1
|
Lee R, Ong J, Waisberg E, Lee AG. Spaceflight associated dry eye syndrome (SADES): Radiation, stressors, and ocular surface health. LIFE SCIENCES IN SPACE RESEARCH 2024; 43:75-81. [PMID: 39521497 DOI: 10.1016/j.lssr.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024]
Abstract
Crewed spaceflight missions require careful scrutinization of the health risks including alterations to the tear film lipid layer in astronauts. We review the current literature and prior published work on tear film lipid layer biophysics and secondary spaceflight-associated dry eye syndrome (SADES). We define the term spaceflight-associated dry eye syndrome to describe the collection of ocular surface signs and symptoms experienced by astronauts during spaceflight. Our review covers the ocular surface and lipidomics in the spaceflight environment. From our literature review, we extrapolate biophysical principles governing the tear film layer to determine the changes that may arise from the harsh conditions of spaceflight and microgravity. Our findings provide vital information for future long-duration spaceflight, including a return to the Moon and potential missions to Mars.
Collapse
Affiliation(s)
- Ryung Lee
- Touro College of Osteopathic Medicine, New York, NY, United States.
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Ethan Waisberg
- Department of Ophthalmology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, United States; Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, United States; The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States; Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, New York, United States; Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, United States; University of Texas MD Anderson Cancer Center, Houston, TX, United States; Texas A&M School of Medicine, Bryan, TX, United States; Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
2
|
Almhanna H, Kumar AHS, Kilroy D, Duggan G, Irwin JA, Hogg B, Reid C. Comparison of Siglec-1 protein networks and expression patterns in sperm and male reproductive tracts of mice, rats, and humans. Vet World 2024; 17:645-657. [PMID: 38680147 PMCID: PMC11045525 DOI: 10.14202/vetworld.2024.645-657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/23/2024] [Indexed: 05/01/2024] Open
Abstract
Background Sialic acid-binding immunoglobulin-like lectin 1 (Siglec-1) is a transmembrane glycoprotein involved in the sialic acid (Sia)-dependent regulation of the immune system. Siglec-1 expression has recently been identified in the male reproductive tract (MRT) of several species, including humans, cattle, horses, and sheep, and may play a role in modulating fertility in a Sia-dependent manner. Materials and Methods In this study, protein-protein interaction (PPI) analysis of Siglec-1 was conducted to identify associated network protein conservation, and the expression of Siglec-1 in the MRT of mice and rats, including their accessory sex glands and spermatozoa was determined by immunostaining. Results Network analysis of proteins with Siglec-1 in mice and rats demonstrated significant similarity to human Siglec-1 networks, suggesting a similar conservation of network proteins between these species and, hence, a potential conservation role in immune modulation and function. Specific immunostaining patterns of mouse and rat testes, epididymis, ductus deferens, accessory sex gland tissues, and sperm were detected using human Siglec-1. These results confirmed that the human Siglec-1 antibody could cross-react with mouse and rat Siglec-1, suggesting that the specific expression patterns of Siglec-1 in the MRT and sperm of both mice and rats are similar to those observed in other species. Conclusions The conservation of Siglec-1 expression patterns in sperm and within the MRT and the similarity of protein networks for Siglec-1 across species suggest that Siglec-1 may function in a similar manner across species. These results also suggest that rodents may serve as a valuable model system for exploring the function of Siglecs in the reproductive system across species and their potential role in modulating fertility in a Sia-dependent manner.
Collapse
Affiliation(s)
- Hazem Almhanna
- Department of Anatomy and Histology, College of Veterinary Medicine, University of Al-Qadisiyah, Iraq
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin-04, Ireland
| | - Arun HS Kumar
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin-04, Ireland
| | - David Kilroy
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin-04, Ireland
| | - Gina Duggan
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin-04, Ireland
| | - Jane A. Irwin
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin-04, Ireland
| | - Bridget Hogg
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin-04, Ireland
| | - Colm Reid
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin-04, Ireland
| |
Collapse
|
3
|
Abstract
Pulmonary surfactant is a critical component of lung function in healthy individuals. It functions in part by lowering surface tension in the alveoli, thereby allowing for breathing with minimal effort. The prevailing thinking is that low surface tension is attained by a compression-driven squeeze-out of unsaturated phospholipids during exhalation, forming a film enriched in saturated phospholipids that achieves surface tensions close to zero. A thorough review of past and recent literature suggests that the compression-driven squeeze-out mechanism may be erroneous. Here, we posit that a surfactant film enriched in saturated lipids is formed shortly after birth by an adsorption-driven sorting process and that its composition does not change during normal breathing. We provide biophysical evidence for the rapid formation of an enriched film at high surfactant concentrations, facilitated by adsorption structures containing hydrophobic surfactant proteins. We examine biophysical evidence for and against the compression-driven squeeze-out mechanism and propose a new model for surfactant function. The proposed model is tested against existing physiological and pathophysiological evidence in neonatal and adult lungs, leading to ideas for biophysical research, that should be addressed to establish the physiological relevance of this new perspective on the function of the mighty thin film that surfactant provides.
Collapse
Affiliation(s)
- Fred Possmayer
- Department of Biochemistry, Western University, London, Ontario N6A 3K7, Canada
- Department of Obstetrics/Gynaecology, Western University, London, Ontario N6A 3K7, Canada
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manon, Honolulu, Hawaii 96822, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96826, United States
| | - Ruud A W Veldhuizen
- Department of Physiology & Pharmacology, Western University, London, Ontario N6A 5C1, Canada
- Department of Medicine, Western University, London, Ontario N6A 3K7, Canada
- Lawson Health Research Institute, London, Ontario N6A 4V2, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
4
|
Xu X, Wilkerson A, Li G, Butovich IA, Zuo YY. Comparative Biophysical Study of Meibomian Lipids of Wild Type and Soat1-Null Mice: Implications to Meibomian Gland Dysfunction and Dry Eye Disease. Invest Ophthalmol Vis Sci 2023; 64:20. [PMID: 37585190 PMCID: PMC10434715 DOI: 10.1167/iovs.64.11.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/28/2023] [Indexed: 08/17/2023] Open
Abstract
Purpose The biophysical roles of Meibomian lipids (MLs) played in health and meibomian gland dysfunction (MGD) are still unclear. The purpose of this research is to establish the composition-structure-functional correlations of the ML film (MLF) using Soat1-null mice and comprehensive in vitro biophysical simulations. Methods MLs were extracted from tarsal plates of wild type (WT) and Soat1 knockout (KO) mice. The chemical composition of ML samples was characterized using liquid chromatography - mass spectrometry. Comprehensive biophysical studies of the MLFs, including their dynamic surface activity, interfacial rheology, evaporation resistance, and ultrastructure and topography, were performed with a novel experimental methodology called the constrained drop surfactometry. Results Soat1 inactivation caused multiple alternations in the ML profile. Compared to their WT siblings, the MLs of KO mice were completely devoid of cholesteryl esters (CEs) longer than C18 to C20, but contained 7 times more free cholesterol (Chl). Biophysical assays consistently suggested that the KO-MLF became stiffer than that of WT mice, revealed by reduced film compressibility, increased elastic modulus, and decreased loss tangent, thus causing more energy loss per blinking cycle of the MLF. Moreover, the KO mice showed thinning of their MLF, and reduced evaporation resistance. Conclusions These findings delineated the composition-structure-functional correlations of the MLF and suggested a potential biophysical function of long-chain CEs in optimizing the surface activity, interfacial rheology, and evaporation resistance of the MLF. This study may provide novel implications to pathophysiological and translational understanding of MGD and dry eye disease.
Collapse
Affiliation(s)
- Xiaojie Xu
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States
| | - Amber Wilkerson
- Department of Ophthalmology and Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Guangle Li
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States
| | - Igor A. Butovich
- Department of Ophthalmology and Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Yi Y. Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States
| |
Collapse
|
5
|
Xu X, Li G, Zuo YY. Effect of Model Tear Film Lipid Layer on Water Evaporation. Invest Ophthalmol Vis Sci 2023; 64:13. [PMID: 36656568 PMCID: PMC9872843 DOI: 10.1167/iovs.64.1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Purpose A majority of in vitro models were incapable of reproducing the evaporation resistance of tear film lipid layer (TFLL) in vivo. The purpose of this research is to develop a novel in vitro model to study the effect of TFLL on water evaporation. Methods A ventilated, closed-chamber, droplet evaporimeter with a constant surface area has been invented to study the evaporation resistance of TFLL. This evaporimeter ensures a rigorous control of environmental conditions, including the temperature, relative humidity, airflow rate, surface area, and surface pressure, thus allowing for reproducible water evaporation measurements over a time period of only 5 minutes. The volumetric evaporation rate of this droplet evaporimeter is less than 2.7 µL/min, comparable to the basal tear production of healthy adults. Together with direct film imaging using atomic force microscopy (AFM), we have studied the effect of a model TFLL on water evaporation, as a function of the lipid composition and surface pressure. Results A model TFLL composed of 40% wax esters, 40% cholesteryl esters, and 20% polar lipids was capable of reducing the water evaporation rate by 11% at surface pressure 47 mN/m. AFM revealed that the model TFLL at high surface pressures consists of discrete droplets/aggregates of the nonpolar lipids residing atop a polar lipid monolayer with phase separation. Conclusions The TFLL may resist water evaporation with a combined mechanism by increasing film compactness of the polar lipid film at the air-water surface, and, to a lesser extent, by increasing film thickness of the nonpolar lipid film.
Collapse
Affiliation(s)
- Xiaojie Xu
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States
| | - Guangle Li
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States
| | - Yi Y. Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States,Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States
| |
Collapse
|
6
|
Xu X, Zuo YY. Nanomedicine for Ocular Drug Delivery. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
7
|
Li G, Zuo YY. Molecular and colloidal self-assembly at the oil–water interface. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Acera A, Abad B, Pereiro X, Rodríguez FD, Ruzafa N, Duran JA, Vecino E. Comparative study of the lipid profile of tears and plasma enriched in growth factors. Exp Eye Res 2022; 219:109061. [DOI: 10.1016/j.exer.2022.109061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/19/2022] [Accepted: 03/30/2022] [Indexed: 01/05/2023]
|
9
|
Nanomedicine for Ocular Drug Delivery. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_32-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|