at Kivach Clinic. RESULTS Biological age decreased in 29 patients (median decrease: 8 years, mean: 8.83 years), increased in 10 patients (median increase: 3 years, mean: 5.33 years) and remained unchanged in 4 patients. Overall mean values for the entire patient group were as follows: median value was -3 years, and mean was -4.79 ± 1.2 years (p-value = 0.00025, t-test). CONCLUSIONS The capability of specially selected medical spa treatment to reduce human biological age (assessed by Aging.AI 3.0) has been established.
Collapse
Affiliation(s)
| | - Arsenii R. Sadykov
- Laboratory of Metabolomic Diagnostics of Meta-Metrix, 117630 Moscow, Russia
| | - Alexey Moskalev
- Institute of Biogerontology, Lobachevsky State University of Nizhny Novgorod, 603146 Nizhny Novgorod, Russia
- Russian Research Clinical Center of Gerontology of the Russian National Research Medical University Named after N.I. Pirogov, 129226 Moscow, Russia
- Correspondence:
| |
Collapse
|
9
|
Castro E Costa AR, Mysore S, Paruchuri P, Chen KY, Liu AY. PolyQ-Expanded Mutant Huntingtin Forms Inclusion Body Following Transient Cold Shock in a Two-Step Aggregation Mechanism. ACS Chem Neurosci 2023; 14:277-288. [PMID: 36574489 DOI: 10.1021/acschemneuro.2c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Age-dependent formation of insoluble protein aggregates is a hallmark of many neurodegenerative diseases. We are interested in the cell chemistry that drives the aggregation of polyQ-expanded mutant Huntingtin (mHtt) protein into insoluble inclusion bodies (IBs). Using an inducible cell model of Huntington's disease, we show that a transient cold shock (CS) at 4 °C followed by recovery incubation at temperatures of 25-37 °C strongly and rapidly induces the compaction of diffuse polyQ-expanded HuntingtinExon1-enhanced green fluorescent protein chimera protein (mHtt) into round, micron size, cytosolic IBs. This transient CS-induced mHtt IB formation is independent of microtubule integrity or de novo protein synthesis. The addition of millimolar concentrations of sodium chloride accelerates, whereas urea suppresses this transient CS-induced mHtt IB formation. These results suggest that the low temperature of CS constrains the conformation dynamics of the intrinsically disordered mHtt into labile intermediate structures to facilitate de-solvation and hydrophobic interaction for IB formation at the higher recovery temperature. This work, along with our previous observation of the effects of heat shock protein chaperones and osmolytes in driving mHtt IB formation, underscores the primacy of mHtt structuring and rigidification for H-bond-mediated cross-linking in a two-step mechanism of mHtt IB formation in living cells.
Collapse
Affiliation(s)
- Ana Raquel Castro E Costa
- Department of Cell Biology and Neuroscience, Nelson Biology Laboratory, Rutgers State University of New Jersey, 604 Allison Road, Piscataway, New Jersey 08854, United States
| | - Sachin Mysore
- Department of Cell Biology and Neuroscience, Nelson Biology Laboratory, Rutgers State University of New Jersey, 604 Allison Road, Piscataway, New Jersey 08854, United States
| | - Praneet Paruchuri
- Department of Cell Biology and Neuroscience, Nelson Biology Laboratory, Rutgers State University of New Jersey, 604 Allison Road, Piscataway, New Jersey 08854, United States
| | - Kuang Yu Chen
- Department of Chemistry and Chemical Biology, Wright-Rieman Chemistry Laboratory, Rutgers State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Alice Y Liu
- Department of Cell Biology and Neuroscience, Nelson Biology Laboratory, Rutgers State University of New Jersey, 604 Allison Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
10
|
Monovalent ions and stress-induced senescence in human mesenchymal endometrial stem/stromal cells. Sci Rep 2022; 12:11194. [PMID: 35778548 PMCID: PMC9249837 DOI: 10.1038/s41598-022-15490-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/24/2022] [Indexed: 01/10/2023] Open
Abstract
Monovalent ions are involved in growth, proliferation, differentiation of cells as well as in their death. This work concerns the ion homeostasis during senescence induction in human mesenchymal endometrium stem/stromal cells (hMESCs): hMESCs subjected to oxidative stress (sublethal pulse of H2O2) enter the premature senescence accompanied by persistent DNA damage, irreversible cell cycle arrest, increased expression of the cell cycle inhibitors (p53, p21) cell hypertrophy, enhanced β-galactosidase activity. Using flame photometry to estimate K+, Na+ content and Rb+ (K+) fluxes we found that during the senescence development in stress-induced hMESCs, Na+/K+pump-mediated K+ fluxes are enhanced due to the increased Na+ content in senescent cells, while ouabain-resistant K+ fluxes remain unchanged. Senescence progression is accompanied by a peculiar decrease in the K+ content in cells from 800-900 to 500-600 µmol/g. Since cardiac glycosides are offered as selective agents for eliminating senescent cells, we investigated the effect of ouabain on ion homeostasis and viability of hMESCs and found that in both proliferating and senescent hMESCs, ouabain (1 nM-1 µM) inhibited pump-mediated K+ transport (ID50 5 × 10-8 M), decreased cell K+/Na+ ratio to 0.1-0.2, however did not induce apoptosis. Comparison of the effect of ouabain on hMESCs with the literature data on the selective cytotoxic effect of cardiac glycosides on senescent or cancer cells suggests the ion pump blockade and intracellular K+ depletion should be synergized with target apoptotic signal to induce the cell death.
Collapse
|
11
|
Hollembeak JE, Model MA. Stability of Intracellular Protein Concentration under Extreme Osmotic Challenge. Cells 2021; 10:cells10123532. [PMID: 34944039 PMCID: PMC8700764 DOI: 10.3390/cells10123532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Cell volume (CV) regulation is typically studied in short-term experiments to avoid complications resulting from cell growth and division. By combining quantitative phase imaging (by transport-of-intensity equation) with CV measurements (by the exclusion of an external absorbing dye), we were able to monitor the intracellular protein concentration (PC) in HeLa and 3T3 cells for up to 48 h. Long-term PC remained stable in solutions with osmolarities ranging from one-third to almost twice the normal. When cells were subjected to extreme hypoosmolarity (one-quarter of normal), their PC did not decrease as one might expect, but increased; a similar dehydration response was observed at high concentrations of ionophore gramicidin. Highly dilute media, or even moderately dilute in the presence of cytochalasin, caused segregation of water into large protein-free vacuoles, while the surrounding cytoplasm remained at normal density. These results suggest that: (1) dehydration is a standard cellular response to severe stress; (2) the cytoplasm resists prolonged dilution. In an attempt to investigate the mechanism behind the homeostasis of PC, we tested the inhibitors of the protein kinase complex mTOR and the volume-regulated anion channels (VRAC). The initial results did not fully elucidate whether these elements are directly involved in PC maintenance.
Collapse
|
12
|
König I, Soranno A, Nettels D, Schuler B. Impact of In‐Cell and In‐Vitro Crowding on the Conformations and Dynamics of an Intrinsically Disordered Protein. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Iwo König
- Department of Biochemistry and Department of Physics University of Zurich Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics Center for Science and Engineering of Living Systems (CSELS) Washington University in St. Louis St. Louis USA
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics University of Zurich Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics University of Zurich Winterthurerstrasse 190 8057 Zürich Switzerland
| |
Collapse
|
13
|
König I, Soranno A, Nettels D, Schuler B. Impact of In-Cell and In-Vitro Crowding on the Conformations and Dynamics of an Intrinsically Disordered Protein. Angew Chem Int Ed Engl 2021; 60:10724-10729. [PMID: 33587794 DOI: 10.1002/anie.202016804] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/08/2021] [Indexed: 01/23/2023]
Abstract
The conformations and dynamics of proteins can be influenced by crowding from the large concentrations of macromolecules within cells. Intrinsically disordered proteins (IDPs) exhibit chain compaction in crowded solutions in vitro, but no such effects were observed in cultured mammalian cells. Here, to increase intracellular crowding, we reduced the cell volume by hyperosmotic stress and used an IDP as a crowding sensor for in-cell single-molecule spectroscopy. In these more crowded cells, the IDP exhibits compaction, slower chain dynamics, and much slower translational diffusion, indicating a pronounced concentration and length-scale dependence of crowding. In vitro, these effects cannot be reproduced with small but only with large polymeric crowders. The observations can be explained with polymer theory and depletion interactions and indicate that IDPs can diffuse much more efficiently through a crowded cytosol than a globular protein of similar dimensions.
Collapse
Affiliation(s)
- Iwo König
- Department of Biochemistry and Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, USA
| | - Daniel Nettels
- Department of Biochemistry and Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Benjamin Schuler
- Department of Biochemistry and Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|