1
|
Sischka JM, Nitschke I, Voigt A. The influence of higher order geometric terms on the asymmetry and dynamics of membranes. Faraday Discuss 2025. [PMID: 40353330 DOI: 10.1039/d4fd00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
We consider membranes as fluid deformable surfaces and allow for higher order geometric terms in the bending energy related to the Gaussian curvature squared and the mean curvature minus the spontaneous curvature to the fourth power. The evolution equations are derived and numerically solved using surface finite elements. The two higher order geometric terms have different effects. While the Gaussian curvature squared term has a tendency to stabilize tubes and enhance the evolution towards equilibrium shapes, thereby facilitating rapid shape changes, the mean curvature minus the spontaneous curvature to the fourth power destabilizes tubes and leads to qualitatively different equilibrium shapes but also enhances the evolution. This is demonstrated in axisymmetric settings and fully three-dimensional simulations. We therefore postulate that not only surface viscosity but also higher order geometric terms in the bending energy contribute to rapid shape changes which are relevant for morphological changes of cells.
Collapse
Affiliation(s)
| | - Ingo Nitschke
- Faculty Mathematics, TU Dresden, 01062 Dresden, Germany.
| | - Axel Voigt
- Faculty Mathematics, TU Dresden, 01062 Dresden, Germany.
- Center for Systems Biology Dresden (CSBD), Pfotenhauerstr. 108, 01307 Dresden, Germany
- Cluster of Excellence, Physics of Life, TU Dresden, Arnoldstr. 18, 01307 Dresden, Germany
| |
Collapse
|
2
|
Heinrich F, Nagle JF. The effect of cholesterol on the bending modulus of DOPC bilayers: re-analysis of NSE data. SOFT MATTER 2025; 21:2258-2267. [PMID: 39992286 DOI: 10.1039/d4sm01312c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The effect of cholesterol on the bending modulus KC of DOPC lipid bilayers has been controversial. Previous analysis of dynamic neutron spin echo (NSE) data reported that 50% cholesterol increased KC by a factor of three in contrast to earlier studies using four different static methods that reported essentially no increase. We reanalyzed the previous NSE data using new developments in NSE analysis. We find that the same NSE data require non-zero viscosity in pure DOPC and they are consistent with no increases in KC with cholesterol. Instead, we find more than a five-fold increase in the membrane viscosity ηm. We have further added diffusional softening dynamical theory to the basic phenomenological model. This generally decreases the 5-fold increase in viscosity, but the NSE data are not sufficient to determine by how much.
Collapse
Affiliation(s)
- Frank Heinrich
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA.
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - John F Nagle
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA.
| |
Collapse
|
3
|
Tanaka J, Haga K, Urakami N, Imai M, Sakuma Y. Temperature dependence of membrane viscosity of ternary lipid GUV with L o domains. Biophys J 2025; 124:818-828. [PMID: 39905732 PMCID: PMC11897551 DOI: 10.1016/j.bpj.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/05/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025] Open
Abstract
In the cell membrane, it is considered that saturated lipids and cholesterol organize liquid-ordered (Lo) domains in a sea of liquid-disordered (Ld) phases and proteins relevant to cellular functions are localized in the Lo domains. Since the diffusion of transmembrane proteins is regulated by the membrane viscosity, we investigate the temperature dependence of the membrane viscosity of the ternary giant unilamellar vesicles (GUVs) composed of the saturated lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, the unsaturated lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol to understand the effect of the phase separation on the membrane viscosity using a microinjection technique. In the microinjection method, membrane viscosity is estimated by comparing the flow pattern induced on a spherical membrane with a hydrodynamic model. For phase-separated GUVs, the flow pattern is visualized by the motion of the domains. In this study, we developed a method to visualize the flow patterns of homogeneous GUVs above the phase separation temperature by using beads attached to the GUVs. We succeeded in measuring the membrane viscosity of ternary GUVs both above phase separation temperature and in the phase-separated region and found that the membrane viscosity decreases dramatically by phase separation. In the phase-separated region, i.e., GUVs with Lo domains, the membrane viscosity is determined by that of the Ld phase, ηLd, and shows weak temperature dependence compared to that of the DOPC single-component GUV, which is a main component of the Ld phase. We revealed that the Moelwyn-Hughest model, which takes into account the effects of the membrane composition, viscosity of the pure component, and interaction between components, well describes the obtained membrane viscosity of the ternary GUV both above the phase separation temperature and in the phase-separated region. The drastic decrease of the membrane viscosity by the phase separation plays an important role in regulating the mobility of constituents in multi-component membranes.
Collapse
Affiliation(s)
- Julia Tanaka
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Kenya Haga
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Naohito Urakami
- Department of Physics and Informatics, Graduate School of Science, Yamaguchi University, Yamaguchi, Japan
| | - Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Yuka Sakuma
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
4
|
Goodband RJ, Staykova M. Lipid bilayer fracture under uniaxial stretch. SOFT MATTER 2025; 21:1669-1675. [PMID: 39902534 DOI: 10.1039/d4sm01410c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Most studies on pore formation in lipid membranes focus on lipid vesicles under isotropic tension. These models however fail to replicate the anisotropic stresses encountered by living cells and the complex rheological properties of the cell membrane arising from its interactions with the underlying cytoskeleton. Here, we employ a custom-built device to impose uniaxial stretch on PDMS-supported lipid membranes. We show that in contrast to the circular pores in vesicles, supported membranes under uniaxial loading open elliptical pores that are aligned perpendicularly to the direction of stretch. We discuss the constraints on tension diffusion in supported membranes, and how tension distribution determines the density and the shape of the membrane pores in relation to the applied strain rate and strain magnitude. Our paper shows for the first time that lipid membranes can exhibit a fracture behavior similar to the fracture of soft gels under tensile loading.
Collapse
Affiliation(s)
| | - Margarita Staykova
- Department of Physics, Durham University, South Rd, DH1 3LE, Durham, UK.
| |
Collapse
|
5
|
Marque C, D'Avino G, Larobina D, Michel A, Abou-Hassan A, Stocco A. Diffusion of a single colloid on the surface of a giant vesicle and a droplet. Phys Rev E 2025; 111:025411. [PMID: 40103023 DOI: 10.1103/physreve.111.025411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/17/2025] [Indexed: 03/20/2025]
Abstract
The study of interactions between biomimetic membranes and micron-sized particles is crucial for understanding various biological processes. Here, we control microparticle spontaneous engulfment by giant lipid vesicles by tuning particle surface charge, exploring regimes from negligible to strong adhesion. We focus our attention on dissipative phenomena at the micron- and nanoscales, occurring when a particle is wrapped by a lipid vesicle bilayer or when the particle diffuses at the lipid-monolayer interface of a droplet. For particles wrapped by membrane bilayers, we highlight the influence of the particle penetration depth and the impact of substructures on particle friction. Our work is complemented by hydrodynamic simulations that take into account the effects of the shape of the membrane wrapping the particle and the water gap separating the lipid bilayer membrane from the particle on translational particle drag. We show, however, that a purely hydrodynamic model is not suitable to describe the friction of a particle diffusing at the interface of an aqueous microdroplet in oil, stabilized by a single lipid layer. In hydrodynamic models, dissipation is solely described by the surface shear viscosity of the interface and the bulk fluid viscosity, but in this partial wetting configuration, an additional source of dissipation is required to account for fluctuations at the contact line. Hence, through experimental and numerical studies, we demonstrate that the dissipation contributions for the two geometries are fundamentally different.
Collapse
Affiliation(s)
- Clément Marque
- Institut Charles Sadron, CNRS UPR-22, 23 rue du Loess, Strasbourg, France
| | - Gaetano D'Avino
- Università degli Studi di Napoli Federico II, Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, P.le Tecchio 80, 80125 Napoli, Italy
| | - Domenico Larobina
- National Research Council, Institute of Polymers, Composites and Biomaterials, of Italy, Napoli, 80055 Portici, Italy
| | - Aude Michel
- PHENIX, Sorbonne Université, CNRS, PHysicochimie des Électrolytes et Nanosystèmes InterfaciauX (, ), F-75005 Paris, France
| | - Ali Abou-Hassan
- PHENIX, Sorbonne Université, CNRS, PHysicochimie des Électrolytes et Nanosystèmes InterfaciauX (, ), F-75005 Paris, France
- Institut Universitaire de France, (IUF), 75231 Paris, France
| | - Antonio Stocco
- Institut Charles Sadron, CNRS UPR-22, 23 rue du Loess, Strasbourg, France
| |
Collapse
|
6
|
Fitzgerald JE, Soloviov D, Cai YQ, Heberle FA, Ishikawa D, Baron AQR, Bolmatov D, Zhernenkov M, Lyman ER. Phonons reveal coupled cholesterol-lipid dynamics in ternary membranes. Biophys J 2024; 123:4042-4049. [PMID: 39501560 PMCID: PMC11628849 DOI: 10.1016/j.bpj.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024] Open
Abstract
Experimental studies of collective dynamics in lipid bilayers have been challenging due to the energy resolution required to observe these low-energy phonon-like modes. However, inelastic x-ray scattering (IXS) measurements-a technique for probing vibrations in soft and biological materials-are now possible with sub-meV resolution, permitting direct observation of low-energy, phonon-like modes in lipid membranes. Here, IXS measurements with sub-meV energy resolution reveal a low-energy optic-like phonon mode at roughly 3 meV in the liquid-ordered (Lo) and liquid-disordered phases of a ternary lipid mixture. This mode is only observed experimentally at momentum transfers greater than 5 nm-1 in the Lo system. A similar gapped mode is also observed in all-atom molecular dynamics (MD) simulations of the same mixture, indicating that the simulations accurately represent the fast, collective dynamics in the Lo phase. Its optical nature and the Q range of the gap together suggest that the observed mode is due to the coupled motion of cholesterol-lipid pairs, separated by several hydrocarbon chains within the membrane plane. Analysis of the simulations provides molecular insight into the origin of the mode in transient, nanoscale substructures of hexagonally packed hydrocarbon chains. This nanoscale hexagonal packing was previously reported based on MD simulations and, later, by NMR measurements. Here, however, the integration of IXS and MD simulations identifies a new signature of the Lo substructure in the collective lipid dynamics, thanks to the recent confluence of IXS sensitivity and MD simulation capabilities.
Collapse
Affiliation(s)
- James E Fitzgerald
- Department of Physics & Astronomy, University of Delaware, Newark, Delaware
| | - Dmytro Soloviov
- European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Hamburg, Germany; Institute for Safety Problems of Nuclear Power Plants of the Ukrainian NAS, Kyiv, Ukraine
| | - Yong Q Cai
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York
| | | | - Daisuke Ishikawa
- Materials Dynamics Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo, Japan; Precision Spectroscopy Division, CSRR, SPring-8/JASRI, Sayo, Hyogo, Japan
| | - Alfred Q R Baron
- Materials Dynamics Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo, Japan; Precision Spectroscopy Division, CSRR, SPring-8/JASRI, Sayo, Hyogo, Japan
| | - Dima Bolmatov
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee; Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| | - Mikhail Zhernenkov
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York.
| | - Edward R Lyman
- Department of Physics & Astronomy, University of Delaware, Newark, Delaware; Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware.
| |
Collapse
|
7
|
Lee Y, Yuan F, Cabriales JL, Stachowiak JC. Transmembrane coupling accelerates the growth of liquid-like protein condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622512. [PMID: 39574691 PMCID: PMC11580992 DOI: 10.1101/2024.11.07.622512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Timely and precise assembly of protein complexes on membrane surfaces is essential to the physiology of living cells. Recently, protein phase separation has been observed at cellular membranes, suggesting it may play a role in the assembly of protein complexes. Inspired by these findings, we observed that protein condensates on one side of a planar suspended membrane spontaneously colocalized with those on the opposite side. How might this phenomenon contribute to the assembly of stable transmembrane complexes? To address this question, we examined the diffusion and growth of protein condensates on both sides of membranes. Our results reveal that transmembrane coupling of protein condensates on opposite sides of the membrane slows down condensate diffusion while accelerating condensate growth. How can the rate of condensate growth increase simultaneously with a decrease in the rate of condensate diffusion? We provide insights into these seemingly contradictory observations by distinguishing between diffusion-limited and coupling-driven growth processes. While transmembrane coupling slows down diffusion, it also locally concentrates condensates within a confined area. This confinement increases the probability of condensate coalescence and thereby enhances the overall rate of growth for coupled condensates, substantially surpassing the growth rate for uncoupled condensates. These findings suggest that transmembrane coupling could play a role in the assembly of diverse membrane-bound structures by promoting the localization and growth of protein complexes on both membrane surfaces. This phenomenon could help to explain the efficient assembly of transmembrane structures in diverse cellular contexts. Significance Protein assemblies that span biological membranes are critical to cellular physiology. In the past decade, liquid-like protein condensates, which are flexible, multivalent protein assemblies, have been discovered on diverse membrane surfaces. Recently, we observed that protein condensates on opposite sides of a membrane spontaneously colocalize to form coupled, transmembrane complexes. Interestingly, while transmembrane coupling slows down the diffusion of membrane-bound condensates, it substantially accelerates their growth by strongly localizing interactions between them. These findings suggest that transmembrane coupling of protein condensates may play a role in promoting the robust assembly of membrane-bound protein complexes in crowded, complex cellular environments.
Collapse
Affiliation(s)
- Yohan Lee
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Feng Yuan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Jerry L. Cabriales
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Jeanne C. Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
8
|
Wohland T, Sim SR, Demoustier M, Pandey S, Kulkarni R, Aik D. FCS videos: Fluorescence correlation spectroscopy in space and time. Biochim Biophys Acta Gen Subj 2024; 1868:130716. [PMID: 39349260 DOI: 10.1016/j.bbagen.2024.130716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Fluorescence Correlation Spectroscopy (FCS), invented more than 50 years ago is a widely used tool providing information on molecular processes in a variety of samples from materials to life sciences. In the last two decades FCS was multiplexed and ultimately made into an imaging technique that provided maps of molecular parameters over whole sample cross-section. However, it was still limited by a measurement time on the order of minutes. With the improvement of FCS time resolution to seconds using deep learning, we extend here FCS to so-called FCS videos that can provide information how the molecular parameters determined by Imaging FCS change in space and time. This opens up new possibilities for the investigation of molecular processes. Here, we demonstrate the feasibility of the approach and show FCS video applications to lipid bilayers and cell membranes.
Collapse
Affiliation(s)
- Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore; Centre for BioImaging Sciences, National University of Singapore, 117557 Singapore, Singapore; Institute of Digital Molecular Analytics and Science, 117557 Singapore, Singapore; Department of Chemistry, National University of Singapore, 117543 Singapore, Singapore.
| | - Shao Ren Sim
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore; Centre for BioImaging Sciences, National University of Singapore, 117557 Singapore, Singapore; Institute of Digital Molecular Analytics and Science, 117557 Singapore, Singapore
| | - Marc Demoustier
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore; Centre for BioImaging Sciences, National University of Singapore, 117557 Singapore, Singapore; Institute of Digital Molecular Analytics and Science, 117557 Singapore, Singapore
| | - Shambhavi Pandey
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore; Centre for BioImaging Sciences, National University of Singapore, 117557 Singapore, Singapore
| | - Rutuparna Kulkarni
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore; Centre for BioImaging Sciences, National University of Singapore, 117557 Singapore, Singapore
| | - Daniel Aik
- Centre for BioImaging Sciences, National University of Singapore, 117557 Singapore, Singapore; Institute of Digital Molecular Analytics and Science, 117557 Singapore, Singapore; Department of Chemistry, National University of Singapore, 117543 Singapore, Singapore
| |
Collapse
|
9
|
Faizi HA, Granek R, Vlahovska PM. Curvature fluctuations of fluid vesicles reveal hydrodynamic dissipation within the bilayer. Proc Natl Acad Sci U S A 2024; 121:e2413557121. [PMID: 39441635 PMCID: PMC11536141 DOI: 10.1073/pnas.2413557121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
The biological function of membranes is closely related to their softness, which is often studied through the membranes' thermally driven fluctuations. Typically, the analysis assumes that the relaxation rate of a pure bending deformation is determined by the competition between membrane bending rigidity and viscous dissipation in the surrounding medium. Here, we reexamine this assumption and demonstrate that viscous flows within the membrane dominate the dynamics of bending fluctuations of nonplanar membranes with a radius of curvature smaller than the Saffman-Delbrück length. Using flickering spectroscopy of giant vesicles made of dipalmitoylphosphatidylcholine, DPPC:cholesterol mixtures and pure diblock-copolymer membranes, we experimentally detect the signature of membrane dissipation in curvature fluctuations. We show that membrane viscosity can be reliably obtained from the short time behavior of the shape time correlations. The results indicate that the DPPC:cholesterol membranes behave as a Newtonian fluid, while the polymer membranes exhibit more complex rheology. Our study provides physical insights into the time scales of curvature remodeling of biological and synthetic membranes.
Collapse
Affiliation(s)
- Hammad A. Faizi
- Department of Mechanical Engineering, Northwestern University, Evanston, IL60208
| | - Rony Granek
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of The Negev, Beer Sheva84105, Israel
| | - Petia M. Vlahovska
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL60208
- National Institute for Theory and Mathematics in Biology, Northwestern University and The University of Chicago, Chicago, IL60611
| |
Collapse
|
10
|
Kumar R, Chakrabarti R, Thaokar RM. Compound giant unilamellar vesicles as a bio-mimetic model for electrohydrodynamics of a nucleate cell. SOFT MATTER 2024; 20:6995-7011. [PMID: 39171512 DOI: 10.1039/d4sm00633j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The understanding obtained by studies on the electrohydrodynamics (EHD) of single giant unilamellar vesicles (sGUVs) has contributed significantly towards a better comprehension of the response of biological cells to electric fields. This has subsequently helped in developing technologies such as cell dielectrophoresis and cell electroporation. For nucleate eukaryotic cells though, a vesicle-in-vesicle compound giant unilamellar vesicle (cGUV) is a more appropriate bio-mimic than a sGUV. In this work, we present an improvised method for the formation of cGUVs, wherein the electrical conductivities of the inner, annular and outer regions of the cGUVs can be modified. A comprehensive experimental study is presented on the EHD of these cGUVs under weak AC fields over a wide range of frequencies, and an encouraging agreement is observed between the experiments and earlier published theoretical studies on concentric cGUVs. The spherical, prolate or oblate spheroidal deformations of a cGUV under AC electric fields depend upon the membrane electromechanical properties as well as the magnitude and direction of the electric traction at the membrane produced by the Maxwell stress that varies with the relative timescales associated with the frequency of the applied AC electric field and that of the membrane charging time and the Maxwell-Wagner relaxation time. This work establishes cGUVs as appropriate bio-mimics for conducting EHD studies relevant to eukaryotic cells.
Collapse
Affiliation(s)
- Rupesh Kumar
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Rochish M Thaokar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
11
|
Pfister S, Lesieur J, Bourdoncle P, Elhassan M, Didier P, Anton N, Anton H, Collot M. Red-Emitting Pyrrolyl Squaraine Molecular Rotor Reports Variations of Plasma Membrane and Vesicular Viscosity in Fluorescence Lifetime Imaging. Anal Chem 2024; 96:12784-12793. [PMID: 39066698 DOI: 10.1021/acs.analchem.4c02145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The viscosity that ensures the controlled diffusion of biomolecules in cells is a crucial biophysical parameter. Consequently, fluorescent probes capable of reporting viscosity variations are valuable tools in bioimaging. In this field, red-shifted probes are essential, as the widely used and gold standard probe remains green-emitting molecular rotors based on BODIPY. Here, we demonstrate that pyrrolyl squaraines, red-emissive fluorophores, exhibit high sensitivity over a wide viscosity range from 30 to 4890 mPa·s. Upon alkylation of the pyrrole moieties, the probes improve their sensitivity to viscosity through an enhanced twisted intramolecular charge transfer phenomenon. We utilized this scaffold to develop a plasma membrane probe, pSQ-PM, that efficiently stains the plasma membrane in a fluorogenic manner. Using fluorescence lifetime imaging, pSQ-PM enabled efficient sensing of viscosity variations in the plasma membrane under various conditions and in different cell lines (HeLa, U2OS, and NIH/3T3). Moreover, upon incubation, pSQ-PM stained the membrane of intracellular vesicles and suggested that the lysosomal membranes displayed enhanced fluidity.
Collapse
Affiliation(s)
- Sonia Pfister
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400 Illkirch, France
| | - Julie Lesieur
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Pierre Bourdoncle
- Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014 Paris, France
| | - Mohamed Elhassan
- Université de Strasbourg, INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani 21111, Sudan
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, Graffenstaden, France
| | - Nicolas Anton
- Université de Strasbourg, INSERM, Regenerative Nanomedicine UMR 1260, Centre de Recherche en Biomédecine de Strasbourg (CRBS), F-67000 Strasbourg, France
| | - Halina Anton
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, Graffenstaden, France
| | - Mayeul Collot
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400 Illkirch, France
| |
Collapse
|
12
|
Safronova N, Junghans L, Saenz JP. Temperature change elicits lipidome adaptation in the simple organisms Mycoplasma mycoides and JCVI-syn3B. Cell Rep 2024; 43:114435. [PMID: 38985673 DOI: 10.1016/j.celrep.2024.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/05/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
Cell membranes mediate interactions between life and its environment, with lipids determining their properties. Understanding how cells adjust their lipidomes to tune membrane properties is crucial yet poorly defined due to the complexity of most organisms. We used quantitative shotgun lipidomics to study temperature adaptation in the simple organism Mycoplasma mycoides and the minimal cell JCVI-syn3B. We show that lipid abundances follow a universal logarithmic distribution across eukaryotes and bacteria, with comparable degrees of lipid remodeling for adaptation regardless of lipidomic or organismal complexity. Lipid features analysis demonstrates head-group-specific acyl chain remodeling as characteristic of lipidome adaptation; its deficiency in Syn3B is associated with impaired homeoviscous adaptation. Temporal analysis reveals a two-stage cold adaptation process: swift cholesterol and cardiolipin shifts followed by gradual acyl chain modifications. This work provides an in-depth analysis of lipidome adaptation in minimal cells, laying a foundation to probe the design principles of living membranes.
Collapse
Affiliation(s)
- Nataliya Safronova
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - Lisa Junghans
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01062 Dresden, Germany
| | - James P Saenz
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, 01062 Dresden, Germany; Faculty of Medicine, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
13
|
Peng H, Jing X, Han S, Lin W. Detecting viscosity changes in the limb ischemia-reperfusion in mice with a near-infrared fluorescence probe. Anal Chim Acta 2024; 1311:342733. [PMID: 38816158 DOI: 10.1016/j.aca.2024.342733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Limb ischemia-reperfusion is a common phenomenon in clinical surgery, which disrupts the balanced physiological response process and ultimately leads to changes in intracellular viscosity. Intracellular viscosity is an important microenvironmental parameter that affects the normal function of organisms, and its level is closely related to many diseases. In addition, oxidative stress in the lower limbs can impair body function, and changes in pressure can lead to changes in the viscosity of limb tissues. Therefore, it is necessary to develop effective tools to detect changes in intracellular viscosity and visualize the progression of hind limb ischemia-reperfusion injury. RESULTS In order to solve this problem, a near infrared viscometry sensitive fluorescence probe (PH-XQ) with long emission wavelength and stable luminescence performance was designed and synthesized by using oxanthracene derivatives and malononitrile. The fluorescence probe (PH-XQ) has excellent selectivity, high sensitivity, low toxicity, high biocompatibility and excellent detection performance. The fluorescence intensity of the PH-XQ probe at 667 nm is highly sensitive to the change of viscosity. With the increase of viscosity, the fluorescence intensity of probe PH-XQ was significantly enhanced, and the fluorescence enhancement ratio was about 14-fold. In addition, PH-XQ can detect not only changes in viscosity between normal cells and drug-induced inflammatory cells, but also changes in the viscosity of the hind limbs of normal mice and mice after ischemia reperfusion. SIGNIFICANCE In particular, we are the first to successfully detect changes in handlimb viscosity after ischemia-reperfusion in mice using a probe. This study clearly elucidates changes in viscosity during ischemia-reperfusion of mouse limbs, providing favorable support for the relationship between viscosity and related diseases, and further providing a potential tool for the diagnosis of viscosity-related diseases.
Collapse
Affiliation(s)
- Hui Peng
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Xinying Jing
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Song Han
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, PR China.
| |
Collapse
|
14
|
Lira RB, Dillingh LS, Schuringa JJ, Yahioglu G, Suhling K, Roos WH. Fluorescence lifetime imaging microscopy of flexible and rigid dyes probes the biophysical properties of synthetic and biological membranes. Biophys J 2024; 123:1592-1609. [PMID: 38702882 PMCID: PMC11214022 DOI: 10.1016/j.bpj.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
Sensing of the biophysical properties of membranes using molecular reporters has recently regained widespread attention. This was elicited by the development of new probes of exquisite optical properties and increased performance, combined with developments in fluorescence detection. Here, we report on fluorescence lifetime imaging of various rigid and flexible fluorescent dyes to probe the biophysical properties of synthetic and biological membranes at steady state as well as upon the action of external membrane-modifying agents. We tested the solvatochromic dyes Nile red and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) (NBD), the viscosity sensor Bodipy C12, the flipper dye FliptR, as well as the dyes 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO), Bodipy C16, lissamine-rhodamine, and Atto647, which are dyes with no previous reported environmental sensitivity. The performance of the fluorescent probes, many of which are commercially available, was benchmarked with well-known environmental reporters, with Nile red and Bodipy C12 being specific reporters of medium hydration and viscosity, respectively. We show that some widely used ordinary dyes with no previous report of sensing capabilities can exhibit competing performance compared to highly sensitive commercially available or custom-based solvatochromic dyes, molecular rotors, or flipper in a wide range of biophysics experiments. Compared to other methods, fluorescence lifetime imaging is a minimally invasive and nondestructive method with optical resolution. It enables biophysical mapping at steady state or assessment of the changes induced by membrane-active molecules at subcellular level in both synthetic and biological membranes when intensity measurements fail to do so. The results have important consequences for the specific choice of the sensor and take into consideration factors such as probe sensitivity, response to environmental changes, ease and speed of data analysis, and the probe's intracellular distribution, as well as potential side effects induced by labeling and imaging.
Collapse
Affiliation(s)
- Rafael B Lira
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands.
| | - Laura S Dillingh
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands; Department of Hematology, Universitair Medisch Centrum Groningen & Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Jan-Jacob Schuringa
- Department of Hematology, Universitair Medisch Centrum Groningen & Rijksuniversiteit Groningen, Groningen, the Netherlands
| | | | - Klaus Suhling
- Department of Physics, King's College London, Strand, London, UK.
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands
| |
Collapse
|
15
|
Sadeghi M, Rosenberger D. Dynamic framework for large-scale modeling of membranes and peripheral proteins. Methods Enzymol 2024; 701:457-514. [PMID: 39025579 DOI: 10.1016/bs.mie.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In this chapter, we present a novel computational framework to study the dynamic behavior of extensive membrane systems, potentially in interaction with peripheral proteins, as an alternative to conventional simulation methods. The framework effectively describes the complex dynamics in protein-membrane systems in a mesoscopic particle-based setup. Furthermore, leveraging the hydrodynamic coupling between the membrane and its surrounding solvent, the coarse-grained model grounds its dynamics in macroscopic kinetic properties such as viscosity and diffusion coefficients, marrying the advantages of continuum- and particle-based approaches. We introduce the theoretical background and the parameter-space optimization method in a step-by-step fashion, present the hydrodynamic coupling method in detail, and demonstrate the application of the model at each stage through illuminating examples. We believe this modeling framework to hold great potential for simulating membrane and protein systems at biological spatiotemporal scales, and offer substantial flexibility for further development and parametrization.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany.
| | | |
Collapse
|
16
|
Sakuma Y, Kayamori N, Tanaka J, Haga K, Imai M, Kawakatsu T. Effects of grafted polymers on the lipid membrane fluidity. Biophys J 2024; 123:489-501. [PMID: 38243595 PMCID: PMC10912922 DOI: 10.1016/j.bpj.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/27/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
Since the membrane fluidity controls the cellular functions, it is important to identify the factors that determine the cell membrane viscosity. Cell membranes are composed of not only lipids and proteins but also polysaccharide chain-anchored molecules, such as glycolipids. To reveal the effects of grafted polymers on the membrane fluidity, in this study, we measured the membrane viscosity of polymer-grafted giant unilamellar vesicles (GUVs), which were prepared by introducing the poly (ethylene glycol) (PEG)-anchored lipids to the ternary GUVs composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol. The membrane viscosity was obtained from the velocity field on the GUV generated by applying a point force, based on the hydrodynamic model proposed by Henle and Levine. The velocity field was visualized by a motion of the circular liquid ordered (Lo) domains formed by a phase separation. With increasing PEG density, the membrane viscosity of PEG-grafted GUVs increased gradually in the mushroom region and significantly in the brush region. We propose a hydrodynamic model that includes the excluded volume effect of PEG chains to explain the increase in membrane viscosity in the mushroom region. This work provides a basic understanding of how grafted polymers affect the membrane fluidity.
Collapse
Affiliation(s)
- Yuka Sakuma
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan.
| | - Nana Kayamori
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Julia Tanaka
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Kenya Haga
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Masayuki Imai
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Toshihiro Kawakatsu
- Department of Physics, Graduate School of Science, Tohoku University, Sendai, Japan
| |
Collapse
|
17
|
Honerkamp-Smith AR. Forces and Flows at Cell Surfaces. J Membr Biol 2023; 256:331-340. [PMID: 37773346 PMCID: PMC10947748 DOI: 10.1007/s00232-023-00293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023]
|
18
|
Badvaram I, Camley BA. Physical limits to membrane curvature sensing by a single protein. Phys Rev E 2023; 108:064407. [PMID: 38243534 DOI: 10.1103/physreve.108.064407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 09/11/2023] [Indexed: 01/21/2024]
Abstract
Membrane curvature sensing is essential for a diverse range of biological processes. Recent experiments have revealed that a single nanometer-sized septin protein has different binding rates to membrane-coated glass beads of 1-µm and 3-µm diameters, even though the septin is orders of magnitude smaller than the beads. This sensing ability is especially surprising since curvature-sensing proteins must deal with persistent thermal fluctuations of the membrane, leading to discrepancies between the bead's curvature and the local membrane curvature sensed instantaneously by a protein. Using continuum models of fluctuating membranes, we investigate whether it is feasible for a protein acting as a perfect observer of the membrane to sense micron-scale curvature either by measuring local membrane curvature or by using bilayer lipid densities as a proxy. To do this, we develop algorithms to simulate lipid density and membrane shape fluctuations. We derive physical limits to the sensing efficacy of a protein in terms of protein size, membrane thickness, membrane bending modulus, membrane-substrate adhesion strength, and bead size. To explain the experimental protein-bead association rates, we develop two classes of predictive models: (i) for proteins that maximally associate to a preferred curvature and (ii) for proteins with enhanced association rates above a threshold curvature. We find that the experimentally observed sensing efficacy is close to the theoretical sensing limits imposed on a septin-sized protein. Protein-membrane association rates may depend on the curvature of the bead, but the strength of this dependence is limited by the fluctuations in membrane height and density.
Collapse
Affiliation(s)
- Indrajit Badvaram
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Brian A Camley
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
19
|
Lira RB, Hammond JCF, Cavalcanti RRM, Rous M, Riske KA, Roos WH. The underlying mechanical properties of membranes tune their ability to fuse. J Biol Chem 2023; 299:105430. [PMID: 37926280 PMCID: PMC10716014 DOI: 10.1016/j.jbc.2023.105430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
Membrane fusion is a ubiquitous process associated with a multitude of biological events. Although it has long been appreciated that membrane mechanics plays an important role in membrane fusion, the molecular interplay between mechanics and fusion has remained elusive. For example, although different lipids modulate membrane mechanics differently, depending on their composition, molar ratio, and complex interactions, differing lipid compositions may lead to similar mechanical properties. This raises the question of whether (i) the specific lipid composition or (ii) the average mesoscale mechanics of membranes acts as the determining factor for cellular function. Furthermore, little is known about the potential consequences of fusion on membrane disruption. Here, we use a combination of confocal microscopy, time-resolved imaging, and electroporation to shed light onto the underlying mechanical properties of membranes that regulate membrane fusion. Fusion efficiency follows a nearly universal behavior that depends on membrane fluidity parameters, such as membrane viscosity and bending rigidity, rather than on specific lipid composition. This helps explaining why the charged and fluid membranes of the inner leaflet of the plasma membrane are more fusogenic than their outer counterparts. Importantly, we show that physiological levels of cholesterol, a key component of biological membranes, has a mild effect on fusion but significantly enhances membrane mechanical stability against pore formation, suggesting that its high cellular levels buffer the membrane against disruption. The ability of membranes to efficiently fuse while preserving their integrity may have given evolutionary advantages to cells by enabling their function while preserving membrane stability.
Collapse
Affiliation(s)
- Rafael B Lira
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands.
| | - Jayna C F Hammond
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
| | | | - Madelief Rous
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
| | - Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands.
| |
Collapse
|
20
|
Karal MAS, Billah MM, Ahmed M, Ahamed MK. A review on the measurement of the bending rigidity of lipid membranes. SOFT MATTER 2023; 19:8285-8304. [PMID: 37873600 DOI: 10.1039/d3sm00882g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This review provides an overview of the latest developments in both experimental and simulation techniques used to assess the bending rigidity of lipid membranes. It places special emphasis on experimental methods that utilize model vesicles to manipulate lipid compositions and other experimental parameters to determine the bending rigidity of the membrane. It also describes two commonly used simulation methods for estimating bending rigidity. The impact of various factors on membrane bending rigidity is summarized, including cholesterol, lipids, salt concentration, surface charge, membrane phase state, peptides, proteins, and polyethylene glycol. These factors are shown to influence the bending rigidity, contributing to a better understanding of the biophysical properties of membranes and their role in biological processes. Furthermore, the review discusses future directions and potential advancements in this research field, highlighting areas where further investigation is required.
Collapse
Affiliation(s)
- Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh.
| | - Md Masum Billah
- Department of Physics, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Marzuk Ahmed
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Md Kabir Ahamed
- Radiation, Transport and Waste Safety Division, Bangladesh Atomic Energy Regulatory Authority, Agargaon, Dhaka 1207, Bangladesh
| |
Collapse
|
21
|
Aleksanyan M, Grafmüller A, Crea F, Georgiev VN, Yandrapalli N, Block S, Heberle J, Dimova R. Photomanipulation of Minimal Synthetic Cells: Area Increase, Softening, and Interleaflet Coupling of Membrane Models Doped with Azobenzene-Lipid Photoswitches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304336. [PMID: 37653602 PMCID: PMC10625111 DOI: 10.1002/advs.202304336] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Indexed: 09/02/2023]
Abstract
Light can effectively interrogate biological systems in a reversible and physiologically compatible manner with high spatiotemporal precision. Understanding the biophysics of photo-induced processes in bio-systems is crucial for achieving relevant clinical applications. Employing membranes doped with the photolipid azobenzene-phosphatidylcholine (azo-PC), a holistic picture of light-triggered changes in membrane kinetics, morphology, and material properties obtained from correlative studies on cell-sized vesicles, Langmuir monolayers, supported lipid bilayers, and molecular dynamics simulations is provided. Light-induced membrane area increases as high as ≈25% and a ten-fold decrease in the membrane bending rigidity is observed upon trans-to-cis azo-PC isomerization associated with membrane leaflet coupling and molecular curvature changes. Vesicle electrodeformation measurements and atomic force microscopy reveal that trans azo-PC bilayers are thicker than palmitoyl-oleoyl phosphatidylcholine (POPC) bilayers but have higher specific membrane capacitance and dielectric constant suggesting an increased ability to store electric charges across the membrane. Lastly, incubating POPC vesicles with azo-PC solutions results in the insertion of azo-PC in the membrane enabling them to become photoresponsive. All these results demonstrate that light can be used to finely manipulate the shape, mechanical and electric properties of photolipid-doped minimal cell models, and liposomal drug carriers, thus, presenting a promising therapeutic alternative for the repair of cellular disorders.
Collapse
Affiliation(s)
- Mina Aleksanyan
- Max Planck Institute of Colloids and InterfacesScience Park Golm14476PotsdamGermany
- Institute for Chemistry and BiochemistryFreie Universität Berlin14195BerlinGermany
| | - Andrea Grafmüller
- Max Planck Institute of Colloids and InterfacesScience Park Golm14476PotsdamGermany
| | - Fucsia Crea
- Department of PhysicsFreie Universität Berlin14195BerlinGermany
| | - Vasil N. Georgiev
- Max Planck Institute of Colloids and InterfacesScience Park Golm14476PotsdamGermany
| | - Naresh Yandrapalli
- Max Planck Institute of Colloids and InterfacesScience Park Golm14476PotsdamGermany
| | - Stephan Block
- Institute for Chemistry and BiochemistryFreie Universität Berlin14195BerlinGermany
| | - Joachim Heberle
- Department of PhysicsFreie Universität Berlin14195BerlinGermany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and InterfacesScience Park Golm14476PotsdamGermany
| |
Collapse
|
22
|
Renne MF, Ernst R. Membrane homeostasis beyond fluidity: control of membrane compressibility. Trends Biochem Sci 2023; 48:963-977. [PMID: 37652754 PMCID: PMC10580326 DOI: 10.1016/j.tibs.2023.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023]
Abstract
Biomembranes are complex materials composed of lipids and proteins that compartmentalize biochemistry. They are actively remodeled in response to physical and metabolic cues, as well as during cell differentiation and stress. The concept of homeoviscous adaptation has become a textbook example of membrane responsiveness. Here, we discuss limitations and common misconceptions revolving around it. By highlighting key moments in the life cycle of a transmembrane protein, we illustrate that membrane thickness and a finely regulated membrane compressibility are crucial to facilitate proper membrane protein insertion, function, sorting, and inheritance. We propose that the unfolded protein response (UPR) provides a mechanism for endoplasmic reticulum (ER) membrane homeostasis by sensing aberrant transverse membrane stiffening and triggering adaptive responses that re-establish membrane compressibility.
Collapse
Affiliation(s)
- Mike F Renne
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany; PZMS, Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany.
| | - Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany; PZMS, Center for Molecular Signaling, Medical Faculty, Saarland University, Homburg, Germany.
| |
Collapse
|
23
|
Liu P, Beltramo PJ. Effects of crowding on the diffusivity of membrane adhered particles. SOFT MATTER 2023; 19:7708-7716. [PMID: 37791427 DOI: 10.1039/d3sm01269g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The lateral diffusion of cell membrane inclusions, such as integral membrane proteins and bound receptors, drives critical biological processes, including the formation of complexes, cell-cell signaling, and membrane trafficking. These diffusive processes are complicated by how concentrated, or "crowded", the inclusions are, which can occupy between 30-50% of the area fraction of the membrane. In this work, we elucidate the effects of increasing concentration of model membrane inclusions in a free-standing artificial cell membrane on inclusion diffusivity and the apparent viscosity of the membrane. By multiple particle tracking of fluorescent microparticles covalently tethered to the bilayer, we show the transition from expected Brownian dynamics, which accurately measure the membrane viscosity, to subdiffusive behavior with decreased diffusion coefficient as the particle area fraction increases from 1% to around 30%, approaching physiological levels of crowding. At high crowding, the onset of non-Gaussian behavior is observed. Using hydrodynamic models relating the 2D diffusion coefficient to the viscosity of a membrane, we determine the apparent viscosity of the bilayer from the particle diffusivity and show an increase in the apparent membrane viscosity with increasing particle area fraction. However, the scaling of this increase is in contrast with the behavior of monolayer inclusion diffusion and bulk suspension rheology. These results demonstrate that physiological levels of model membrane crowding nontrivially alter the dynamics and apparent viscosity of the system, which has implications for understanding membrane protein interactions and particle-membrane transport processes.
Collapse
Affiliation(s)
- Paige Liu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | - Peter J Beltramo
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
24
|
Maliha F, Adnan A. Mechanical Responses of a Single Myelin Layer: A Molecular Simulation Study. Biomolecules 2023; 13:1525. [PMID: 37892207 PMCID: PMC10605433 DOI: 10.3390/biom13101525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The myelin sheath provides insulation to the brain's neuron cells, which aids in signal transmission and communication with the body. Degenerated myelin hampers the connection between the glial cells, which are the front row responders during traumatic brain injury mitigation. Thus, the structural integrity of the myelin layer is critical for protecting the brain tissue from traumatic injury. At the molecular level, myelin consists of a lipid bilayer, myelin basic proteins (MBP), proteolipid proteins (PLP), water and ions. Structurally, the myelin sheath is formed by repeatedly wrapping forty or more myelin layers around an axon. Here, we have used molecular dynamic simulations to model and capture the tensile response of a single myelin layer. An openly available molecular dynamic solver, LAMMPS, was used to conduct the simulations. The interatomic potentials for the interacting atoms and molecules were defined using CHARMM force fields. Following a standard equilibration process, the molecular model was stretched uniaxially at a deformation rate of 5 Å/ps. We observed that, at around 10% applied strain, the myelin started to cohesively fail via flaw formation inside the bilayers. Further stretching led to a continued expansion of the defect inside the bilayer, both radially and transversely. This study provides the cellular-level mechanisms of myelin damage due to mechanical load.
Collapse
Affiliation(s)
| | - Ashfaq Adnan
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA;
| |
Collapse
|
25
|
Javanainen M, Heftberger P, Madsen JJ, Miettinen MS, Pabst G, Ollila OHS. Quantitative Comparison against Experiments Reveals Imperfections in Force Fields' Descriptions of POPC-Cholesterol Interactions. J Chem Theory Comput 2023; 19:6342-6352. [PMID: 37616238 PMCID: PMC10536986 DOI: 10.1021/acs.jctc.3c00648] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 08/26/2023]
Abstract
Cholesterol is a central building block in biomembranes, where it induces orientational order, slows diffusion, renders the membrane stiffer, and drives domain formation. Molecular dynamics (MD) simulations have played a crucial role in resolving these effects at the molecular level; yet, it has recently become evident that different MD force fields predict quantitatively different behavior. Although easily neglected, identifying such limitations is increasingly important as the field rapidly progresses toward simulations of complex membranes mimicking the in vivo conditions: pertinent multicomponent simulations must capture accurately the interactions between their fundamental building blocks, such as phospholipids and cholesterol. Here, we define quantitative quality measures for simulations of binary lipid mixtures in membranes against the C-H bond order parameters and lateral diffusion coefficients from NMR spectroscopy as well as the form factors from X-ray scattering. Based on these measures, we perform a systematic evaluation of the ability of commonly used force fields to describe the structure and dynamics of binary mixtures of palmitoyloleoylphosphatidylcholine (POPC) and cholesterol. None of the tested force fields clearly outperforms the others across the tested properties and conditions. Still, the Slipids parameters provide the best overall performance in our tests, especially when dynamic properties are included in the evaluation. The quality evaluation metrics introduced in this work will, particularly, foster future force field development and refinement for multicomponent membranes using automated approaches.
Collapse
Affiliation(s)
- Matti Javanainen
- Institute
of Organic Chemistry and Biochemistry, Academy
of Sciences of the Czech Republic, 16000 Prague 6, Czech Republic
- Institute
of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Peter Heftberger
- Biophysics,
Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Jesper J. Madsen
- Global
and Planetary Health, College of Public Health, University of South Florida, Tampa, Florida 33612, United States
- Center
for Global Health and Infectious Diseases Research, College of Public
Health, University of South Florida, Tampa, Florida 33612, United States
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Markus S. Miettinen
- Fachbereich
Physik, Freie Universität Berlin, 14195 Berlin, Germany
- Department
of Chemistry, University of Bergen, 5007 Bergen, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, 5008 Bergen, Norway
| | - Georg Pabst
- Biophysics,
Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence
BioHealth—University of Graz, 8010 Graz, Austria
| | - O. H. Samuli Ollila
- Institute
of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
- VTT Technical Research Centre of Finland, 02150 Espoo, Finland
| |
Collapse
|
26
|
Nagao M, Seto H. Neutron scattering studies on dynamics of lipid membranes. BIOPHYSICS REVIEWS 2023; 4:021306. [PMID: 38504928 PMCID: PMC10903442 DOI: 10.1063/5.0144544] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/01/2023] [Indexed: 03/21/2024]
Abstract
Neutron scattering methods are powerful tools for the study of the structure and dynamics of lipid bilayers in length scales from sub Å to tens to hundreds nm and the time scales from sub ps to μs. These techniques also are nondestructive and, perhaps most importantly, require no additives to label samples. Because the neutron scattering intensities are very different for hydrogen- and deuterium-containing molecules, one can replace the hydrogen atoms in a molecule with deuterium to prepare on demand neutron scattering contrast without significantly altering the physical properties of the samples. Moreover, recent advances in neutron scattering techniques, membrane dynamics theories, analysis tools, and sample preparation technologies allow researchers to study various aspects of lipid bilayer dynamics. In this review, we focus on the dynamics of individual lipids and collective membrane dynamics as well as the dynamics of hydration water.
Collapse
Affiliation(s)
| | - Hideki Seto
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
27
|
Sapp K, Aleksanyan M, Kerr K, Dimova R, Sodt A. Kinetic relaxation of giant vesicles validates diffusional softening in a binary lipid mixture. Phys Rev E 2023; 107:054403. [PMID: 37329029 PMCID: PMC10548837 DOI: 10.1103/physreve.107.054403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
The stiffness of biological membranes determines the work required by cellular machinery to form and dismantle vesicles and other lipidic shapes. Model membrane stiffness can be determined from the equilibrium distribution of giant unilamellar vesicle surface undulations observable by phase contrast microscopy. With two or more components, lateral fluctuations of composition will couple to surface undulations depending on the curvature sensitivity of the constituent lipids. The result is a broader distribution of undulations whose complete relaxation is partially determined by lipid diffusion. In this work, kinetic analysis of the undulations of giant unilamellar vesicles made of phosphatidylcholine-phosphatidylethanolamine mixtures validates the molecular mechanism by which the membrane is made 25% softer than a single-component one. The mechanism is relevant to biological membranes, which have diverse and curvature-sensitive lipids.
Collapse
Affiliation(s)
- Kayla Sapp
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Mina Aleksanyan
- Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Kaitlyn Kerr
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Alexander Sodt
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892 Maryland, USA
| |
Collapse
|
28
|
Fitzgerald JE, Venable RM, Pastor RW, Lyman ER. Surface viscosities of lipid bilayers determined from equilibrium molecular dynamics simulations. Biophys J 2023; 122:1094-1104. [PMID: 36739477 PMCID: PMC10111272 DOI: 10.1016/j.bpj.2023.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Lipid membrane viscosity is critical to biological function. Bacterial cells grown in different environments alter their lipid composition in order to maintain a specific viscosity, and membrane viscosity has been linked to the rate of cellular respiration. To understand the factors that determine the viscosity of a membrane, we ran equilibrium all-atom simulations of single component lipid bilayers and calculated their viscosities. The viscosity was calculated via a Green-Kubo relation, with the stress-tensor autocorrelation function modeled by a stretched exponential function. By simulating a series of lipids at different temperatures, we establish the dependence of viscosity on several aspects of lipid chemistry, including hydrocarbon chain length, unsaturation, and backbone structure. Sphingomyelin is found to have a remarkably high viscosity, roughly 20 times that of DPPC. Furthermore, we find that inclusion of the entire range of the dispersion interaction increases viscosity by up to 140%. The simulated viscosities are similar to experimental values obtained from the rotational dynamics of small chromophores and from the diffusion of integral membrane proteins but significantly lower than recent measurements based on the deformation of giant vesicles.
Collapse
Affiliation(s)
- James E Fitzgerald
- Department of Physics & Astronomy, University of Delaware, Newark, Delaware
| | - Richard M Venable
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Edward R Lyman
- Department of Physics & Astronomy, University of Delaware, Newark, Delaware; Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware.
| |
Collapse
|
29
|
Salipante PF. Microfluidic techniques for mechanical measurements of biological samples. BIOPHYSICS REVIEWS 2023; 4:011303. [PMID: 38505816 PMCID: PMC10903441 DOI: 10.1063/5.0130762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/30/2022] [Indexed: 03/21/2024]
Abstract
The use of microfluidics to make mechanical property measurements is increasingly common. Fabrication of microfluidic devices has enabled various types of flow control and sensor integration at micrometer length scales to interrogate biological materials. For rheological measurements of biofluids, the small length scales are well suited to reach high rates, and measurements can be made on droplet-sized samples. The control of flow fields, constrictions, and external fields can be used in microfluidics to make mechanical measurements of individual bioparticle properties, often at high sampling rates for high-throughput measurements. Microfluidics also enables the measurement of bio-surfaces, such as the elasticity and permeability properties of layers of cells cultured in microfluidic devices. Recent progress on these topics is reviewed, and future directions are discussed.
Collapse
Affiliation(s)
- Paul F. Salipante
- National Institute of Standards and Technology, Polymers and Complex Fluids Group, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
30
|
Kambar N, Leal C. Microfluidic synthesis of multilayered lipid-polymer hybrid nanoparticles for the formulation of low solubility drugs. SOFT MATTER 2023; 19:1596-1605. [PMID: 36752169 PMCID: PMC10080587 DOI: 10.1039/d2sm01443b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hybrid phospholipid/block copolymer membranes where polymers and lipids are molecularly mixed or phase-separated into polymer-rich and lipid-rich domains are promising drug delivery materials. Harnessing the chemical diversity of polymers and the biocompatability of lipids is a compelling approach to design the next generation of drug carriers. Here, we report on the development of a microfluidics-based strategy analogous to produce lipid nanoparticles (LNPs) for the nanomanufacturing of multilayered hybrid nanoparticles (HNPs). Using X-ray scattering, Cryo-electron, and polarized microscopy we show that phosphatidylcholine (PC) and PBD-b-PEO (poly(butadiene-block-ethylene oxide)) hybrid membranes can be nanomanufactured by microfluidics into HNPs with dense and multilayered cores which are ideal carriers of low-solubility drugs of the Biopharmaceutical Classification System (BCS) II and IV such as antimalarial DSM265 and Paclitaxel, respectively.
Collapse
Affiliation(s)
- Nurila Kambar
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| | - Cecília Leal
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
31
|
Schoch RL, Haran G, Brown FLH. Dynamic correlations in lipid bilayer membranes over finite time intervals. J Chem Phys 2023; 158:044112. [PMID: 36725516 DOI: 10.1063/5.0129130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recent single-molecule measurements [Schoch et al., Proc. Natl. Acad. Sci. U. S. A. 118, e2113202118 (2021)] have observed dynamic lipid-lipid correlations in membranes with submicrometer spatial resolution and submillisecond temporal resolution. While short from an instrumentation standpoint, these length and time scales remain long compared to microscopic molecular motions. Theoretical expressions are derived to infer experimentally measurable correlations from the two-body diffusion matrix appropriate for membrane-bound bodies coupled by hydrodynamic interactions. The temporal (and associated spatial) averaging resulting from finite acquisition times has the effect of washing out correlations as compared to naive predictions (i.e., the bare elements of the diffusion matrix), which would be expected to hold for instantaneous measurements. The theoretical predictions are shown to be in excellent agreement with Brownian dynamics simulations of experimental measurements. Numerical results suggest that the experimental measurement of membrane protein diffusion, in complement to lipid diffusion measurements, might help to resolve the experimental ambiguities encountered for certain black lipid membranes.
Collapse
Affiliation(s)
- Rafael L Schoch
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Frank L H Brown
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
32
|
Nanoscale Bending Dynamics in Mixed-Chain Lipid Membranes. Symmetry (Basel) 2023. [DOI: 10.3390/sym15010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lipids that have two tails of different lengths are found throughout biomembranes in nature, yet the effects of this asymmetry on the membrane properties are not well understood, especially when it comes to the membrane dynamics. Here we study the nanoscale bending fluctuations in model mixed-chain 14:0–18:0 PC (MSPC) and 18:0–14:0 PC (SMPC) lipid bilayers using neutron spin echo (NSE) spectroscopy. We find that despite the partial interdigitation that is known to persist in the fluid phase of these membranes, the collective fluctuations are enhanced on timescales of tens of nanoseconds, and the chain-asymmetric lipid bilayers are softer than an analogous chain-symmetric lipid bilayer with the same average number of carbons in the acyl tails, di-16:0 PC (DPPC). Quantitative comparison of the NSE results suggests that the enhanced bending fluctuations at the nanosecond timescales are consistent with experimental and computational studies that showed the compressibility moduli of chain-asymmetric lipid membranes are 20% to 40% lower than chain-symmetric lipid membranes. These studies add to growing evidence that the partial interdigitation in mixed-chain lipid membranes is highly dynamic in the fluid phase and impacts membrane dynamic processes from the molecular to mesoscopic length scales without significantly changing the bilayer thickness or area per lipid.
Collapse
|
33
|
Bogawat Y, Krishnan S, Simmel FC, Santiago I. Tunable 2D diffusion of DNA nanostructures on lipid membranes. Biophys J 2022; 121:4810-4818. [PMID: 36243925 PMCID: PMC9811667 DOI: 10.1016/j.bpj.2022.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/02/2022] [Accepted: 10/11/2022] [Indexed: 01/07/2023] Open
Abstract
DNA nanotechnology facilitates the synthesis of biomimetic models for studying biological systems. This work uses lipid bilayers as platforms for two-dimensional single-particle tracking of the dynamics of DNA nanostructures. Three different DNA origami structures adhere to the membrane through hybridization with cholesterol-modified strands. Their two-dimensional diffusion coefficient is modulated by changing the concentration of monovalent and divalent salts and the number of anchors. In addition, the diffusion coefficient is tuned by targeting cholesterol-modified anchor strands with strand-displacement reactions. We demonstrate a responsive system with changing diffusivity by selectively displacing membrane-bound anchor strands. We also show the programmed release of origami structures from the lipid membranes.
Collapse
Affiliation(s)
- Yash Bogawat
- Physics Department E14, Technical University of Munich, Garching, Germany
| | - Swati Krishnan
- Physics Department E14, Technical University of Munich, Garching, Germany; Boehringer Ingelheim, Ingelheim am Rhein, Germany
| | - Friedrich C Simmel
- Physics Department E14, Technical University of Munich, Garching, Germany.
| | - Ibon Santiago
- Physics Department E14, Technical University of Munich, Garching, Germany; CIC nanoGUNE BRTA, Donostia-San Sebastián, Spain.
| |
Collapse
|
34
|
Hussein EA, White RJ. Maintaining Single-Channel Recordings on a Silver Nanoneedle through Probe Design and Feedback Tip Positioning Control. J Phys Chem B 2022; 126:10111-10119. [PMID: 36395597 DOI: 10.1021/acs.jpcb.2c06275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ion channel proteins showed great promise in the field of nanopore sensing and molecular flux imaging applications due to the atomic-level precision of the pore size and a high signal-to-noise ratio. More specifically, ion channel probes, where the protein channels are integrated at the end of a solid probe, can achieve highly localized detection. Metal probe materials such as gold and silver have been developed to support lipid bilayers and enable the use of smaller probes, or nanoneedles, compared to more traditional glass micropipette ion channel probes. Silver probes are preferable because they support sustained DC stable channel current due to the AgCl layer formed around the tip during the fabrication process. However, one of the current challenges in ion channel measurements is maintaining a single-channel recording. Multiple protein insertions complicate data analysis and destabilize the bilayer. Herein, we combine the promising probe material (Ag/AgCl) with an approach based on current feedback-controlled tip positioning to maintain long-term single-channel recordings for up to 3 h. We develop a hybrid positioning control system, where the channel current is used as feedback to control the vertical movement of the silver tip and, subsequently, control the number of protein channels inserted in the lipid membrane. Our findings reveal that the area of the lipid bilayer decreases with moving the silver tip up (i.e., decreasing the displacement in the z-direction). By reducing the bilayer area around the fine silver tip, we minimize the probability of multiple insertions and remove unwanted proteins. In addition, we characterize the effect of lipid properties such as fluidity on the lipid membrane area. We believe that the use of silver nanoneedles, which enables DC stable channel current, coupled with the developed tip displacement mechanism will offer more opportunities to employ these probes for chemical imaging and mapping different surfaces.
Collapse
Affiliation(s)
- Essraa A Hussein
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio45221, United States
| | - Ryan J White
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio45221, United States.,Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio45221, United States
| |
Collapse
|
35
|
Hamada N, Longo ML. Charged hybrid block copolymer-lipid-cholesterol vesicles: pH, ionic environment, and composition dependence of phase transitions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184026. [PMID: 35952852 DOI: 10.1016/j.bbamem.2022.184026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The impacts of pH, salt concentration (expressed as Debye length), and composition on the phase behavior of hybrid block copolymer-lipid-cholesterol bilayers incorporating carboxyl-terminated poly(butadiene)-block-poly(ethylene oxide) copolymer (PBdPEO1800(-)) or/and non-carboxyl-terminated PBdPEO (PBdPEO1800 or/and PBdPEO950), egg sphingomyelin (egg SM), and cholesterol were examined using fluorescence spectroscopy of laurdan. Laurdan emission spectra were decomposed into three lognormal curves as functions of energy. The ratio of the area of the mid-energy peak to the sum of the areas of all three peaks was evaluated as vesicles were cooled, yielding temperature breakpoint values (Tbreak) expected to be within the range of the phase transition temperature. Tbreak values displayed dependence on pH, Debye length, and vesicle composition consistent with an electrostatic repulsion contribution to vesicle phase behavior. Increased pH and Debye length, for which a greater dissociated fraction of PBdPEO1800(-) and a greater energy of electrostatic repulsion would be expected, resulted in Tbreak values as much as 10 °C less than at low pH or short Debye lengths. Additionally, at Debye lengths comparable to those at physiologically relevant ionic strength, Tbreak at pH 5.9 was observed to be slightly higher than at pH 7.0 for vesicles containing 50 mol% PBdPEO1800(-). Electrostatic effects observed for hybrid vesicles incorporating significant amounts of carboxyl-terminated polymer may have the ability to drive phase separation in response to pH drops-such as those observed after endocytosis-in physiologically relevant conditions, suggesting the utility of such materials for drug delivery.
Collapse
Affiliation(s)
- Naomi Hamada
- Department of Chemical Engineering, University of California Davis, Davis, CA 95616, United States
| | - Marjorie L Longo
- Department of Chemical Engineering, University of California Davis, Davis, CA 95616, United States.
| |
Collapse
|
36
|
Aleksanyan M, Faizi HA, Kirmpaki MA, Vlahovska PM, Riske KA, Dimova R. Assessing membrane material properties from the response of giant unilamellar vesicles to electric fields. ADVANCES IN PHYSICS: X 2022; 8:2125342. [PMID: 36211231 PMCID: PMC9536468 DOI: 10.1080/23746149.2022.2125342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023] Open
Abstract
Knowledge of the material properties of membranes is crucial to understanding cell viability and physiology. A number of methods have been developed to probe membranes in vitro, utilizing the response of minimal biomimetic membrane models to an external perturbation. In this review, we focus on techniques employing giant unilamellar vesicles (GUVs), model membrane systems, often referred to as minimal artificial cells because of the potential they offer to mimick certain cellular features. When exposed to electric fields, GUV deformation, dynamic response and poration can be used to deduce properties such as bending rigidity, pore edge tension, membrane capacitance, surface shear viscosity, excess area and membrane stability. We present a succinct overview of these techniques, which require only simple instrumentation, available in many labs, as well as reasonably facile experimental implementation and analysis.
Collapse
Affiliation(s)
- Mina Aleksanyan
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Free University of Berlin, 14195 Berlin, Germany
| | - Hammad A Faizi
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Maria-Anna Kirmpaki
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Petia M Vlahovska
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, 04039-032 Brazil
| | - Rumiana Dimova
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| |
Collapse
|
37
|
Faizi HA, Tsui A, Dimova R, Vlahovska PM. Bending Rigidity, Capacitance, and Shear Viscosity of Giant Vesicle Membranes Prepared by Spontaneous Swelling, Electroformation, Gel-Assisted, and Phase Transfer Methods: A Comparative Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10548-10557. [PMID: 35993569 PMCID: PMC9671160 DOI: 10.1021/acs.langmuir.2c01402] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Closed lipid bilayers in the form of giant unilamellar vesicles (GUVs) are commonly used membrane models. Various methods have been developed to prepare GUVs, however it is unknown if all approaches yield membranes with the same elastic, electric, and rheological properties. Here, we combine flickering spectroscopy and electrodefomation of GUVs to measure, at identical conditions, membrane capacitance, bending rigidity and shear surface viscosity of palmitoyloleoylphosphatidylcholine (POPC) membranes formed by several commonly used preparation methods: thin film hydration (spontaneous swelling), electroformation, gel-assisted swelling using poly(vinyl alcohol) (PVA) or agarose, and phase-transfer. We find relatively similar bending rigidity value across all the methods except for the agarose hydration method. In addition, the capacitance values are similar except for vesicles prepared via PVA gel hydration. Intriguingly, membranes prepared by the gel-assisted and phase-transfer methods exhibit much higher shear viscosity compared to electroformation and spontaneous swelling, likely due to remnants of polymers (PVA and agarose) and oils (hexadecane and mineral) in the lipid bilayer structure.
Collapse
Affiliation(s)
- Hammad A Faizi
- Department of Mechanical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Annie Tsui
- Department of Industrial Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476 Potsdam, Germany
| | - Petia M Vlahovska
- Department of Engineering Sciences and Applied Mathematics, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
38
|
Vishvakarma V, Engberg O, Huster D, Maiti S. The effect of cholesterol on highly curved membranes measured by nanosecond Fluorescence Correlation Spectroscopy. Methods Appl Fluoresc 2022; 10. [PMID: 35940167 DOI: 10.1088/2050-6120/ac87ea] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022]
Abstract
Small lipid vesicles (with diameter ≤ 100nm) with their highly curved membranes comprise a special class of biological lipid bilayers. The mechanical properties of such membranes are critical for their function, e.g. exocytosis. Cholesterol is a near-universal regulator of membrane properties in animal cells. Yet measurements of the effect of cholesterol on the mechanical properties of membranes have remained challenging, and the interpretation of such measurements has remained a matter of debate. Here we show that nanosecond fluorescence correlation spectroscopy (FCS) can directly measure the ns-microsecond rotational correlation time (τr) of a lipid probe in high curvature vesicles with extraordinary sensitivity. Using a home-built 4-Pi fluorescence cross-correlation spectrometer containing polarization-modulating elements, we measure the rotational correlation time (τr) of Nile Red in neurotransmitter vesicle mimics. As the cholesterol mole fraction increases from 0 to 50 %, τr increases from 17 ± 1 to 112 ± 12 ns, indicating a viscosity change of nearly a factor of 7. These measurements are corroborated by solid-state NMR results, which show that the order parameter of the lipid acyl chains increases by about 50% for the same change in cholesterol concentration. Additionally, we measured the spectral parameters of polarity-sensitive fluorescence dyes, which provide an indirect measure of viscosity. The green/red ratio of Nile Red and the generalized polarization of Laurdan show consistent increases of 1.3x and 2.6x, respectively. Our results demonstrate that rotational FCS can directly measure the viscosity of highly curved membranes with higher sensitivity and wider dynamic range compared to other conventional techniques. Significantly, we observe that the viscosity of neurotransmitter vesicle mimics is remarkably sensitive to their cholesterol content.
Collapse
Affiliation(s)
- Vicky Vishvakarma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Navy Nagar Colaba, MUMBAI, Mumbai, Maharashtra, 400005, INDIA
| | - Oskar Engberg
- Institut für Medizinische Physik und Biophysik Universität Leipzig, Universität Leipzig Medizinische Fakultät, Härtelstr. 16-18 04107 Leipzig Germany, Leipzig, Sachsen, 04107, GERMANY
| | - Daniel Huster
- Institut für Medizinische Physik und Biophysik, Universität Leipzig Medizinische Fakultät, Härtelstr. 16-18 04107 Leipzig, Leipzig, Sachsen, 04107, GERMANY
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Navy Nagar Colaba, Mumbai, 400005, INDIA
| |
Collapse
|
39
|
Goodband R, Bain CD, Staykova M. Comparative Study of Lipid- and Polymer-Supported Membranes Obtained by Vesicle Fusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5674-5681. [PMID: 35471971 PMCID: PMC9097520 DOI: 10.1021/acs.langmuir.2c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Indexed: 06/14/2023]
Abstract
We compare the fusion of giant lipid and block-copolymer vesicles on glass and poly(dimethylsiloxane) substrates. Both types of vesicles are similar in their ability to fuse to hydrophilic substrates and form patches with distinct heart or circular shapes. We use epifluorescence/confocal microscopy and atomic force microscopy on membrane patches to (i) characterize bilayer fluidity and patch-edge stability and (ii) follow the intermediate stages in the formation of continuous supported bilayers. Polymer membranes show much lower membrane fluidity and, unlike lipids, an inability of adjacent patches to fuse spontaneously into continuous membranes. We ascribe this effect to hydration repulsion forces acting between the patch edges, which can be diminished by increasing the sample temperature. We show that large areas of supported polymer membranes can be created by fusing giant vesicles on glass or poly(dimethylsiloxane) substrates and annealing their edges.
Collapse
Affiliation(s)
| | - Colin D. Bain
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| | | |
Collapse
|