1
|
Hergert DC, Robertson-Benta C, Sicard V, Schwotzer D, Hutchison K, Covey DP, Quinn DK, Sadek JR, McDonald J, Mayer AR. Use of Medical Cannabis to Treat Traumatic Brain Injury. J Neurotrauma 2021; 38:1904-1917. [PMID: 33256496 DOI: 10.1089/neu.2020.7148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is not a single pharmacological agent with demonstrated therapeutic efficacy for traumatic brain injury (TBI). With recent legalization efforts and the growing popularity of medical cannabis, patients with TBI will inevitably consider medical cannabis as a treatment option. Pre-clinical TBI research suggests that cannabinoids have neuroprotective and psychotherapeutic properties. In contrast, recreational cannabis use has consistently shown to have detrimental effects. Our review identified a paucity of high-quality studies examining the beneficial and adverse effects of medical cannabis on TBI, with only a single phase III randomized control trial. However, observational studies demonstrate that TBI patients are using medical and recreational cannabis to treat their symptoms, highlighting inconsistencies between public policy, perception of potential efficacy, and the dearth of empirical evidence. We conclude that randomized controlled trials and prospective studies with appropriate control groups are necessary to fully understand the efficacy and potential adverse effects of medical cannabis for TBI.
Collapse
Affiliation(s)
- Danielle C Hergert
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Cidney Robertson-Benta
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Veronik Sicard
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA
| | - Daniela Schwotzer
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA
| | - Kent Hutchison
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA
| | - Dan P Covey
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA
| | - Davin K Quinn
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Joseph R Sadek
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.,Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.,New Mexico VA Health Care System, Albuquerque, New Mexico, USA
| | - Jacob McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico, USA
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Pete & Nancy Domenici Hall, Albuquerque, New Mexico, USA.,Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.,Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.,Psychology Department, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
2
|
Cavanagh JF, Rieger RE, Wilson JK, Gill D, Fullerton L, Brandt E, Mayer AR. Joint analysis of frontal theta synchrony and white matter following mild traumatic brain injury. Brain Imaging Behav 2020; 14:2210-2223. [PMID: 31368085 PMCID: PMC6992511 DOI: 10.1007/s11682-019-00171-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Some of the most disabling aspects of mild traumatic brain injury (mTBI) include lingering deficits in executive functioning. It is known that mTBI can damage white matter tracts, but it remains unknown how this structural brain damage translates into cognitive deficits. This experiment utilized theta band phase synchrony to identify the dysfunctional neural operations that contribute to cognitive problems following mTBI. Sub-acute stage (< 2 weeks) mTBI patients (N = 52) and healthy matched controls (N = 32) completed a control-demanding task with concurrent EEG. Structural MRI was also collected. While there were no performance-specific behavioral differences between groups in the dot probe expectancy task, the degree of theta band phase synchrony immediately following injury predicted the degree of symptom recovery two months later. Although there were no differences in fractional anisotropy (FA) between groups, joint independent components analysis revealed that a smaller network of lower FA-valued voxels contributed to a diminished frontal theta phase synchrony network in the mTBI group. This finding suggests that frontal theta band markers of cognitive control are sensitive to sub-threshold structural aberrations following mTBI.
Collapse
Affiliation(s)
- James F Cavanagh
- Department of Psychology, University of New Mexico, Logan Hall, 1 University of New Mexico, MSC03 2220, Albuquerque, NM, 87131, USA.
| | - Rebecca E Rieger
- Department of Psychology, University of New Mexico, Logan Hall, 1 University of New Mexico, MSC03 2220, Albuquerque, NM, 87131, USA
- Department of Neuroscience, University of New Mexico Health Sciences Center, 1101 Yale Blvd, University of New Mexico, MSC 084740, Albuquerque, NM, 87131, USA
| | - J Kevin Wilson
- Department of Psychology, University of New Mexico, Logan Hall, 1 University of New Mexico, MSC03 2220, Albuquerque, NM, 87131, USA
- Department of Neuroscience, University of New Mexico Health Sciences Center, 1101 Yale Blvd, University of New Mexico, MSC 084740, Albuquerque, NM, 87131, USA
| | - Darbi Gill
- Department of Neuroscience, University of New Mexico Health Sciences Center, 1101 Yale Blvd, University of New Mexico, MSC 084740, Albuquerque, NM, 87131, USA
| | - Lynne Fullerton
- Department of Emergency Medicine, University of New Mexico Health Sciences Center, 1101 Yale Blvd, University of New Mexico, MSC 116025, Albuquerque, NM, 87131, USA
| | - Emma Brandt
- Department of Neuroscience, University of New Mexico Health Sciences Center, 1101 Yale Blvd, University of New Mexico, MSC 084740, Albuquerque, NM, 87131, USA
| | - Andrew R Mayer
- Department of Psychology, University of New Mexico, Logan Hall, 1 University of New Mexico, MSC03 2220, Albuquerque, NM, 87131, USA
- Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM, 87106, USA
- Departments of Neurology and Psychiatry, University of New Mexico Health Sciences Center, 1101 Yale Blvd, University of New Mexico, MSC 084740, Albuquerque, NM, 87131, USA
| |
Collapse
|
3
|
Brandt E, Wilson JK, Rieger RE, Gill D, Mayer AR, Cavanagh JF. Respiratory Sinus Arrhythmia Correlates With Depressive Symptoms Following Mild Traumatic Brain Injury. J PSYCHOPHYSIOL 2020. [DOI: 10.1027/0269-8803/a000268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Depression is a pervasive psychiatric problem following mild traumatic brain injury (mTBI). However, the onset and course of symptom expression following mTBI can differ from that of spontaneous episodes of depression. Here, we aimed to assess a physiological metric closely linked to depression: respiratory sinus arrhythmia (RSA), a measure of high frequency heart rate variability. RSA is reduced during depressive episodes, and higher resting RSA has been shown to predict future recovery from depression. In this study, we investigated if these patterns were observed throughout the typical timeframe of sub-acute mTBI recovery. Although RSA did not differ between mTBI ( n = 50) and control ( n = 27) groups, depressive symptoms were reliably correlated with RSA only in the mTBI group. This pattern was consistent 2 weeks, 2 months, and 4 months post-injury. Furthermore, resting RSA shortly following injury predicted the trajectory of depressive symptoms 2 months later. These findings generalize the connection between RSA and depression to a clinical population where depressive symptoms are common but often difficult to parse from other post-trauma consequences.
Collapse
Affiliation(s)
- Emma Brandt
- University of New Mexico Health Sciences Center, Department of Neuroscience, University of New Mexico, Albuquerque, NM, USA
| | - J. Kevin Wilson
- University of New Mexico Health Sciences Center, Department of Neuroscience, University of New Mexico, Albuquerque, NM, USA
| | - Rebecca E. Rieger
- University of New Mexico Health Sciences Center, Department of Neuroscience, University of New Mexico, Albuquerque, NM, USA
| | - Darbi Gill
- University of New Mexico Health Sciences Center, Department of Neuroscience, University of New Mexico, Albuquerque, NM, USA
| | - Andrew R. Mayer
- University of New Mexico Health Sciences Center, Department of Neuroscience, University of New Mexico, Albuquerque, NM, USA
- Mind Research Network, Albuquerque, NM, USA
- Department of Psychology, University of New Mexico, Albuquerque NM, USA
| | - James F. Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque NM, USA
| |
Collapse
|
4
|
Cavanagh JF, Wilson JK, Rieger RE, Gill D, Broadway JM, Story Remer JH, Fratzke V, Mayer AR, Quinn DK. ERPs predict symptomatic distress and recovery in sub-acute mild traumatic brain injury. Neuropsychologia 2019; 132:107125. [PMID: 31228481 DOI: 10.1016/j.neuropsychologia.2019.107125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/02/2019] [Accepted: 06/14/2019] [Indexed: 01/07/2023]
Abstract
Mild traumatic brain injury (mTBI) can affect high-level executive functioning long after somatic symptoms resolve. We tested if simple EEG responses within an oddball paradigm could capture variance relevant to this clinical problem. The P3a and P3b components reflect bottom-up and top-down processes driving engagement with exogenous stimuli. Since these features are related to primitive decision abilities, abnormal amplitudes following mTBI may account for problems in the ability to exert executive control. Sub-acute (<2 weeks) mTBI participants (N = 38) and healthy controls (N = 24) were assessed at an initial session as well as a two-month follow-up (sessions 1 and 2). We contrasted the initial assessment to a comparison group of participants with chronic symptomatology following brain injury (N = 23). There were no group differences in P3a or P3b amplitudes. Yet in the sub-acute mTBI group, higher symptomatology on the Frontal Systems Behavior scale (FrSBe), a questionnaire validated as measuring symptomatic distress related to frontal lobe injury, correlated with lower P3a in session 1. This relationship was replicated in session 2. These findings were distinct from chronic TBI participants, who instead expressed a relationship between increased FrSBe symptoms and a lower P3b component. In the sub-acute group, P3b amplitudes in the first session correlated with the degree of symptom change between sessions 1 and 2, above and beyond demographic predictors. Controls did not show any relationship between FrSBe symptoms and P3a or P3b. These findings identify symptom-specific alterations in neural systems that vary along the time course of post-concussive symptomatology.
Collapse
Affiliation(s)
- James F Cavanagh
- University of New Mexico, Department of Psychology, University of New Mexico, Logan Hall, 1 University of New Mexico, MSC03 2220, Albuquerque NM, 87131, USA.
| | - J Kevin Wilson
- University of New Mexico, Department of Psychology, University of New Mexico, Logan Hall, 1 University of New Mexico, MSC03 2220, Albuquerque NM, 87131, USA
| | - Rebecca E Rieger
- University of New Mexico, Department of Psychology, University of New Mexico, Logan Hall, 1 University of New Mexico, MSC03 2220, Albuquerque NM, 87131, USA
| | - Darbi Gill
- University of New Mexico Health Sciences Center, Department of Neuroscience, 1101 Yale Blvd, University of New Mexico, MSC 084740, Albuquerque, NM, 87131 USA
| | - James M Broadway
- University of New Mexico Health Sciences Center, Department of Neuroscience, 1101 Yale Blvd, University of New Mexico, MSC 084740, Albuquerque, NM, 87131 USA
| | - Jacqueline Hope Story Remer
- University of New Mexico Health Sciences Center, Department of Neuroscience, 1101 Yale Blvd, University of New Mexico, MSC 084740, Albuquerque, NM, 87131 USA
| | - Violet Fratzke
- University of New Mexico Health Sciences Center, Department of Neuroscience, 1101 Yale Blvd, University of New Mexico, MSC 084740, Albuquerque, NM, 87131 USA
| | - Andrew R Mayer
- University of New Mexico, Department of Psychology, University of New Mexico, Logan Hall, 1 University of New Mexico, MSC03 2220, Albuquerque NM, 87131, USA; University of New Mexico Health Sciences Center, Department of Neuroscience, 1101 Yale Blvd, University of New Mexico, MSC 084740, Albuquerque, NM, 87131 USA; Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM, 87106, USA
| | - Davin K Quinn
- University of New Mexico Health Sciences Center, Department of Psychiatry and Behavioral Sciences, 2600 Marble Avenue NE, Albuquerque, NM, 87106, USA
| |
Collapse
|