1
|
Zhang J, Li L, Ji R, Shang D, Wen X, Hu J, Wang Y, Wu D, Zhang L, He F, Ye X, Luo B. NODDI Identifies Cognitive Associations with In Vivo Microstructural Changes in Remote Cortical Regions and Thalamocortical Pathways in Thalamic Stroke. Transl Stroke Res 2025; 16:378-391. [PMID: 38049671 DOI: 10.1007/s12975-023-01221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
The roles of cerebral structures distal to isolated thalamic infarcts in cognitive deficits remain unclear. We aimed to identify the in vivo microstructural characteristics of remote gray matter (GM) and thalamic pathways and elucidate their roles across cognitive domains. Patients with isolated ischemic thalamic stroke and healthy controls underwent neuropsychological assessment and magnetic resonance imaging. Neurite orientation dispersion and density imaging (NODDI) was modeled to derive the intracellular volume fraction (VFic) and orientation dispersion index. Fiber density (FD) was determined by constrained spherical deconvolution, and tensor-derived fractional anisotropy (FA) was calculated. Voxel-wise GM analysis and thalamic pathway tractography were performed. Twenty-six patients and 26 healthy controls were included. Patients exhibited reduced VFic in remote GM regions, including ipsilesional insular and temporal subregions. The microstructural metrics VFic, FD, and FA within ipsilesional thalamic pathways decreased (false discovery rate [FDR]-p < 0.05). Noteworthy associations emerged as VFic within insular cortices (ρ = -0.791 to -0.630; FDR-p < 0.05) and FD in tracts connecting the thalamus and insula (ρ = 0.830 to 0.971; FDR-p < 0.001) were closely associated with executive function. The VFic in Brodmann area 52 (ρ = -0.839; FDR-p = 0.005) and FA within its thalamic pathway (ρ = -0.799; FDR-p = 0.003) correlated with total auditory memory scores. In conclusion, NODDI revealed neurite loss in remote normal-appearing GM regions and ipsilesional thalamic pathways in thalamic stroke. Reduced cortical dendritic density and axonal density of thalamocortical tracts in specific subregions were associated with improved cognitive functions. Subacute microstructural alterations beyond focal thalamic infarcts might reflect beneficial remodeling indicating post-stroke plasticity.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurology, Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310003, Hangzhou, China
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Lingling Li
- Department of Neurology, Dongyang People's Hospital, Wenzhou Medical University, Dongyang, 322109, China
| | - Renjie Ji
- Department of Neurology, Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310003, Hangzhou, China
| | - Desheng Shang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xinrui Wen
- Department of Neurology, Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310003, Hangzhou, China
| | - Jun Hu
- Department of Neurology, Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310003, Hangzhou, China
| | - Yingqiao Wang
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Li Zhang
- Department of Neurology, Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310003, Hangzhou, China
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Fangping He
- Department of Neurology, Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310003, Hangzhou, China
| | - Xiangming Ye
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | - Benyan Luo
- Department of Neurology, Brain Medical Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310003, Hangzhou, China.
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
2
|
Zhang J, Wang Y, Shu Z, Ouyang Y, Zhang X, Wang H, Zhang L, Fang S, Ye X, Li J. Tracing volitional recovery in post-stroke akinetic mutism using longitudinal microstructure imaging: Insights from a single case study. Cortex 2024; 180:55-63. [PMID: 39369575 DOI: 10.1016/j.cortex.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/23/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024]
Abstract
Lesions in the frontal-subcortical circuitry can lead to akinetic mutism (AM) characterized by diminished volition. However, the microstructural changes in the damaged network underlying its recovery remain unknown. Clinical examination and neuropsychological assessment were performed on a patient with post-stroke AM. Multimodal MRI scans were performed at baseline and follow-ups. We used diffusion MRI and biophysical models, specifically utilizing neurite orientation dispersion and density imaging for assessing gray matter microstructure, and fixel-based analysis for the evaluation of white matter. Longitudinal comparisons were performed between the patient and healthy controls. Pronounced recovery of volition was observed after dopamine agonist therapy combined with physical therapy. In addition to infarcts in the bilateral medial cortex, microstructure imaging detected reduced neurite density in extensive areas, specifically in temporal areas and subcortical nuclei, and decreased fiber density of white matter tracts (TFCE-corrected p < .05). Microstructural degeneration in the anterior cingulate cortex and cingulum was relatively persistent (Bonferroni-corrected p < .05). However, most tracts within the frontal-subcortical circuitry showed increased fiber density during the recovery stage. Microstructure of an extensive network may contribute to the disruption and recovery of volition. Fiber density within the frontal-subcortical circuitry could be a promising biomarker indicating volitional recovery.
Collapse
Affiliation(s)
- Jie Zhang
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Wellcome Center for Human Neuroimaging, Department of Imaging Neuroscience, Institute of Neurology, University College London, London, UK
| | - Yingqiao Wang
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Zhenyu Shu
- Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yao Ouyang
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xingru Zhang
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Huiqi Wang
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Li Zhang
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Shan Fang
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xiangming Ye
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.
| | - Juebao Li
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
3
|
Nair AK, Adluru N, Finley AJ, Gresham LK, Skinner SE, Alexander AL, Davidson RJ, Ryff CD, Schaefer SM. Purpose in life as a resilience factor for brain health: diffusion MRI findings from the Midlife in the U.S. study. Front Psychiatry 2024; 15:1355998. [PMID: 38505799 PMCID: PMC10948414 DOI: 10.3389/fpsyt.2024.1355998] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/09/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction A greater sense of purpose in life is associated with several health benefits relevant for active aging, but the mechanisms remain unclear. We evaluated if purpose in life was associated with indices of brain health. Methods We examined data from the Midlife in the United States (MIDUS) Neuroscience Project. Diffusion weighted magnetic resonance imaging data (n=138; mean age 65.2 years, age range 48-95; 80 females; 37 black, indigenous, and people of color) were used to estimate microstructural indices of brain health such as axonal density, and axonal orientation. The seven-item purpose in life scale was used. Permutation analysis of linear models was used to examine associations between purpose in life scores and the diffusion metrics in white matter and in the bilateral hippocampus, adjusting for age, sex, education, and race. Results and discussion Greater sense of purpose in life was associated with brain microstructural features consistent with better brain health. Positive associations were found in both white matter and the right hippocampus, where multiple convergent associations were detected. The hippocampus is a brain structure involved in learning and memory that is vulnerable to stress but retains the capacity to grow and adapt through old age. Our findings suggest pathways through which an enhanced sense of purpose in life may contribute to better brain health and promote healthy aging. Since purpose in life is known to decline with age, interventions and policy changes that facilitate a greater sense of purpose may extend and improve the brain health of individuals and thus improve public health.
Collapse
Affiliation(s)
- Ajay Kumar Nair
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, United States
| | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Anna J. Finley
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, United States
| | - Lauren K. Gresham
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, United States
| | - Sarah E. Skinner
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, United States
| | - Andrew L. Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Richard J. Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, United States
| | - Carol D. Ryff
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, United States
| | - Stacey M. Schaefer
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
4
|
Rasgado‐Toledo J, Issa‐Garcia V, Alcalá‐Lozano R, Garza‐Villarreal EA, González‐Escamilla G. Cortical and subcortical microstructure integrity changes after repetitive transcranial magnetic stimulation therapy in cocaine use disorder and relates to clinical outcomes. Addict Biol 2024; 29:e13381. [PMID: 38357782 PMCID: PMC10984435 DOI: 10.1111/adb.13381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/08/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Cocaine use disorder (CUD) is a worldwide public health condition that is suggested to induce pathological changes in macrostructure and microstructure. Repetitive transcranial magnetic stimulation (rTMS) has gained attention as a potential treatment for CUD symptoms. Here, we sought to elucidate whether rTMS induces changes in white matter (WM) microstructure in frontostriatal circuits after 2 weeks of therapy in patients with CUD and to test whether baseline WM microstructure of the same circuits affects clinical improvement. This study consisted of a 2-week, parallel-group, double-blind, randomized controlled clinical trial (acute phase) (sham [n = 23] and active [n = 27]), in which patients received two daily sessions of rTMS on the left dorsolateral prefrontal cortex (lDLPFC) as an add-on treatment. T1-weighted and high angular resolution diffusion-weighted imaging (DWI-HARDI) at baseline and 2 weeks after served to evaluate WM microstructure. After active rTMS, results showed a significant increase in neurite density compared with sham rTMS in WM tracts connecting lDLPFC with left and right ventromedial prefrontal cortex (vmPFC). Similarly, rTMS showed a reduction in orientation dispersion in WM tracts connecting lDLPFC with the left caudate nucleus, left thalamus, and left vmPFC. Results also showed a greater reduction in craving Visual Analogue Scale (VAS) after rTMS when baseline intra-cellular volume fraction (ICVF) was low in WM tracts connecting left caudate nucleus with substantia nigra and left pallidum, as well as left thalamus with substantia nigra and left pallidum. Our results evidence rTMS-induced WM microstructural changes in fronto-striato-thalamic circuits and support its efficacy as a therapeutic tool in treating CUD. Further, individual clinical improvement may rely on the patient's individual structural connectivity integrity.
Collapse
Affiliation(s)
- Jalil Rasgado‐Toledo
- Instituto de NeurobiologíaUniversidad Nacional Autónoma de México campus JuriquillaQuerétaroMexico
| | - Victor Issa‐Garcia
- Instituto de NeurobiologíaUniversidad Nacional Autónoma de México campus JuriquillaQuerétaroMexico
- Escuela de Medicina y Ciencias de la Salud TecSaludTecnológico de MonterreyMonterreyMexico
| | - Ruth Alcalá‐Lozano
- Laboratorio de Neuromodulación, Subdirección de Investigaciones ClínicasInstituto Nacional de Psiquiatría “Ramón de la Fuente Muñíz”Mexico CityMexico
| | | | - Gabriel González‐Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine‐Main Neuroscience Network (rmn)University Medical Center of the Johannes Gutenberg University MainzMainzGermany
| |
Collapse
|
5
|
Lin YK, Cai XR, Chen JZ, Hong HJ, Tu K, Chen YL, Du Q. Non-alcoholic fatty liver disease causally affects the brain cortical structure: a Mendelian randomization study. Front Neurosci 2024; 17:1305624. [PMID: 38260009 PMCID: PMC10800802 DOI: 10.3389/fnins.2023.1305624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Background Reduced brain volume, impaired cognition, and possibly a range of psychoneurological disorders have been reported in patients with non-alcoholic fatty liver disease (NAFLD); however, no underlying cause has been specified. Here, Mendelian randomization (MR) was employed to determine the causative NAFLD effects on cortical structure. Methods We used pooled-level data from FinnGen's published genome-wide association study (GWAS) of NAFLD (1908 cases and 340,591 healthy controls), as well as published GWAS with NAFLD activity score (NAS) and fibrosis stage-associated SNPs as genetic tools, in addition to the Enigma Consortium data from 51,665 patients, were used to assess genetic susceptibility in relation to changes with cortical thickness (TH) and surface area (SA). A main estimate was made by means of inverse variance weighted (IVW), while heterogeneity and pleiotropy were detected using MR-Egger, weighted median, and MR Pleiotropy RESidual Sum and Outlier to perform a two-sample MR analysis. Results At the global level, NAFLD reduced SA (beta = -586.72 mm2, se = 217.73, p = 0.007) and several changes in the cortical structure of the cerebral gyrus were found, with no detectable pleiotropy. Conclusion NAFLD causally affects cortical structures, which supports the presence of an intricate liver-brain axis.
Collapse
Affiliation(s)
- Yu-Kai Lin
- Department of Hepatological Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
| | - Xin-Ran Cai
- Department of Hepatological Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
| | - Jiang-Zhi Chen
- Department of Hepatological Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
| | - Hai-Jie Hong
- Department of Hepatological Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
| | - Kai Tu
- Department of Hepatological Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
| | - Yan-Ling Chen
- Department of Hepatological Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
| | - Qiang Du
- Department of Hepatological Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
| |
Collapse
|
6
|
Kitamura S, Matsuoka K, Takahashi M, Yoshikawa H, Minami A, Ohnishi H, Ishida R, Miyasaka T, Tai Y, Ochi T, Tanaka T, Makinodan M. Association of adverse childhood experiences and cortical neurite density alterations with posttraumatic stress disorder symptoms in autism spectrum disorder. Front Psychiatry 2023; 14:1215429. [PMID: 37743992 PMCID: PMC10515392 DOI: 10.3389/fpsyt.2023.1215429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Background Posttraumatic stress disorder (PTSD) can be a source of significant social and daily distress in autism spectrum disorder (ASD). Compared to typically developed (TD) individuals, people with ASD are at an increased risk of adverse childhood experiences (ACEs), which can result in abnormal neuronal development. However, whether or how ACEs influence abnormal neural development and PTSD symptoms in ASD has not been fully elucidated. Methods Thirty-nine TD individuals and 41 individuals with ASD underwent T1-weighted magnetic resonance imaging and neurite orientation dispersion and density imaging (NODDI), with axonal and dendritic densities assessed in terms of the orientation dispersion index and neurite density index (NDI), respectively. Voxel-based analyses were performed to explore the brain regions associated with PTSD symptoms, and the relationships between the severity of ACEs and PTSD symptoms and NODDI parameters in the extracted brain regions were examined. Results There was a significant positive association between PTSD symptom severity and NDI in the bilateral supplementary motor area; right superior frontal, left supramarginal, and right superior temporal gyrus; and right precuneus in the ASD group, but not in the TD group. ACE severity was significantly associated with NDI in the right superior frontal and left supramarginal gyrus and right precuneus in the ASD group. Moreover, NDI in the right precuneus mainly predicted the severity of PTSD symptoms in the ASD group, but not the TD group. Conclusion These results suggest that ACE-associated higher neurite density is of clinical importance in the pathophysiology of PTSD symptoms in ASD.
Collapse
Affiliation(s)
- Soichiro Kitamura
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
- Department of Functional Brain Imaging Research, National Institute Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kiwamu Matsuoka
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
- Department of Functional Brain Imaging Research, National Institute Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masato Takahashi
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Hiroaki Yoshikawa
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Akihiro Minami
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Hiroki Ohnishi
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Rio Ishida
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Toshiteru Miyasaka
- Department of Radiology and Nuclear Medicine, Nara Medical University, Kashihara, Japan
| | - Yumi Tai
- Department of Radiology and Nuclear Medicine, Nara Medical University, Kashihara, Japan
| | - Tomoko Ochi
- Department of Radiology and Nuclear Medicine, Nara Medical University, Kashihara, Japan
| | - Toshihiro Tanaka
- Department of Radiology and Nuclear Medicine, Nara Medical University, Kashihara, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| |
Collapse
|
7
|
DiPiero M, Rodrigues PG, Gromala A, Dean DC. Applications of advanced diffusion MRI in early brain development: a comprehensive review. Brain Struct Funct 2023; 228:367-392. [PMID: 36585970 PMCID: PMC9974794 DOI: 10.1007/s00429-022-02605-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Brain development follows a protracted developmental timeline with foundational processes of neurodevelopment occurring from the third trimester of gestation into the first decade of life. Defining structural maturational patterns of early brain development is a critical step in detecting divergent developmental trajectories associated with neurodevelopmental and psychiatric disorders that arise later in life. While considerable advancements have already been made in diffusion magnetic resonance imaging (dMRI) for pediatric research over the past three decades, the field of neurodevelopment is still in its infancy with remarkable scientific and clinical potential. This comprehensive review evaluates the application, findings, and limitations of advanced dMRI methods beyond diffusion tensor imaging, including diffusion kurtosis imaging (DKI), constrained spherical deconvolution (CSD), neurite orientation dispersion and density imaging (NODDI) and composite hindered and restricted model of diffusion (CHARMED) to quantify the rapid and dynamic changes supporting the underlying microstructural architectural foundations of the brain in early life.
Collapse
Affiliation(s)
- Marissa DiPiero
- Department of Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Alyssa Gromala
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
8
|
Cabeen RP, Toga AW, Allman JM. Frontoinsular cortical microstructure is linked to life satisfaction in young adulthood. Brain Imaging Behav 2021; 15:2775-2789. [PMID: 33825124 DOI: 10.1007/s11682-021-00467-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Life satisfaction is a component of subjective well-being that reflects a global judgement of the quality of life according to an individual's own needs and expectations. As a psychological construct, it has attracted attention due to its relationship to mental health, resilience to stress, and other factors. Neuroimaging studies have identified neurobiological correlates of life satisfaction; however, they are limited to functional connectivity and gray matter morphometry. We explored features of gray matter microstructure obtained through compartmental modeling of multi-shell diffusion MRI data, and we examined cortical microstructure in frontoinsular cortex in a cohort of 807 typical young adults scanned as part of the Human Connectome Project. Our experiments identified the orientation dispersion index (ODI), and analogously fractional anisotropy (FA), of frontoinsular cortex as a robust set of anatomically-specific lateralized diffusion MRI microstructure features that are linked to life satisfaction, independent of other demographic, socioeconomic, and behavioral factors. We further validated our findings in a secondary test-retest dataset and found high reliability of our imaging metrics and reproducibility of outcomes. In our analysis of twin and non-twin siblings, we found basic microstructure in frontoinsular cortex to be strongly genetically determined. We also found a more moderate but still very significant genetic role in determining microstructure as it relates to life satisfaction in frontoinsular cortex. Our findings suggest a potential linkage between well-being and microscopic features of frontoinsular cortex, which may reflect cellular morphology and architecture and may more broadly implicate the integrity of the homeostatic processing performed by frontoinsular cortex as an important component of an individual's judgements of life satisfaction.
Collapse
Affiliation(s)
- Ryan P Cabeen
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA.
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - John M Allman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
9
|
Hanlon FM, Dodd AB, Ling JM, Shaff NA, Stephenson DD, Bustillo JR, Stromberg SF, Lin DS, Ryman SG, Mayer AR. The clinical relevance of gray matter atrophy and microstructural brain changes across the psychosis continuum. Schizophr Res 2021; 229:12-21. [PMID: 33607607 PMCID: PMC8137524 DOI: 10.1016/j.schres.2021.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/30/2020] [Accepted: 01/23/2021] [Indexed: 12/21/2022]
Abstract
Patients with psychotic spectrum disorders (PSD) exhibit similar patterns of atrophy and microstructural changes that may be associated with common symptomatology (e.g., symptom burden and/or cognitive impairment). Gray matter concentration values (proxy for atrophy), fractional anisotropy (FA), mean diffusivity (MD), intracellular neurite density (Vic) and isotropic diffusion volume (Viso) measures were therefore compared in 150 PSD (schizophrenia, schizoaffective disorder, and bipolar disorder Type I) and 63 healthy controls (HC). Additional analyses evaluated whether regions showing atrophy and/or microstructure abnormalities were better explained by DSM diagnoses, symptom burden or cognitive dysfunction. PSD exhibited increased atrophy within bilateral medial temporal lobes and subcortical structures. Gray matter along the left lateral sulcus showed evidence of increased atrophy and MD. Increased MD was also observed in homotopic fronto-temporal regions, suggesting it may serve as a precursor to atrophic changes. Global cognitive dysfunction, rather than DSM diagnoses or psychotic symptom burden, was the best predictor of increased gray matter MD. Regions of decreased FA (i.e., left frontal gray and white matter) and Vic (i.e., frontal and temporal regions and along central sulcus) were also observed for PSD, but were neither spatially concurrent with atrophic regions nor associated with clinical symptoms. Evidence of expanding microstructural spaces in gray matter demonstrated the greatest spatial overlap with current and potentially future regions of atrophy, and was associated with cognitive deficits. These results suggest that this particular structural abnormality could potentially underlie global cognitive impairment that spans traditional diagnostic categories.
Collapse
Affiliation(s)
- Faith M Hanlon
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Josef M Ling
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Nicholas A Shaff
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - David D Stephenson
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Juan R Bustillo
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Shannon F Stromberg
- Psychiatry and Behavioral Health Clinical Program, Presbyterian Healthcare System, Albuquerque, NM 87112, USA
| | - Denise S Lin
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Sephira G Ryman
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA; Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
10
|
McKenna F, Miles L, Donaldson J, Castellanos FX, Lazar M. Diffusion kurtosis imaging of gray matter in young adults with autism spectrum disorder. Sci Rep 2020; 10:21465. [PMID: 33293640 PMCID: PMC7722927 DOI: 10.1038/s41598-020-78486-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/29/2020] [Indexed: 01/20/2023] Open
Abstract
Prior ex vivo histological postmortem studies of autism spectrum disorder (ASD) have shown gray matter microstructural abnormalities, however, in vivo examination of gray matter microstructure in ASD has remained scarce due to the relative lack of non-invasive methods to assess it. The aim of this work was to evaluate the feasibility of employing diffusional kurtosis imaging (DKI) to describe gray matter abnormalities in ASD in vivo. DKI data were examined for 16 male participants with a diagnosis of ASD and IQ>80 and 17 age- and IQ-matched male typically developing (TD) young adults 18-25 years old. Mean (MK), axial (AK), radial (RK) kurtosis and mean diffusivity (MD) metrics were calculated for lobar and sub-lobar regions of interest. Significantly decreased MK, RK, and MD were found in ASD compared to TD participants in the frontal and temporal lobes and several sub-lobar regions previously associated with ASD pathology. In ASD participants, decreased kurtosis in gray matter ROIs correlated with increased repetitive and restricted behaviors and poor social interaction symptoms. Decreased kurtosis in ASD may reflect a pathology associated with a less restrictive microstructural environment such as decreased neuronal density and size, atypically sized cortical columns, or limited dendritic arborizations.
Collapse
Affiliation(s)
- Faye McKenna
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, USA.
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA.
| | - Laura Miles
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, USA
| | - Jeffrey Donaldson
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, USA
| | - F Xavier Castellanos
- Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Mariana Lazar
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
11
|
Stoye DQ, Blesa M, Sullivan G, Galdi P, Lamb GJ, Black GS, Quigley AJ, Thrippleton MJ, Bastin ME, Reynolds RM, Boardman JP. Maternal cortisol is associated with neonatal amygdala microstructure and connectivity in a sexually dimorphic manner. eLife 2020; 9:60729. [PMID: 33228850 PMCID: PMC7685701 DOI: 10.7554/elife.60729] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022] Open
Abstract
The mechanisms linking maternal stress in pregnancy with infant neurodevelopment in a sexually dimorphic manner are poorly understood. We tested the hypothesis that maternal hypothalamic-pituitary-adrenal axis activity, measured by hair cortisol concentration (HCC), is associated with microstructure, structural connectivity, and volume of the infant amygdala. In 78 mother-infant dyads, maternal hair was sampled postnatally, and infants underwent magnetic resonance imaging at term-equivalent age. We found a relationship between maternal HCC and amygdala development that differed according to infant sex. Higher HCC was associated with higher left amygdala fractional anisotropy (β = 0.677, p=0.010), lower left amygdala orientation dispersion index (β = −0.597, p=0.034), and higher fractional anisotropy in connections between the right amygdala and putamen (β = 0.475, p=0.007) in girls compared to boys. Furthermore, altered amygdala microstructure was only observed in boys, with connectivity changes restricted to girls. Maternal cortisol during pregnancy is related to newborn amygdala architecture and connectivity in a sexually dimorphic manner. Given the fundamental role of the amygdala in the emergence of emotion regulation, these findings offer new insights into mechanisms linking maternal health with neuropsychiatric outcomes of children. Stress during pregnancy, for example because of mental or physical disorders, can have long-term effects on child development. Epidemiological studies have shown that individuals exposed to stress in the womb are at higher risk of developmental and mood conditions, such as ADHD and depression. This effect is different between the sexes, and the biological mechanisms that underpin these observations are poorly understood. One possibility is that a baby’s developing amygdala, the part of the brain that processes emotions, is affected by a signal known as cortisol. This hormone is best known for its role in coordinating the stress response, but it also directs the growth of a fetus. Tracking fetal amygdala changes as well as cortisol levels in the pregnant individual could explain how stress during pregnancy affects development. To investigate, Stoye et al. recruited nearly 80 volunteers and their newborn children. MRI scans were used to examine the structure of the amygdala, and how it is connected to other parts of the brain. In parallel, the amount of cortisol was measured in hair samples collected from the volunteers around the time of birth, which reflects stress levels during the final three months of pregnancy. Linking the brain imaging results to the volunteers’ cortisol levels showed that being exposed to higher cortisol levels in the womb affected babies in different ways based on their sex: boys showed alterations in the fine structure of their amygdala, while girls displayed changes in the way that brain region connected to other neural networks. The work by Stoye et al. potentially reveals a biological mechanism by which early exposure to stress could affect brain development differently between the sexes, potentially informing real-world interventions.
Collapse
Affiliation(s)
- David Q Stoye
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Manuel Blesa
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Gemma Sullivan
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Paola Galdi
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Gillian J Lamb
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Gill S Black
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan J Quigley
- Department of Radiology, Royal Hospital for Sick Children, Edinburgh, United Kingdom
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca M Reynolds
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - James P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|