1
|
Hiramoto T, Sumiyoshi A, Kato R, Yamauchi T, Takano T, Kang G, Esparza M, Matsumura B, Stevens LJ, Hiroi YJ, Tanifuji T, Ryoke R, Nonaka H, Machida A, Nomoto K, Mogi K, Kikusui T, Kawashima R, Hiroi N. Highly demarcated structural alterations in the brain and impaired social incentive learning in Tbx1 heterozygous mice. Mol Psychiatry 2025; 30:1876-1886. [PMID: 39463450 PMCID: PMC12014486 DOI: 10.1038/s41380-024-02797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Copy number variants (CNVs) are robustly associated with psychiatric disorders and changes in brain structures. However, because CNVs contain many genes, the precise gene-phenotype relationship remains unclear. Although various volumetric alterations in the brains of 22q11.2 CNV carriers have been identified in humans and mouse models, it is unknown how each gene encoded in the 22q11.2 region contributes to structural alterations, associated mental illnesses, and their dimensions. Our previous studies identified Tbx1, a T-box family transcription factor encoded in the 22q11.2 CNV, as a driver gene for social interaction and communication, spatial and working memory, and cognitive flexibility. However, it remains unclear how TBX1 impacts the volumes of various brain regions and their functionally linked behavioral dimensions. In this study, we used volumetric magnetic resonance imaging analysis to comprehensively evaluate brain region volumes and behavioral alterations relevant to affected structures in congenic Tbx1 heterozygous mice. Our data showed that the volumes of the anterior and posterior portions of the amygdaloid complex and its surrounding cortical regions were most robustly reduced in Tbx1 heterozygous mice. In an amygdala-dependent task, Tbx1 heterozygous mice were impaired in their ability to learn the incentive value of a social partner. The volumes of the primary and secondary auditory cortexes were increased, and acoustic, but not non-acoustic, sensorimotor gating was impaired in Tbx1 heterozygous mice. Our findings identify the brain's regional volume alterations and their relevant behavioral dimensions associated with Tbx1 heterozygosity.
Collapse
Affiliation(s)
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Risa Kato
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | | | - Takeshi Takano
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | - Gina Kang
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | - Marisa Esparza
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | | | | | - Yukiko J Hiroi
- Department of Pharmacology, UT Health, San Antonio, TX, USA
| | | | - Rie Ryoke
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hiroi Nonaka
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Akihiro Machida
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kensaku Nomoto
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Kazutaka Mogi
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Takefumi Kikusui
- Laboratory of Human-Animal Interaction and Reciprocity, Azabu University, Sagamihara, Kanagawa, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Noboru Hiroi
- Department of Pharmacology, UT Health, San Antonio, TX, USA.
- Department of Cellular and Integrative Physiology, UT Health, San Antonio, TX, USA.
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA.
| |
Collapse
|
2
|
Racine C, Garde A, Martz O, Safraou H, Eluard V, Rousseau T, Marle N, Harizay FT, Martin L, Maraval J, Bruel A, Philippe C, Thauvin‐Robinet C, Faivre L. First Prenatal Case of Genotypically and Phenotypically Overlapping Double Molecular Diagnosis of Van den Ende-Gupta and 22q11.2 Deletion Syndromes. Mol Genet Genomic Med 2025; 13:e70096. [PMID: 40237608 PMCID: PMC12001422 DOI: 10.1002/mgg3.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/01/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Multiple molecular diagnoses (MMD) involve distinct or overlapping phenotypes. They are not so rare in the field of congenital anomalies, given an overall 3.5%-8% rate. Mainly, MMD imply distinct genotypes. Exceptionally, genotypes are linked, involving a causal CNV by itself, facing a SNV for a recessive disorder resulting in a dual diagnosis. METHODS An unrelated couple was referred at 21 + 3 weeks of gestation for talipes equinovarus, cerebellar hypoplasia, clenched fists, elevated hemidiaphragm, and micrognathia. Chromosomal microarray and exome sequencing analyses were performed. RESULTS Both identified a pathogenic de novo 22q11.21 deletion (22q11.2del). Fetal autopsy revealed additional features (postaxial polydactyly, facial features, and abnormal lung lobulation), atypical for 22q11.2del syndrome. At the clinician's request, exome sequencing reanalysis identified a paternally inherited SCARF2 variant, in trans to the 22q11.2del causing autosomal recessive Van den Ende-Gupta syndrome. This dual diagnosis explains the entire fetus phenotype. DISCUSSION This is a novel case of dual diagnosis, first prenatal and second case of this ultrarare association. It reflects the crucial role of precise phenotypic description, combined with the importance of considering dual diagnosis in case of atypical clinical presentation. Finally, prenatal phenotypes remain a challenge given the paucity of available known prenatal data for most rare diseases. TRIAL REGISTRATION ClinicalTrial.gov ID: NCT05182242.
Collapse
Affiliation(s)
- Caroline Racine
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Dijon BourgogneFHU TRANSLAD, Hôpital d'EnfantsDijonFrance
- Inserm – Université Bourgogne – UMR1231 GADDijonFrance
| | - Aurore Garde
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Dijon BourgogneFHU TRANSLAD, Hôpital d'EnfantsDijonFrance
| | - Olivia Martz
- Centre Pluridisciplinaire de Diagnostic PrénatalCHU Dijon BourgogneDijonFrance
| | - Hana Safraou
- Inserm – Université Bourgogne – UMR1231 GADDijonFrance
- Laboratoire de Génomique Médicale – Centre NEOMICSCHU Dijon BourgogneDijonFrance
| | - Vinciane Eluard
- Centre Pluridisciplinaire de Diagnostic PrénatalCHU Dijon BourgogneDijonFrance
| | - Thierry Rousseau
- Centre Pluridisciplinaire de Diagnostic PrénatalCHU Dijon BourgogneDijonFrance
| | - Nathalie Marle
- Laboratoire de Génétique Chromosomique et MoléculaireCHU Dijon BourgogneDijonFrance
| | | | | | - Julien Maraval
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Dijon BourgogneFHU TRANSLAD, Hôpital d'EnfantsDijonFrance
| | - Ange‐Line Bruel
- Inserm – Université Bourgogne – UMR1231 GADDijonFrance
- Laboratoire de Génomique Médicale – Centre NEOMICSCHU Dijon BourgogneDijonFrance
| | - Christophe Philippe
- Inserm – Université Bourgogne – UMR1231 GADDijonFrance
- Laboratoire de Génomique Médicale – Centre NEOMICSCHU Dijon BourgogneDijonFrance
| | - Christel Thauvin‐Robinet
- Inserm – Université Bourgogne – UMR1231 GADDijonFrance
- Laboratoire de Génomique Médicale – Centre NEOMICSCHU Dijon BourgogneDijonFrance
| | - Laurence Faivre
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, CHU Dijon BourgogneFHU TRANSLAD, Hôpital d'EnfantsDijonFrance
- Inserm – Université Bourgogne – UMR1231 GADDijonFrance
| |
Collapse
|
3
|
Eom TY, Schmitt JE, Li Y, Davenport CM, Steinberg J, Bonnan A, Alam S, Ryu YS, Paul L, Hansen BS, Khairy K, Pelletier S, Pruett-Miller SM, Roalf DR, Gur RE, Emanuel BS, McDonald-McGinn DM, Smith JN, Li C, Christie JM, Northcott PA, Zakharenko SS. Tbx1 haploinsufficiency leads to local skull deformity, paraflocculus and flocculus dysplasia, and motor-learning deficit in 22q11.2 deletion syndrome. Nat Commun 2024; 15:10510. [PMID: 39638997 PMCID: PMC11621701 DOI: 10.1038/s41467-024-54837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Neurodevelopmental disorders are thought to arise from intrinsic brain abnormalities. Alternatively, they may arise from disrupted crosstalk among tissues. Here we show the local reduction of two vestibulo-cerebellar lobules, the paraflocculus and flocculus, in mouse models and humans with 22q11.2 deletion syndrome (22q11DS). In mice, this paraflocculus/flocculus dysplasia is associated with haploinsufficiency of the Tbx1 gene. Tbx1 haploinsufficiency also leads to impaired cerebellar synaptic plasticity and motor learning. However, neural cell compositions and neurogenesis are not altered in the dysplastic paraflocculus/flocculus. Interestingly, 22q11DS and Tbx1+/- mice have malformations of the subarcuate fossa, a part of the petrous temporal bone, which encapsulates the paraflocculus/flocculus. Single-nuclei RNA sequencing reveals that Tbx1 haploinsufficiency leads to precocious differentiation of chondrocytes to osteoblasts in the petrous temporal bone autonomous to paraflocculus/flocculus cell populations. These findings suggest a previously unrecognized pathogenic structure/function relation in 22q11DS in which local skeletal deformity and cerebellar dysplasia result in behavioral deficiencies.
Collapse
Affiliation(s)
- Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - J Eric Schmitt
- Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yiran Li
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Christopher M Davenport
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jeffrey Steinberg
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Audrey Bonnan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Shahinur Alam
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Young Sang Ryu
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Leena Paul
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Baranda S Hansen
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Khaled Khairy
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stephane Pelletier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David R Roalf
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beverly S Emanuel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Donna M McDonald-McGinn
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Molecular Medicine, Division of Human Biology and Medical Genetics, Sapienza University, Rome, 00185, Italy
| | - Jesse N Smith
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cai Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz School of Medicine, Aurora, CO, 80045, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
4
|
Sefik E, Duan K, Li Y, Sholar B, Evans L, Pincus J, Ammar Z, Murphy MM, Klaiman C, Saulnier CA, Pulver SL, Goldman-Yassen AE, Guo Y, Walker EF, Li L, Mulle JG, Shultz S. Structural deviations of the posterior fossa and the cerebellum and their cognitive links in a neurodevelopmental deletion syndrome. Mol Psychiatry 2024; 29:3395-3411. [PMID: 38744992 PMCID: PMC11541222 DOI: 10.1038/s41380-024-02584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
High-impact genetic variants associated with neurodevelopmental disorders provide biologically-defined entry points for mechanistic investigation. The 3q29 deletion (3q29Del) is one such variant, conferring a 40-100-fold increased risk for schizophrenia, as well as high risk for autism and intellectual disability. However, the mechanisms leading to neurodevelopmental disability remain largely unknown. Here, we report the first in vivo quantitative neuroimaging study in individuals with 3q29Del (N = 24) and neurotypical controls (N = 1608) using structural MRI. Given prior radiology reports of posterior fossa abnormalities in 3q29Del, we focused our investigation on the cerebellum and its tissue-types and lobules. Additionally, we compared the prevalence of cystic/cyst-like malformations of the posterior fossa between 3q29Del and controls and examined the association between neuroanatomical findings and quantitative traits to probe gene-brain-behavior relationships. 3q29Del participants had smaller cerebellar cortex volumes than controls, before and after correction for intracranial volume (ICV). An anterior-posterior gradient emerged in finer grained lobule-based and voxel-wise analyses. 3q29Del participants also had larger cerebellar white matter volumes than controls following ICV-correction and displayed elevated rates of posterior fossa arachnoid cysts and mega cisterna magna findings independent of cerebellar volume. Cerebellar white matter and subregional gray matter volumes were associated with visual-perception and visual-motor integration skills as well as IQ, while cystic/cyst-like malformations yielded no behavioral link. In summary, we find that abnormal development of cerebellar structures may represent neuroimaging-based biomarkers of cognitive and sensorimotor function in 3q29Del, adding to the growing evidence identifying cerebellar pathology as an intersection point between syndromic and idiopathic forms of neurodevelopmental disabilities.
Collapse
Affiliation(s)
- Esra Sefik
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Kuaikuai Duan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Yiheng Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Brittney Sholar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Lindsey Evans
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Jordan Pincus
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Zeena Ammar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Melissa M Murphy
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Cheryl Klaiman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Celine A Saulnier
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Neurodevelopmental Assessment & Consulting Services, Atlanta, GA, USA
| | - Stormi L Pulver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Adam E Goldman-Yassen
- Department of Radiology, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Ying Guo
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Longchuan Li
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer G Mulle
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
| | - Sarah Shultz
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
5
|
Leslie AC, Ward MP, Dobyns WB. Undifferentiated psychosis or schizophrenia associated with vermis-predominant cerebellar hypoplasia. Am J Med Genet A 2024; 194:e63416. [PMID: 37933701 DOI: 10.1002/ajmg.a.63416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 11/08/2023]
Abstract
Schizophrenia (SCZ) is a well-studied neuropsychiatric condition that has been shown to have a high degree of genetic heritability. Still, little data on the specific genetic risk variants associated with the disease exists. Classification of the SCZ phenotype into SCZ-related endophenotypes is a promising methodology to parse out and elucidate the specific genetic risk variants for each. Here, we present a series of 17 previously reported individuals and a new proband with similar SCZ-related neuropsychiatric characteristics and shared brain imaging findings. Unsurprisingly, these individuals shared classic psychiatric features of SCZ. Interestingly, we also identified shared neuropsychiatric features in this series of individuals that had not been highlighted previously. A consistently decreased IQ, memory impairment, sleep and speech disturbances, and attention deficits were commonly reported findings. The brain imaging findings among these individuals also consistently showed posterior vermis predominant cerebellar hypoplasia (CBLH-V). Most individuals' diagnoses were initially described as Dandy-Walker malformation; however, our independent review of imaging suggests a more consistent pattern of posterior vermis predominant cerebellar hypoplasia rather than true Dandy-Walker malformation. While the specific genetic risk variants for this endophenotype are yet to be described, the aim of this paper is to present the shared neuropsychiatric features and consistent, symmetrical brain image findings which suggest that this subset of individuals comprises an endophenotype of SCZ with a high genetic solve rate.
Collapse
Affiliation(s)
- Alison C Leslie
- University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Mitchell P Ward
- University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - William B Dobyns
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Ge R, Ching CRK, Bassett AS, Kushan L, Antshel KM, van Amelsvoort T, Bakker G, Butcher NJ, Campbell LE, Chow EWC, Craig M, Crossley NA, Cunningham A, Daly E, Doherty JL, Durdle CA, Emanuel BS, Fiksinski A, Forsyth JK, Fremont W, Goodrich‐Hunsaker NJ, Gudbrandsen M, Gur RE, Jalbrzikowski M, Kates WR, Lin A, Linden DEJ, McCabe KL, McDonald‐McGinn D, Moss H, Murphy DG, Murphy KC, Owen MJ, Villalon‐Reina JE, Repetto GM, Roalf DR, Ruparel K, Schmitt JE, Schuite‐Koops S, Angkustsiri K, Sun D, Vajdi A, van den Bree M, Vorstman J, Thompson PM, Vila‐Rodriguez F, Bearden CE. Source-based morphometry reveals structural brain pattern abnormalities in 22q11.2 deletion syndrome. Hum Brain Mapp 2024; 45:e26553. [PMID: 38224541 PMCID: PMC10785196 DOI: 10.1002/hbm.26553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 01/17/2024] Open
Abstract
22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1-weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source-based morphometry (SBM) pipeline (SS-Detect) to generate structural brain patterns (SBPs) that capture co-varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV-SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel-based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism.
Collapse
Affiliation(s)
- Ruiyang Ge
- Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Anne S. Bassett
- Clinical Genetics Research ProgramCentre for Addiction and Mental HealthTorontoOntarioCanada
- The Dalglish Family 22q Clinic, Department of Psychiatry and Division of Cardiology, Department of Medicine, and Toronto General Hospital Research InstituteUniversity Health NetworkTorontoOntarioCanada
- Campbell Family Mental Health Research InstituteCentre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Leila Kushan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human BehaviorUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | | | | | - Geor Bakker
- Department of Psychiatry and NeuropsychologyMaastricht UniversityMaastrichtNetherlands
| | - Nancy J. Butcher
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
- Child Health Evaluative SciencesThe Hospital for Sick ChildrenTorontoOntarioCanada
| | | | - Eva W. C. Chow
- Clinical Genetics Research ProgramCentre for Addiction and Mental HealthTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Michael Craig
- Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, King's College LondonInstitute of Psychiatry, Psychology and NeuroscienceLondonUK
- National Autism UnitBethlem Royal HospitalBeckenhamUK
| | - Nicolas A. Crossley
- Department of PsychiatryPontificia Universidad Catolica de ChileSantiagoChile
| | - Adam Cunningham
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | - Eileen Daly
- Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, King's College LondonInstitute of Psychiatry, Psychology and NeuroscienceLondonUK
| | - Joanne L. Doherty
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffUK
| | - Courtney A. Durdle
- Department of PediatricsUC Davis MIND InstituteDavisCaliforniaUSA
- Department of Psychological and Brain SciencesUC Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Beverly S. Emanuel
- Division of Human GeneticsThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pediatrics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ania Fiksinski
- Department of Psychology and Department of Pediatrics, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtNetherlands
- Department of Psychiatry and Neuropsychology, Division of Mental Health, MHeNSMaastricht UniversityMaastrichtNetherlands
| | - Jennifer K. Forsyth
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human BehaviorUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Department of PsychologyUniversity of WashingtonSeattleWashingtonUSA
| | - Wanda Fremont
- Department of Psychiatry and Behavioral Sciences State University of New YorkUpstate Medical University SyracuseNew YorkUSA
| | - Naomi J. Goodrich‐Hunsaker
- Department of PediatricsUC Davis MIND InstituteDavisCaliforniaUSA
- Department of NeurologyUniversity of UtahSalt Lake CityUtahUSA
| | - Maria Gudbrandsen
- Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, King's College LondonInstitute of Psychiatry, Psychology and NeuroscienceLondonUK
- Centre for Research in Psychological Wellbeing (CREW), School of PsychologyUniversity of RoehamptonLondonUK
| | - Raquel E. Gur
- Department of Psychiatry, Perelman School of MedicineUniversity of Pennsylvania and Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Maria Jalbrzikowski
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
- Department of Psychiatry and Behavioral SciencesBoston Children's HospitalBostonMassachusettsUSA
| | - Wendy R. Kates
- Department of Psychiatry and Behavioral Sciences State University of New YorkUpstate Medical University SyracuseNew YorkUSA
| | - Amy Lin
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human BehaviorUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Graduate Interdepartmental Program in NeuroscienceUCLA School of MedicineLos AngelesCaliforniaUSA
| | - David E. J. Linden
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | - Kathryn L. McCabe
- School of PsychologyUniversity of NewcastleCallaghanAustralia
- Department of PediatricsUC Davis MIND InstituteDavisCaliforniaUSA
| | - Donna McDonald‐McGinn
- Department of Pediatrics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- 22q and You Center, Clinical Genetics Center, and Division of Human GeneticsThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Human Biology and Medical GeneticsSapienza UniversityRomeItaly
| | - Hayley Moss
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | - Declan G. Murphy
- Sackler Institute for Translational Neurodevelopment and Department of Forensic and Neurodevelopmental Sciences, King's College LondonInstitute of Psychiatry, Psychology and NeuroscienceLondonUK
- Behavioural Genetics Clinic, Adult Autism Service, Behavioural and Developmental Psychiatry Clinical Academic GroupSouth London and Maudsley Foundation NHS TrustLondonUK
| | - Kieran C. Murphy
- Department of PsychiatryRoyal College of Surgeons in IrelandDublinIreland
| | - Michael J. Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | | | - Gabriela M. Repetto
- Centro de Genetica y Genomica, Facultad de MedicinaClinica Alemana Universidad del DesarrolloSantiagoChile
| | - David R. Roalf
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kosha Ruparel
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - J. Eric Schmitt
- Department of Radiology and PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sanne Schuite‐Koops
- Department of PsychiatryUniversity Medical Center Groningen, Rijksuniversiteit GroningenGroningenNetherlands
| | | | - Daqiang Sun
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human BehaviorUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Ariana Vajdi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human BehaviorUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Kaiser Permanente Bernard J. Tyson School of Medicine PasadenaCaliforniaUSA
| | - Marianne van den Bree
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical NeurosciencesCardiff UniversityCardiffUK
| | - Jacob Vorstman
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
- Program in Genetics and Genome Biology, Research Institute, and Department of PsychiatryThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Paul M. Thompson
- Departments of Neurology, Psychiatry, Radiology, Engineering, Pediatrics and OphthalmologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Fidel Vila‐Rodriguez
- Department of PsychiatryUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- School of Biomedical Engineering University of British Columbia VancouverBritish ColumbiaCanada
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human BehaviorUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
7
|
Piervincenzi C, Fanella M, Petsas N, Frascarelli M, Morano A, Accinni T, Di Fabio F, Di Bonaventura C, Berardelli A, Pantano P. Structural Cerebellar Abnormalities and Parkinsonism in Patients with 22q11.2 Deletion Syndrome. Brain Sci 2022; 12:1533. [PMID: 36421857 PMCID: PMC9688398 DOI: 10.3390/brainsci12111533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 03/23/2024] Open
Abstract
Background: The phenotypic expression of 22q11.2 deletion syndrome (22q11.2DS) is variable and may include cognitive, psychiatric, and neurological manifestations, e.g., parkinsonism. We investigated brain structural alterations in patients with 22q11.2DS with and without parkinsonism (Park+ and Park-) in comparison with healthy controls (HCs). Methods: Voxel-based morphometry was performed on 3D T1-weighted MR images to explore gray matter volume (GMV) differences between 29 patients (15 Park+, 14 Park-), selected from a consecutive series of 56 adults diagnosed with 22q11.2DS, and 24 HCs. One-way ANOVA and multiple linear regression analyses were performed to explore group differences in GMV and correlations between clinical scores (MDS-UPDR-III and MoCA scores) and structural alterations. Results: Significant between-group differences in GMV were found in the cerebellum, specifically in bilateral lobes VIII and left Crus II, as well as in the left superior occipital gyrus. Although both Park+ and Park- patients showed GMV decrements in these regions with respect to HCs, GMV loss in the right lobe VIII and left Crus II was greater in Park+ than in Park- patients. GMV loss did not correlate with clinical scores. Conclusions: Patients with 22q11.2DS and parkinsonism manifest specific cerebellar volume alterations, supporting the hypothesis of neurodegenerative processes in specific cerebellar regions as a putative pathophysiological mechanism responsible for parkinsonism in patients with 22q11.2DS.
Collapse
Affiliation(s)
- Claudia Piervincenzi
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Martina Fanella
- Department of Neurology, Fabrizio Spaziani Hospital, 03100 Frosinone, Italy
| | | | - Marianna Frascarelli
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandra Morano
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Tommaso Accinni
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Fabio Di Fabio
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Carlo Di Bonaventura
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCCS NEUROMED, 86077 Pozzilli, Italy
| | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCCS NEUROMED, 86077 Pozzilli, Italy
| |
Collapse
|