1
|
Roeckner AR, Lin ERH, Hinrichs R, Harnett NG, Lebois LAM, van Rooij SJH, Ely TD, Jovanovic T, Murty VP, Bruce SE, House SL, Beaudoin FL, An X, Neylan TC, Clifford GD, Linnstaedt SD, Germine LT, Rauch SL, Haran JP, Storrow AB, Lewandowski C, Musey PI, Hendry PL, Sheikh S, Jones CW, Punches BE, Swor RA, Hudak LA, Pascual JL, Seamon MJ, Datner EM, Pearson C, Peak DA, Merchant RC, Domeier RM, Rathlev NK, O'Neil BJ, Sergot P, Sanchez LD, Joormann J, Sheridan JF, Harte SE, Koenen KC, Kessler RC, McLean SA, Ressler KJ, Stevens JS. Sequential decreases in basolateral amygdala response to threat predict failure to recover from PTSD. Neuropsychopharmacology 2025:10.1038/s41386-025-02115-1. [PMID: 40319171 DOI: 10.1038/s41386-025-02115-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
Amygdala hyperreactivity early-post trauma has been a demonstrable neurobiological correlate of future posttraumautic stress disorder (PTSD). The basolateral amygdala (BLA) particularly is vital for fear memory and threat processing, but BLA functional dynamics following a traumatic event are unexplored. BLA reactivity to threat may be a trait that can predict PTSD and persist over time. Alternatively, BLA responsivity to threat cues may change over time and be related to PTSD severity. As part of a larger, multisite study, AURORA, participants 18-75 years old were enrolled in an emergency department (ED) within 72 h of a traumatic event (N = 304, 199 female). At 2-weeks and 6-months post-trauma, PTSD symptoms, BLA responses to threat (fearful>neutral faces), and functional connectivity (FC) during fMRI were assessed. Generalizability of findings was assessed in an external replication sample of ED patients (n = 33). Two weeks post-trauma right BLA reactivity positively predicted later PTSD severity. However, left BLA reactivity to threat at 6 months post-trauma was negatively associated with PTSD severity at that timepoint (ΔPseudo-R2 = 0.04, IRR = 0.38, p < 0.001). In addition, a decrease in BLA reactivity from 2-weeks to 6-months predicted greater PTSD severity at 6 months (ΔPseudo-R2 = 0.03, IRR = 0.58, p < 0.001). This replicated in the external sample. A reduction in left BLA FC with the dorsal attention network predicted increased PTSD severity over time. These findings support a shift in BLA function within the first 6 months post-trauma that predicts PTSD pathology and stand in contrast to prior conceptualizations of amygdala hyperreactivity as a trait-like PTSD risk factor.
Collapse
Affiliation(s)
- Alyssa R Roeckner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Esther R-H Lin
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca Hinrichs
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Lauren A M Lebois
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Timothy D Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Steven E Bruce
- Department of Psychological Sciences, University of Missouri - St. Louis, St. Louis, MO, USA
| | - Stacey L House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca L Beaudoin
- Department of Epidemiology, Brown University, Providence, RI, USA
- Department of Emergency Medicine, Brown University, Providence, RI, USA
| | - Xinming An
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas C Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura T Germine
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- The Many Brains Project, Belmont, MA, USA
| | - Scott L Rauch
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, McLean Hospital, Belmont, MA, USA
| | - John P Haran
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alan B Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Paul I Musey
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville, FL, USA
| | - Sophia Sheikh
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville, FL, USA
| | - Christopher W Jones
- Department of Emergency Medicine, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Brittany E Punches
- Department of Emergency Medicine, Ohio State University College of Medicine, Columbus, OH, USA
- Ohio State University College of Nursing, Columbus, OH, USA
| | - Robert A Swor
- Department of Emergency Medicine, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Lauren A Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jose L Pascual
- Department of Surgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark J Seamon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth M Datner
- Department of Emergency Medicine, Jefferson Einstein hospital, Jefferson Health, Philadelphia, PA, USA
- Department of Emergency Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Claire Pearson
- Department of Emergency Medicine, Wayne State University, Ascension St. John Hospital, Detroit, MI, USA
| | - David A Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Roland C Merchant
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robert M Domeier
- Department of Emergency Medicine, Trinity Health-Ann Arbor, Ypsilanti, MI, USA
| | - Niels K Rathlev
- Department of Emergency Medicine, University of Massachusetts Medical School-Baystate, Springfield, MA, USA
| | - Brian J O'Neil
- Department of Emergency Medicine, Wayne State University, Detroit Receiving Hospital, Detroit, MI, USA
| | - Paulina Sergot
- Department of Emergency Medicine, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Leon D Sanchez
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
| | - Jutta Joormann
- Department of Psychology, Yale University, New Haven, CT, USA
| | - John F Sheridan
- Division of Biosciences, Ohio State University College of Dentistry, Columbus, OH, USA
- Institute for Behavioral Medicine Research, OSU Wexner Medical Center, Columbus, OH, USA
| | - Steven E Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Samuel A McLean
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kerry J Ressler
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
2
|
Granata LE, Chang A, Shaheed H, Shinde A, Kulkarni P, Satpute A, Brenhouse HC, Honeycutt JA. Examining Brain Activity Responses during Rat Ultrasonic Vocalization Playback: Insights from a Novel fMRI Translational Paradigm. eNeuro 2024; 11:ENEURO.0179-23.2024. [PMID: 39299806 PMCID: PMC11451431 DOI: 10.1523/eneuro.0179-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
Despite decades of preclinical investigation, there remains limited understanding of the etiology and biological underpinnings of anxiety disorders. Sensitivity to potential threat is characteristic of anxiety-like behavior in humans and rodents, but traditional rodent behavioral tasks aimed to assess threat responsiveness lack translational value, especially with regard to emotionally valenced stimuli. Therefore, development of novel preclinical approaches to serve as analogues to patient assessments is needed. In humans, the fearful face task is widely used to test responsiveness to socially communicated threat signals. In rats, ultrasonic vocalizations (USVs) are analogous social cues associated with positive or negative affective states that can elicit behavioral changes in the receiver. It is therefore likely that when rats hear aversive alarm call USVs (22 kHz), they evoke translatable changes in brain activity comparable with the fearful face task. We used functional magnetic resonance imaging in male and female rats to assess changes in BOLD activity induced by exposure to aversive 22 kHz alarm calls emitted in response to threatening stimuli, prosocial (55 kHz) USVs emitted in response to appetitive stimuli, or a computer-generated 22 kHz tone. Results show patterns of regional activation that are specific to each USV stimulus. Notably, limbic regions clinically relevant to psychiatric disorders (e.g., amygdala, bed nucleus of the stria terminalis) are preferentially activated by either aversive 22 kHz or appetitive 55 kHz USVs. These results support the use of USV playback as a promising translational tool to investigate affective processing under conditions of distal threat in preclinical rat models.
Collapse
Affiliation(s)
- Lauren E Granata
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| | - Arnold Chang
- Center for Translational Neuroimaging, Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| | - Habiba Shaheed
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| | - Anjali Shinde
- Center for Translational Neuroimaging, Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| | - Praveen Kulkarni
- Center for Translational Neuroimaging, Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| | - Ajay Satpute
- Affective and Brain Sciences Lab, Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| | - Heather C Brenhouse
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, Massachusetts 02115
| | - Jennifer A Honeycutt
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, Massachusetts 02115
- Research in Affective and Translational Neuroscience Lab, Department of Psychology and Program in Neuroscience, Bowdoin College, Brunswick, Maine 04011
| |
Collapse
|
3
|
Yasuno F, Kimura Y, Ogata A, Ikenuma H, Abe J, Minami H, Nihashi T, Yokoi K, Hattori S, Shimoda N, Watanabe A, Kasuga K, Ikeuchi T, Takeda A, Sakurai T, Ito K, Kato T. Trait-anxiety and glial-related neuroinflammation of the amygdala and its associated regions in Alzheimer's disease: A significant correlation. Brain Behav Immun Health 2024; 38:100795. [PMID: 38799793 PMCID: PMC11126804 DOI: 10.1016/j.bbih.2024.100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/28/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024] Open
Abstract
Background Positron emission tomography, which assesses the binding of translocator protein radiotracers, 11C-DPA-713, may be a sensitive method for determining glial-mediated neuroinflammation levels. This study investigated the relationship between regional 11C-DPA713 binding potential (BPND) and anxiety in patients with Alzheimer's disease (AD) continuum. Methods Nineteen patients with AD continuum determined to be amyloid-/p-tau 181-positive via cerebrospinal fluid analysis were included in this cross-sectional study (mild cognitive impairment [MCI, n = 5] and AD [n = 14]). Anxiety was evaluated using the State-Trait Anxiety Inventory (STAI). A whole-brain voxel-based analysis was performed to examine the relationship between 11C-DPA-713-BPND values at each voxel and the STAI score. Stepwise multiple regression analysis was performed to determine the predictors of STAI scores using independent variables, including 11C-DPA-713-BPND values within significant clusters. 11C-DPA-713-BPND values were compared between patients with AD continuum with low-to-moderate and high STAI scores. Results Voxel-based analysis revealed a positive correlation between trait anxiety severity and 11C-DPA713-BPND values in the centromedial amygdala and the left inferior occipital area [P < 0.001 (uncorrected) at the voxel-level]. 11C-DPA713-BPND values in these regions were a strong predictor of the STAI trait anxiety score. Specifically, patients with AD continuum and high trait anxiety had increased 11C-DPA713-BPND values in these regions. Conclusions The amygdala-occipital lobe circuit influences the control of emotional generation, and disruption of this network by AD pathology-induced inflammation may contribute to the expression of anxiety. Our findings suggest that suppression of inflammation can help effectively treat anxiety by attenuating damage to the amygdala and its associated areas.
Collapse
Affiliation(s)
- Fumihiko Yasuno
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yasuyuki Kimura
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Aya Ogata
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science, Kani, Japan
| | - Hiroshi Ikenuma
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Junichiro Abe
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hiroyuki Minami
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takashi Nihashi
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kastunori Yokoi
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Saori Hattori
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Nobuyoshi Shimoda
- Functional Genomics Unit, Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Atsushi Watanabe
- Equipment Management Division, Center for Core Facility Administration, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akinori Takeda
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takashi Sakurai
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kengo Ito
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takashi Kato
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
4
|
Kaźmierowska AM, Kostecki M, Szczepanik M, Nikolaev T, Hamed A, Michałowski JM, Wypych M, Marchewka A, Knapska E. Rats respond to aversive emotional arousal of human handlers with the activation of the basolateral and central amygdala. Proc Natl Acad Sci U S A 2023; 120:e2302655120. [PMID: 37934822 PMCID: PMC10655214 DOI: 10.1073/pnas.2302655120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/05/2023] [Indexed: 11/09/2023] Open
Abstract
Reading danger signals may save an animal's life, and learning about threats from others allows avoiding first-hand aversive and often fatal experiences. Fear expressed by other individuals, including those belonging to other species, may indicate the presence of a threat in the environment and is an important social cue. Humans and other animals respond to conspecifics' fear with increased activity of the amygdala, the brain structure crucial for detecting threats and mounting an appropriate response to them. It is unclear, however, whether the cross-species transmission of threat information involves similar mechanisms, e.g., whether animals respond to the aversively induced emotional arousal of humans with activation of fear-processing circuits in the brain. Here, we report that when rats interact with a human caregiver who had recently undergone fear conditioning, they show risk assessment behavior and enhanced amygdala activation. The amygdala response involves its two major parts, the basolateral and central, which detect a threat and orchestrate defensive responses. Further, we show that humans who learn about a threat by observing another aversively aroused human, similar to rats, activate the basolateral and centromedial parts of the amygdala. Our results demonstrate that rats detect the emotional arousal of recently aversively stimulated caregivers and suggest that cross-species social transmission of threat information may involve similar neural circuits in the amygdala as the within-species transmission.
Collapse
Affiliation(s)
- Anna M. Kaźmierowska
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
- Laboratory of Emotions Neurobiology, BRAINCITY–Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
| | - Mateusz Kostecki
- Laboratory of Emotions Neurobiology, BRAINCITY–Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
| | - Michał Szczepanik
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
- Laboratory of Emotions Neurobiology, BRAINCITY–Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
- Institute of Neuroscience and Medicine, Brain & Behavior, Research Center Jülich, Jülich52428, Germany
| | - Tomasz Nikolaev
- Laboratory of Emotions Neurobiology, BRAINCITY–Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
| | - Adam Hamed
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
| | - Jarosław M. Michałowski
- Laboratory of Affective Neuroscience in Poznan, University of Social Sciences and Humanities, Poznań61-719, Poland
| | - Marek Wypych
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
| | - Ewelina Knapska
- Laboratory of Emotions Neurobiology, BRAINCITY–Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw02-093, Poland
| |
Collapse
|
5
|
Wen Z, Raio CM, Pace-Schott EF, Lazar SW, LeDoux JE, Phelps EA, Milad MR. Temporally and anatomically specific contributions of the human amygdala to threat and safety learning. Proc Natl Acad Sci U S A 2022; 119:e2204066119. [PMID: 35727981 PMCID: PMC9245701 DOI: 10.1073/pnas.2204066119] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
Neural plasticity in subareas of the rodent amygdala is widely known to be essential for Pavlovian threat conditioning and safety learning. However, less consistent results have been observed in human neuroimaging studies. Here, we identify and test three important factors that may contribute to these discrepancies: the temporal profile of amygdala response in threat conditioning, the anatomical specificity of amygdala responses during threat conditioning and safety learning, and insufficient power to identify these responses. We combined data across multiple studies using a well-validated human threat conditioning paradigm to examine amygdala involvement during threat conditioning and safety learning. In 601 humans, we show that two amygdala subregions tracked the conditioned stimulus with aversive shock during early conditioning while only one demonstrated delayed responding to a stimulus not paired with shock. Our findings identify cross-species similarities in temporal- and anatomical-specific amygdala contributions to threat and safety learning, affirm human amygdala involvement in associative learning and highlight important factors for future associative learning research in humans.
Collapse
Affiliation(s)
- Zhenfu Wen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016
| | - Candace M. Raio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016
| | - Edward F. Pace-Schott
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02114
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
| | - Sara W. Lazar
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02114
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
| | - Joseph E. LeDoux
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016
- Center for Neural Science and Department of Psychology, New York University, New York, NY 10003
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY 10016
| | | | - Mohammed R. Milad
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| |
Collapse
|
6
|
Vantrease JE, Avonts B, Padival M, DeJoseph MR, Urban JH, Rosenkranz JA. Sex Differences in the Activity of Basolateral Amygdalar Neurons That Project to the Bed Nucleus of the Stria Terminalis and Their Role in Anticipatory Anxiety. J Neurosci 2022; 42:4488-4504. [PMID: 35477901 PMCID: PMC9172066 DOI: 10.1523/jneurosci.1499-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Abnormal fear and anxiety can manifest as psychiatric disorders. The bed nucleus of the stria terminalis (BNST) is implicated in sustained responding to, or anticipation of, an aversive event which can be expressed as anticipatory anxiety. The BLA is also active during anticipatory anxiety and sends projections to the BNST. However, little is known about the role for BLA neurons that project to BNST (BLA-BNST) in anticipatory anxiety in rodents. To address this, we tested whether chemogenetic inactivation of the BLA-BNST pathway attenuates sustained conditioned responses produced by anticipation of an aversive stimulus. For comparison, we also assessed BLA-BNST inactivation during social interaction, which is sensitive to unlearned anxiety. We found that BLA-BNST inactivation reduced conditioned sustained freezing and increased social behaviors, but surprisingly, only in males. To determine whether sex differences in BLA-BNST neuronal activity contribute to the differences in behavior, we used in vivo and ex vivo electrophysiological approaches. In males, BLA-BNST projection neurons were more active and excitable, which coincided with a smaller after-hyperpolarization current (I AHP) compared with other BLA neurons; whereas in females, BLA-BNST neurons were less excitable and had larger I AHP compared with other BLA neurons. These findings demonstrate that activity of BLA-BNST neurons mediates conditioned anticipatory anxiety-like behavior in males. The lack of a role of BLA-BNST in females in this behavior, possibly because of low excitability of these neurons, also highlights the need for caution when generalizing the role of specific neurocircuits in fear and anxiety.SIGNIFICANCE STATEMENT Anxiety disorders disproportionately affect women. This hints toward sex differences within anxiety neurocircuitry, yet most of our understanding is derived from male rodents. Furthermore, debilitating anticipation of adverse events is among the most severe anxiety symptoms, but little is known about anticipatory anxiety neurocircuitry. Here we demonstrated that BLA-BNST activity is required for anticipatory anxiety to a prolonged aversive cue, but only in males. Moreover, BLA-BNST neurons are hypoactive and less excitable in females. These results uncover BLA-BNST as a key component of anticipatory anxiety circuitry, and cellular differences may explain the sex-dependent role of this circuit. Uncovering this disparity provides evidence that the assumed basic circuitry of an anxiety behavior might not readily transpose from males to females.
Collapse
Affiliation(s)
- Jaime E Vantrease
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Brittany Avonts
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Mallika Padival
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - M Regina DeJoseph
- Discipline of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Janice H Urban
- Discipline of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| | - J Amiel Rosenkranz
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University, North Chicago, Illinois 60064
| |
Collapse
|
7
|
Wang M, Zeng N, Zheng H, Du X, Potenza MN, Dong GH. Altered effective connectivity from the pregenual anterior cingulate cortex to the laterobasal amygdala mediates the relationship between internet gaming disorder and loneliness. Psychol Med 2022; 52:737-746. [PMID: 32684185 DOI: 10.1017/s0033291720002366] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Individual with internet gaming disorder (IGD) often experience a high level of loneliness, and neuroimaging studies have demonstrated that amygdala function is associated with both IGD and loneliness. However, the neurobiological basis underlying these relationships remains unclear. METHODS In the current study, Granger causal analysis was performed to investigate amygdalar subdivision-based resting-state effective connectivity differences between 111 IGD subjects and 120 matched participants with recreational game use (RGUs). We further correlated neuroimaging findings with clinical measures. Mediation analysis was conducted to explore whether amygdalar subdivision-based effective connectivity mediated the relationship between IGD severity and loneliness. RESULTS Compared with RGUs, IGD subjects showed inhibitory effective connections from the left pregenual anterior cingulate cortex (pACC) to the left laterobasal amygdala (LBA) and from the right medial prefrontal cortex (mPFC) to the left LBA, as well as an excitatory effective connection from the left middle prefrontal gyrus (MFG) to the right superficial amygdala. Further analyses demonstrated that the left pACC-left LBA effective connection was negatively correlated with both Internet Addiction Test and UCLA Loneliness scores, and it mediated the relationship between the two. CONCLUSION IGD subjects and RGUs showed different connectivity patterns involving amygdalar subdivisions. These findings support a neurobiological mechanism for the relationship between IGD and loneliness, and suggest targets for therapeutic approaches that could be used to treat IGD.
Collapse
Affiliation(s)
- Min Wang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR, China
| | - Ningning Zeng
- Department of Psychology, Zhejiang Normal University, Jinhua, PR, China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR, China
| | - Xiaoxia Du
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, PR, China
| | - Marc N Potenza
- Department of Psychiatry and Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR, China
| |
Collapse
|
8
|
ACC-BLA functional connectivity disruption in allergic inflammation is associated with anxiety. Sci Rep 2022; 12:2731. [PMID: 35177766 PMCID: PMC8854589 DOI: 10.1038/s41598-022-06748-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Allergic asthma is a chronic inflammatory respiratory disease. Psychiatric disorders, including anxiety are associated with poorer treatment response and disease control in asthmatic patients. To date, there is no experimental evidence describing the role of peripheral inflammation on the oscillatory activities in the anterior cingulate cortex (ACC) and basolateral amygdala (BLA), two major brain structures modulating anxiety. In the present work we evaluated lung and brain inflammatory responses, anxiety-like behavior, in association with oscillatory features of the ACC-BLA circuit in an animal model of allergic inflammation. Our data showed that allergic inflammation induced anxiety-like behavior and reactivation of microglia and astrocytes in ACC and BLA. Allergic inflammation also enhanced neuronal activities and functional connectivity of the ACC-BLA circuit which were correlated with the level of anxiety. Together, we suggest that disruption in the dynamic oscillatory activities of the ACC-BLA circuit, maybe due to regional inflammation, is an underlying mechanism of allergic asthma-induced anxiety-like behavior. Our findings could pave the way for better understanding the neuro-pathophysiology of the psychiatric disorders observed in asthmatic patients, possibly leading to develop novel treatment strategies.
Collapse
|
9
|
Kim JS, Lee KH, Hwang CS, Kim JW. Subcortical volumetric alterations as potential predictors of methylphenidate treatment response in youth with attention-deficit/hyperactivity disorder. J Psychiatry Neurosci 2022; 47:E11-E20. [PMID: 35027444 PMCID: PMC8842691 DOI: 10.1503/jpn.210074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/25/2021] [Accepted: 10/29/2021] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Patients with attention-deficit/hyperactivity disorder (ADHD) show structural alterations in the subcortical and dopaminergic regions of the brain. Methylphenidate is a first-line treatment for ADHD, and it is known to affect the subcortical and dopaminergic systems. The degree of pretreatment structural alterations in patients with ADHD may be an important factor in predicting methylphenidate treatment outcomes. The present study examined whether pretreatment volumetric alterations in the subcortical and dopaminergic regions predicted treatment response in youth with ADHD. METHODS This study included 67 youth with ADHD and 25 healthy controls. Youth with ADHD received 8 weeks of methylphenidate treatment. They completed baseline (pretreatment) T 1-weighted structural MRI scans and underwent clinical assessments before and after methylphenidate treatment. The healthy controls also completed baseline structural MRI scans. We assessed volumetric alterations using relative volumes (volume of each region of interest/intracranial volume). RESULTS Among 67 youth with ADHD, 44 were treatment responders and 23 were nonresponders based on post-treatment scores on the Clinical Global Impression Scale-Improvement. Nonresponders had larger volumes in the bilateral amygdala and right thalamus than responders. Nonresponders also had larger volumes in amygdalar subregions (i.e., the bilateral lateral nucleus and right basal nucleus) and hippocampal subregions (i.e., the right hippocampal head and right molecular layer) relative to responders. LIMITATIONS We did not collect post-treatment structural T 1-weighted images, so volumetric changes related to methylphenidate treatment in youth with ADHD were undetermined. CONCLUSION These findings suggest that pretreatment volumetric alterations in subcortical regions may serve as biomarkers for predicting methylphenidate treatment response in youth with ADHD.
Collapse
Affiliation(s)
| | - Kyung Hwa Lee
- From the Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea (J.-S. Kim, Hwang); and the Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea (Lee, J.-W. Kim)
| | | | - Jae-Won Kim
- From the Department of Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea (J.-S. Kim, Hwang); and the Division of Child and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea (Lee, J.-W. Kim)
| |
Collapse
|
10
|
Visser RM, Bathelt J, Scholte HS, Kindt M. Robust BOLD Responses to Faces But Not to Conditioned Threat: Challenging the Amygdala's Reputation in Human Fear and Extinction Learning. J Neurosci 2021; 41:10278-10292. [PMID: 34750227 PMCID: PMC8672698 DOI: 10.1523/jneurosci.0857-21.2021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022] Open
Abstract
Most of our knowledge about human emotional memory comes from animal research. Based on this work, the amygdala is often labeled the brain's "fear center", but it is unclear to what degree neural circuitries underlying fear and extinction learning are conserved across species. Neuroimaging studies in humans yield conflicting findings, with many studies failing to show amygdala activation in response to learned threat. Such null findings are often treated as resulting from MRI-specific problems related to measuring deep brain structures. Here we test this assumption in a mega-analysis of three studies on fear acquisition (n = 98; 68 female) and extinction learning (n = 79; 53 female). The conditioning procedure involved the presentation of two pictures of faces and two pictures of houses: one of each pair was followed by an electric shock [a conditioned stimulus (CS+)], the other one was never followed by a shock (CS-), and participants were instructed to learn these contingencies. Results revealed widespread responses to the CS+ compared with the CS- in the fear network, including anterior insula, midcingulate cortex, thalamus, and bed nucleus of the stria terminalis, but not the amygdala, which actually responded stronger to the CS- Results were independent of spatial smoothing, and of individual differences in trait anxiety and conditioned pupil responses. In contrast, robust amygdala activation distinguished faces from houses, refuting the idea that a poor signal could account for the absence of effects. Moving forward, we suggest that, apart from imaging larger samples at higher resolution, alternative statistical approaches may be used to identify cross-species similarities in fear and extinction learning.SIGNIFICANCE STATEMENT The science of emotional memory provides the foundation of numerous theories on psychopathology, including stress and anxiety disorders. This field relies heavily on animal research, which suggests a central role of the amygdala in fear learning and memory. However, this finding is not strongly corroborated by neuroimaging evidence in humans, and null findings are too easily explained away by methodological limitations inherent to imaging deep brain structures. In a large nonclinical sample, we find widespread BOLD activation in response to learned fear, but not in the amygdala. A poor signal could not account for the absence of effects. While these findings do not disprove the involvement of the amygdala in human fear learning, they challenge its typical portrayals and illustrate the complexities of translational science.
Collapse
Affiliation(s)
- Renée M Visser
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| | - Joe Bathelt
- Department of Psychology, Royal Holloway University of London, Egham TW20 0EX, United Kingdom
| | - H Steven Scholte
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| | - Merel Kindt
- Department of Psychology, University of Amsterdam, 1018 WT, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Yau JOY, Chaichim C, Power JM, McNally GP. The Roles of Basolateral Amygdala Parvalbumin Neurons in Fear Learning. J Neurosci 2021; 41:9223-9234. [PMID: 34561234 PMCID: PMC8570827 DOI: 10.1523/jneurosci.2461-20.2021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022] Open
Abstract
The basolateral amygdala (BLA) is obligatory for fear learning. This learning is linked to BLA excitatory projection neurons whose activity is regulated by complex networks of inhibitory interneurons, dominated by parvalbumin (PV)-expressing GABAergic neurons. The roles of these GABAergic interneurons in learning to fear and learning not to fear, activity profiles of these interneurons across the course of fear learning, and whether or how these change across the course of learning all remain poorly understood. Here, we used PV cell-type-specific recording and manipulation approaches in male transgenic PV-Cre rats during pavlovian fear conditioning to address these issues. We show that activity of BLA PV neurons during the moments of aversive reinforcement controls fear learning about aversive events, but activity during moments of nonreinforcement does not control fear extinction learning. Furthermore, we show expectation-modulation of BLA PV neurons during fear learning, with greater activity to an unexpected than expected aversive unconditioned stimulus (US). This expectation-modulation was specifically because of BLA PV neuron sensitivity to aversive prediction error. Finally, we show that BLA PV neuron function in fear learning is conserved across these variations in prediction error. We suggest that aversive prediction-error modulation of PV neurons could enable BLA fear-learning circuits to retain selectivity for specific sensory features of aversive USs despite variations in the strength of US inputs, thereby permitting the rapid updating of fear associations when these sensory features change.SIGNIFICANCE STATEMENT The capacity to learn about sources of danger in the environment is essential for survival. This learning depends on complex microcircuitries of inhibitory interneurons in the basolateral amygdala. Here, we show that parvalbumin-positive GABAergic interneurons in the rat basolateral amygdala are important for fear learning during moments of danger, but not for extinction learning during moments of safety, and that the activity of these neurons is modulated by expectation of danger. This may enable fear-learning circuits to retain selectivity for specific aversive events across variations in expectation, permitting the rapid updating of learning when aversive events change.
Collapse
Affiliation(s)
- Joanna Oi-Yue Yau
- School of Psychology, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| | - Chanchanok Chaichim
- Department of Physiology, Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| | - John M Power
- Department of Physiology, Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| | - Gavan P McNally
- School of Psychology, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
12
|
Xiao Y, Zhao L, Wang D, Xue SW, Tan Z, Lan Z, Kuai C, Wang Y, Li H, Pan C, Fu S, Hu X. Effective Connectivity of Right Amygdala Subregions Predicts Symptom Improvement Following 12-Week Pharmacological Therapy in Major Depressive Disorder. Front Neurosci 2021; 15:742102. [PMID: 34588954 PMCID: PMC8473745 DOI: 10.3389/fnins.2021.742102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
The low rates of treatment response still exist in the pharmacological therapy of major depressive disorder (MDD). Exploring an optimal neurological predictor of symptom improvement caused by pharmacotherapy is urgently needed for improving response to treatment. The amygdala is closely related to the pathological mechanism of MDD and is expected to be a predictor of the treatment. However, previous studies ignored the heterogeneousness and lateralization of amygdala. Therefore, this study mainly aimed to explore whether the right amygdala subregion function at baseline can predict symptom improvement after 12-week pharmacotherapy in MDD patients. We performed granger causality analysis (GCA) to identify abnormal effective connectivity (EC) of right amygdala subregions in MDD and compared the EC strength before and after 12-week pharmacological therapy. The results show that the abnormal EC mainly concentrated on the frontolimbic circuitry and default mode network (DMN). With relief of the clinical symptom, these abnormal ECs also change toward normalization. In addition, the EC strength of right amygdala subregions at baseline showed significant predictive ability for symptom improvement using a regularized least-squares regression predict model. These findings indicated that the EC of right amygdala subregions may be functionally related in symptom improvement of MDD. It may aid us to understand the neurological mechanism of pharmacotherapy and can be used as a promising predictor for symptom improvement in MDD.
Collapse
Affiliation(s)
- Yang Xiao
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Lei Zhao
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Donglin Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Shao-Wei Xue
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Zhonglin Tan
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihui Lan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Changxiao Kuai
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yan Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Hanxiaoran Li
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Chenyuan Pan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Sufen Fu
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Xiwen Hu
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Trait anxiety predicts amygdalar responses during direct processing of threat-related pictures. Sci Rep 2021; 11:18469. [PMID: 34531518 PMCID: PMC8446049 DOI: 10.1038/s41598-021-98023-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
Previous studies on the associations between trait anxiety and amygdalar responses to threat stimuli have resulted in mixed findings, possibly due to sample characteristics, specific tasks, and analytical methods. The present functional magnetic resonance imaging (fMRI) study aimed to investigate linear or non-linear associations between trait anxiety and amygdalar responses in a sample of participants with low, medium, and high trait anxiety scores. During scanning, participants were presented with threat-related or neutral pictures and had either to solve an emotional task or an emotional-unrelated distraction task. Results showed that only during the explicit task trait anxiety was associated with right amygdalar responses to threat-related pictures as compared to neutral pictures. The best model was a cubic model with increased amygdala responses for very low and medium trait anxiety values but decreased amygdala activation for very high trait anxiety values. The findings imply a non-linear relation between trait anxiety and amygdala activation depending on task conditions.
Collapse
|
14
|
Compère L, Siegle GJ, Young K. Importance of test-retest reliability for promoting fMRI based screening and interventions in major depressive disorder. Transl Psychiatry 2021; 11:387. [PMID: 34247184 PMCID: PMC8272717 DOI: 10.1038/s41398-021-01507-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022] Open
Abstract
Proponents of personalized medicine have promoted neuroimaging in three areas of clinical application for major depression: clinical prediction, outcome evaluation, and treatment, via neurofeedback. Whereas psychometric considerations such as test-retest reliability are basic precursors to clinical adoption for most clinical instruments, we show, in this article, that basic psychometrics have not been regularly attended to in fMRI of depression. For instance, no fMRI neurofeedback study has included measures of test-retest reliability, despite the implicit assumption that brain signals are stable enough to train. We consider several factors that could be useful to aid clinical translation, including (1) attending to how the BOLD response is parameterized, (2) identifying and promoting regions or voxels with stronger psychometric properties, (3) accounting for within-individual changes (e.g., in symptomatology) across time, and (4) focusing on tasks and clinical populations that are relevant for the intended clinical application. We apply these principles to published prognostic and neurofeedback data sets. The broad implication of this work is that attention to psychometrics is important for clinical adoption of mechanistic assessment, is feasible, and may improve the underlying science.
Collapse
Affiliation(s)
- Laurie Compère
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA.
| | - Greg J Siegle
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
| | - Kymberly Young
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Kim DJ, Jassar H, Lim M, Nascimento TD, DaSilva AF. Dopaminergic Regulation of Reward System Connectivity Underpins Pain and Emotional Suffering in Migraine. J Pain Res 2021; 14:631-643. [PMID: 33727857 PMCID: PMC7955762 DOI: 10.2147/jpr.s296540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/17/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose It has been suggested that reward system dysfunction may account for emotion and pain suffering in migraine. However, there is a lack of evidence whether the altered reward system connectivity is directly associated with clinical manifestations, including negative affect and ictal pain severity and, at the molecular level, the dopamine (DA) D2/D3 receptors (D2/3Rs) signaling implicated in encoding motivational and emotional cues. Patients and Methods We acquired resting-state functional MRI from interictal episodic migraine (EM) patients and age-matched healthy controls, as well as positron emission tomography (PET) with [11C]raclopride, a selective radiotracer for DA D2/3Rs, from a subset of these participants. The nucleus accumbens (NAc) was seeded to measure functional connectivity (FC) and DA D2/3Rs availability based on its essential involvement in pain-related aversive/reward functions. Associations of the brain measures with positive/negative affect and ictal pain severity were also assessed. Results Compared with controls, the EM group showed weaker right NAc connectivity with areas implicated in pain and emotional regulation, such as the amygdala, rostral anterior cingulate cortex, hippocampus, and thalamus; but showed stronger left NAc connectivity with the dorsolateral prefrontal cortex and lingual gyrus. Moreover, among the altered NAc connectivities, only right NAc-amygdala connectivity was inversely correlated with DA D2/3Rs availability in migraine patients (diagnostic group-by-D2/3Rs interaction p < 0.007). At a clinical level, such weaker NAc-amygdala connectivity was associated with lower interictal positive affect and greater ictal pain severity over the head and facial extension area (pain area and intensity number summation, PAINS). Conclusion Together, our findings suggest that altered reward system connectivity, specifically between the NAc and amygdala, might be affected by endogenous DA D2/3Rs signaling, and such process might be a neural mechanism that underlies emotional and pain suffering in episodic migraineurs.
Collapse
Affiliation(s)
- Dajung J Kim
- Headache and Orofacial Pain Effort (H.O.P.E.), Biologic and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Hassan Jassar
- Headache and Orofacial Pain Effort (H.O.P.E.), Biologic and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Manyoel Lim
- Headache and Orofacial Pain Effort (H.O.P.E.), Biologic and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Thiago D Nascimento
- Headache and Orofacial Pain Effort (H.O.P.E.), Biologic and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Alexandre F DaSilva
- Headache and Orofacial Pain Effort (H.O.P.E.), Biologic and Material Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| |
Collapse
|
16
|
Xu X, Dai J, Chen Y, Liu C, Xin F, Zhou X, Zhou F, Stamatakis EA, Yao S, Luo L, Huang Y, Wang J, Zou Z, Vatansever D, Kendrick KM, Zhou B, Becker B. Intrinsic connectivity of the prefrontal cortex and striato-limbic system respectively differentiate major depressive from generalized anxiety disorder. Neuropsychopharmacology 2021; 46:791-798. [PMID: 32961541 PMCID: PMC8027677 DOI: 10.1038/s41386-020-00868-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022]
Abstract
Major depressive disorder (MDD) and generalized anxiety disorder (GAD) are highly prevalent and debilitating disorders. The high overlap on the symptomatic and neurobiological level led to ongoing debates about their diagnostic and neurobiological uniqueness. The present study aims to identify common and disorder-specific neuropathological mechanisms and treatment targets in MDD and GAD. To this end we combined categorical and dimensional disorder models with a fully data-driven intrinsic network-level analysis (intrinsic connectivity contrast, ICC) to resting-state fMRI data acquired in 108 individuals (n = 35 and n = 38 unmedicated patients with first-episode GAD, MDD, respectively, and n = 35 healthy controls). Convergent evidence from categorical and dimensional analyses revealed MDD-specific decreased whole-brain connectivity profiles of the medial prefrontal and dorsolateral prefrontal cortex while GAD was specifically characterized by decreased whole-brain connectivity profiles of the putamen and decreased communication of this region with the amygdala. Together, findings from the present data-driven analysis suggest that intrinsic communication of frontal regions engaged in executive functions and emotion regulation represent depression-specific neurofunctional markers and treatment targets whereas dysregulated intrinsic communication of the striato-amygdala system engaged in reinforcement-based and emotional learning processes represent GAD-specific markers.
Collapse
Affiliation(s)
- Xiaolei Xu
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Jing Dai
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China ,Chengdu Mental Health Center, Chengdu, 610036 Sichuan China
| | - Yuanshu Chen
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Congcong Liu
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Fei Xin
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Xinqi Zhou
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Feng Zhou
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Emmanuel A. Stamatakis
- grid.5335.00000000121885934Division of Anaesthesia, School of Clinical Medicine, Addenbrooke’s Hospital, University of Cambridge, Hills Rd, Cambridge, CB2 0SP UK ,grid.5335.00000000121885934Department of Clinical Neurosciences, School of Clinical Medicine, Addenbrooke’s Hospital, University of Cambridge, Hills Rd, Cambridge, CB2 0SP UK
| | - Shuxia Yao
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Lizhu Luo
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China ,Chengdu Mental Health Center, Chengdu, 610036 Sichuan China
| | - Yulan Huang
- grid.410646.10000 0004 1808 0950Department of Psychosomatic Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, 610072 Sichuan China
| | - Jinyu Wang
- grid.410646.10000 0004 1808 0950Department of Psychosomatic Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, 610072 Sichuan China
| | - Zhili Zou
- grid.410646.10000 0004 1808 0950Department of Psychosomatic Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, 610072 Sichuan China
| | - Deniz Vatansever
- grid.8547.e0000 0001 0125 2443Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, 200433 Shanghai, China
| | - Keith M. Kendrick
- grid.54549.390000 0004 0369 4060The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054 Sichuan China
| | - Bo Zhou
- Department of Psychosomatic Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China.
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
| |
Collapse
|
17
|
Wen Z, Marin MF, Blackford JU, Chen ZS, Milad MR. Fear-induced brain activations distinguish anxious and trauma-exposed brains. Transl Psychiatry 2021; 11:46. [PMID: 33441547 PMCID: PMC7806917 DOI: 10.1038/s41398-020-01193-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023] Open
Abstract
Translational models of fear conditioning and extinction have elucidated a core neural network involved in the learning, consolidation, and expression of conditioned fear and its extinction. Anxious or trauma-exposed brains are characterized by dysregulated neural activations within regions of this fear network. In this study, we examined how the functional MRI activations of 10 brain regions commonly activated during fear conditioning and extinction might distinguish anxious or trauma-exposed brains from controls. To achieve this, activations during four phases of a fear conditioning and extinction paradigm in 304 participants with or without a psychiatric diagnosis were studied. By training convolutional neural networks (CNNs) using task-specific brain activations, we reliably distinguished the anxious and trauma-exposed brains from controls. The performance of models decreased significantly when we trained our CNN using activations from task-irrelevant brain regions or from a brain network that is irrelevant to fear. Our results suggest that neuroimaging data analytics of task-induced brain activations within the fear network might provide novel prospects for development of brain-based psychiatric diagnosis.
Collapse
Affiliation(s)
- Zhenfu Wen
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Marie-France Marin
- Department of Psychology, Université du Québec à Montréal & Research Center of the Institut Universitaire en Santé Mentale de Montréal, Montreal, QC, Canada
| | - Jennifer Urbano Blackford
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare Services, Department of Veterans Affairs, Nashville, TN, USA
| | - Zhe Sage Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
- The Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| | - Mohammed R Milad
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Kanen JW, Arntz FE, Yellowlees R, Christmas DM, Price A, Apergis-Schoute AM, Sahakian BJ, Cardinal RN, Robbins TW. Effect of Tryptophan Depletion on Conditioned Threat Memory Expression: Role of Intolerance of Uncertainty. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:590-598. [PMID: 33631385 PMCID: PMC8099731 DOI: 10.1016/j.bpsc.2020.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/02/2022]
Abstract
Background Responding emotionally to danger is critical for survival. Normal functioning also requires flexible alteration of emotional responses when a threat becomes safe. Aberrant threat and safety learning occur in many psychiatric disorders, including posttraumatic stress disorder, obsessive-compulsive disorder, and schizophrenia, in which emotional responses can persist pathologically. While there is evidence that threat and safety learning can be modulated by the serotonin systems, there have been few studies in humans. We addressed a critical clinically relevant question: How does lowering serotonin affect memory retention of conditioned threat and safety memory? Methods Forty-seven healthy participants underwent conditioning to two stimuli predictive of threat on day 1. One stimulus but not the other was subsequently presented in an extinction session. Emotional responding was assessed by the skin conductance response. On day 2, we employed acute dietary tryptophan depletion to lower serotonin temporarily, in a double-blind, placebo-controlled, randomized between-groups design. We then tested for the retention of conditioned threat and extinction memory. We also measured self-reported intolerance of uncertainty, known to modulate threat memory expression. Results The expression of emotional memory was attenuated in participants who had undergone tryptophan depletion. Individuals who were more intolerant of uncertainty showed even greater attenuation of emotion following depletion. Conclusions These results support the view that serotonin is involved in predicting aversive outcomes and refine our understanding of the role of serotonin in the persistence of emotional responsivity, with implications for individual differences in vulnerability to psychopathology.
Collapse
Affiliation(s)
- Jonathan W Kanen
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom.
| | - Frederique E Arntz
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Department of Psychology, Leiden University, Leiden, the Netherlands
| | - Robyn Yellowlees
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - David M Christmas
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Annabel Price
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Annemieke M Apergis-Schoute
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Barbara J Sahakian
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Rudolf N Cardinal
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom; Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Kim MJ, Mattek AM, Shin J. Amygdalostriatal coupling underpins positive but not negative coloring of ambiguous affect. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 20:949-960. [PMID: 32681315 PMCID: PMC7501244 DOI: 10.3758/s13415-020-00812-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Humans routinely integrate affective information from multiple sources. For example, we rarely interpret an emotional facial expression devoid of context. In this paper, we describe the neural correlates of an affective computation that involves integrating multiple sources, by leveraging the ambiguity and subtle feature-based valence signals found in surprised faces. Using functional magnetic resonance imaging, participants reported the valence of surprised faces modulated by positive or negative sentences. Amygdala activity corresponded to the valence value assigned to each contextually modulated face, with greater activity reflecting more negative ratings. Amygdala activity did not track the valence of the faces or sentences per se. Moreover, the amygdala was functionally coupled with the nucleus accumbens only during face trials preceded by positive contextual cues. These data suggest 1) valence-related amygdala activity reflects the integrated valence values rather than the valence values of each individual component, and 2) amygdalostriatal coupling underpins positive but not negative coloring of ambiguous affect.
Collapse
Affiliation(s)
- M Justin Kim
- Department of Psychology, Sungkyunkwan University, Seoul, South Korea.
| | - Alison M Mattek
- Department of Psychology, University of Oregon, Eugene, OR, USA
| | - Jin Shin
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
20
|
Sjouwerman R, Scharfenort R, Lonsdorf TB. Individual differences in fear acquisition: multivariate analyses of different emotional negativity scales, physiological responding, subjective measures, and neural activation. Sci Rep 2020; 10:15283. [PMID: 32943701 PMCID: PMC7498611 DOI: 10.1038/s41598-020-72007-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/20/2020] [Indexed: 01/13/2023] Open
Abstract
Negative emotionality is a well-established and stable risk factor for affective disorders. Individual differences in negative emotionality have been linked to associative learning processes which can be captured experimentally by computing CS-discrimination values in fear conditioning paradigms. Literature suffers from underpowered samples, suboptimal methods, and an isolated focus on single questionnaires and single outcome measures. First, the specific and shared variance across three commonly employed questionnaires [STAI-T, NEO-FFI-Neuroticism, Intolerance of Uncertainty (IU) Scale] in relation to CS-discrimination during fear-acquisition in multiple analysis units (ratings, skin conductance, startle) is addressed (NStudy1 = 356). A specific significant negative association between STAI-T and CS-discrimination in SCRs and between IU and CS-discrimination in startle responding was identified in multimodal and dimensional analyses, but also between latent factors negative emotionality and fear learning, which capture shared variance across questionnaires/scales and across outcome measures. Second, STAI-T was positively associated with CS-discrimination in a number of brain areas linked to conditioned fear (amygdala, putamen, thalamus), but not to SCRs or ratings (NStudy2 = 113). Importantly, we replicate potential sampling biases between fMRI and behavioral studies regarding anxiety levels. Future studies are needed to target wide sampling distributions for STAI-T and verify whether current findings are generalizable to other samples.
Collapse
Affiliation(s)
- Rachel Sjouwerman
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Robert Scharfenort
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tina B Lonsdorf
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
21
|
Wise T, Dolan RJ. Associations between aversive learning processes and transdiagnostic psychiatric symptoms in a general population sample. Nat Commun 2020; 11:4179. [PMID: 32826918 PMCID: PMC7443146 DOI: 10.1038/s41467-020-17977-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2020] [Indexed: 11/09/2022] Open
Abstract
Symptom expression in psychiatric conditions is often linked to altered threat perception, however how computational mechanisms that support aversive learning relate to specific psychiatric symptoms remains undetermined. We answer this question using an online game-based aversive learning task together with measures of common psychiatric symptoms in 400 subjects. We show that physiological symptoms of anxiety and a transdiagnostic compulsivity-related factor are associated with enhanced safety learning, as measured using a probabilistic computational model, while trait cognitive anxiety symptoms are associated with enhanced learning from danger. We use data-driven partial least squares regression to identify two separable components across behavioural and questionnaire data: one linking enhanced safety learning and lower estimated uncertainty to physiological anxiety, compulsivity, and impulsivity; the other linking enhanced threat learning and heightened uncertainty estimation to symptoms of depression and social anxiety. Our findings implicate aversive learning processes in the expression of psychiatric symptoms that transcend diagnostic boundaries.
Collapse
Affiliation(s)
- Toby Wise
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.
| | - Raymond J Dolan
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| |
Collapse
|
22
|
Bas-Hoogendam JM, Westenberg PM. Imaging the socially-anxious brain: recent advances and future prospects. F1000Res 2020; 9:F1000 Faculty Rev-230. [PMID: 32269760 PMCID: PMC7122428 DOI: 10.12688/f1000research.21214.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Social anxiety disorder (SAD) is serious psychiatric condition with a genetic background. Insight into the neurobiological alterations underlying the disorder is essential to develop effective interventions that could relieve SAD-related suffering. In this expert review, we consider recent neuroimaging work on SAD. First, we focus on new results from magnetic resonance imaging studies dedicated to outlining biomarkers of SAD, including encouraging findings with respect to structural and functional brain alterations associated with the disorder. Furthermore, we highlight innovative studies in the field of neuroprediction and studies that established the effects of treatment on brain characteristics. Next, we describe novel work aimed to delineate endophenotypes of SAD, providing insight into the genetic susceptibility to develop the disorder. Finally, we outline outstanding questions and point out directions for future research.
Collapse
Affiliation(s)
- Janna Marie Bas-Hoogendam
- Developmental and Educational Psychology, Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, c/o LUMC, postzone C2-S, P.O.Box 9600, 2300 RC Leiden, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - P. Michiel Westenberg
- Developmental and Educational Psychology, Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, c/o LUMC, postzone C2-S, P.O.Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|