1
|
Tian J, Xie Y, Ye S, Hu Y, Feng J, Li Y, Lou Z, Ruan L, Wang Z. S-ketamine ameliorates post-stroke depression in mice via attenuation of neuroinflammation, synaptic restoration, and BDNF pathway activation. Biochem Biophys Res Commun 2025; 769:151965. [PMID: 40367907 DOI: 10.1016/j.bbrc.2025.151965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/17/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
The available therapeutic options for post-stroke depression patients are limited. Although SSRIs are the most commonly prescribed antidepressants, their slow onset of action and the higher risk of adverse effects or contraindications have led to an urgent need to develop fast-acting and highly specific antidepressants tailored to the needs of PSD patients. Therefore, ketamine has drawn attention. While ketamine has been shown to exert rapid antidepressant effects in numerous studies, whether it can ameliorate PSD remains unclear, and the molecular and cellular mechanisms underlying its therapeutic action in PSD are largely elusive. In this study, we used a PSD preclinical model induced by photothrombosis and chronic restraint stress to investigate the effects of S-ketamine. The present study demonstrates that a single acute intraperitoneal injection of 10 mg/kg S-ketamine on the first day after PSD significantly alleviates depressive-like behaviours in PSD mice. In addition, this improvement was maintained for at least five consecutive days. Mechanistically, S-ketamine reduced pro-inflammatory cytokines in the medial prefrontal cortex (mPFC), mitigated synaptic damage (evidenced by increased dendritic spine density, SYP, and PSD-95 expression). Furthermore, S-ketamine treatment upregulated the expression of brain-derived neurotrophic factor (BDNF), tropomyosin related kinase B (TrkB), phosphorylated serine/threonine-specific protein kinase B (p-Akt), phosphorylated extracellular signal-regulated kinase (p-Erk), phosphorylated calcium/calmodulin-dependent protein kinase II (p-CaMKII), and phosphorylated cAMP response element binding protein (p-CREB). Overall, S-ketamine shows promise for PSD treatment through its anti-inflammatory, synaptic enhancing, and BDNF pathway modulating effects. This research enhances our understanding of the pathological mechanisms underlying PSD and provides new therapeutic insights for its treatment.
Collapse
Affiliation(s)
- Jiaxin Tian
- Department of Psychosomatic Medicine, the First Affiliated Hospital of Ningbo University, Zhejiang Regional Medical Center, Ningbo, Zhejiang, 315010, PR China; School of Pharmacy, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, PR China
| | - Yanhong Xie
- School of Pharmacy, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, PR China
| | - Sen Ye
- School of Pharmacy, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, PR China
| | - Yongfeng Hu
- School of Pharmacy, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, PR China
| | - Jiaxin Feng
- School of Pharmacy, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, PR China
| | - Yi Li
- School of Pharmacy, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, PR China
| | - Zhongze Lou
- Department of Psychosomatic Medicine, the First Affiliated Hospital of Ningbo University, Zhejiang Regional Medical Center, Ningbo, Zhejiang, 315010, PR China
| | - Liemin Ruan
- Department of Psychosomatic Medicine, the First Affiliated Hospital of Ningbo University, Zhejiang Regional Medical Center, Ningbo, Zhejiang, 315010, PR China.
| | - Zhengchun Wang
- School of Pharmacy, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, PR China.
| |
Collapse
|
2
|
Wu X, Wu Y, Tang F, Wang Y, Li C, Wu S, Wang G, Zhang J. Foxq1 activates CB2R with oleamide to alleviate POCD. Brain Pathol 2025; 35:e13289. [PMID: 39046224 PMCID: PMC11669408 DOI: 10.1111/bpa.13289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a major concern, particularly among older adults. This study used social isolation (ISO) and multiomics analyses in aged mice to investigate potential mechanisms underlying POCD development. Aged mice were divided into two groups: ISO and paired housing (PH). Oleamide and the cannabinoid receptor type 2 (CB2R) antagonist AM630 were administered intraperitoneally, while Foxq1 adeno-associated viral (AAV) vector was injected directly into the hippocampus. Intramedullary tibial surgeries were subsequently performed to establish the POCD models. Behavioral tests comprising the Y-maze, open field test, and novel object recognition were conducted 2 days after surgery. Hippocampal and serum inflammatory cytokines were assessed. Following surgery, ISO mice demonstrated intensified cognitive impairments and escalated inflammatory markers. Integrative transcriptomic and metabolomic analysis revealed elevated oleamide concentrations in the hippocampus and serum of PH mice, with associative investigations indicating a close relationship between the Foxq1 gene and oleamide levels. While oleamide administration and Foxq1 gene overexpression substantially ameliorated postoperative cognitive performance and systemic inflammation in mice, CB2R antagonist AM630 impeded these enhancements. The Foxq1 gene and oleamide may be crucial in alleviating POCD. While potentially acting through CB2R-mediated pathways, these factors may modulate neuroinflammation and attenuate proinflammatory cytokine levels within the hippocampus, substantially improving cognitive performance postsurgery. This study lays the groundwork for future research into therapeutic approaches targeting the Foxq1-oleamide-CB2R axis, with the ultimate goal of preventing or mitigating POCD.
Collapse
Affiliation(s)
- Xiaoying Wu
- Department of Anesthesiology and Perioperative MedicinePeople's Hospital of Zhengzhou University, Henan Provincial People's HospitalZhengzhouHenanChina
| | - Yuming Wu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fudong Tang
- Department of Anesthesiology and Perioperative MedicinePeople's Hospital of Zhengzhou University, Henan Provincial People's HospitalZhengzhouHenanChina
| | - Yangyang Wang
- Department of Anesthesiology and Perioperative MedicinePeople's Hospital of Zhengzhou University, Henan Provincial People's HospitalZhengzhouHenanChina
| | - Chenxi Li
- Department of Anesthesiology and Perioperative MedicinePeople's Hospital of Zhengzhou University, Henan Provincial People's HospitalZhengzhouHenanChina
| | - Su Wu
- Department of Anesthesiology and Perioperative MedicinePeople's Hospital of Zhengzhou University, Henan Provincial People's HospitalZhengzhouHenanChina
| | - Guangzhi Wang
- Department of Anesthesiology and Perioperative MedicinePeople's Hospital of Zhengzhou University, Henan Provincial People's HospitalZhengzhouHenanChina
| | - Jiaqiang Zhang
- Department of Anesthesiology and Perioperative MedicinePeople's Hospital of Zhengzhou University, Henan Provincial People's HospitalZhengzhouHenanChina
| |
Collapse
|
3
|
Caraci F, Drago F. Ketamine and new targets for treatment-resistant depression: A role for transforming growth factor-β1? Eur Neuropsychopharmacol 2024; 86:65-66. [PMID: 39018790 DOI: 10.1016/j.euroneuro.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 07/19/2024]
Affiliation(s)
- Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy; Oasi Research Institute-IRCCS, Unit of Translational Neuropharmacology and Translational Neurosciences, Troina, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
4
|
Xie B, Zhang Y, Han M, Wang M, Yu Y, Chen X, Wu Y, Hashimoto K, Yuan S, Shang Y, Zhang J. Reversal of the detrimental effects of social isolation on ischemic cerebral injury and stroke-associated pneumonia by inhibiting small intestinal γδ T-cell migration into the brain and lung. J Cereb Blood Flow Metab 2023; 43:1267-1284. [PMID: 37017434 PMCID: PMC10369145 DOI: 10.1177/0271678x231167946] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/09/2023] [Accepted: 03/16/2023] [Indexed: 04/06/2023]
Abstract
Social isolation (ISO) is associated with an increased risk and poor outcomes of ischemic stroke. However, the roles and mechanisms of ISO in stroke-associated pneumonia (SAP) remain unclear. Adult male mice were single- or pair-housed with an ovariectomized female mouse and then subjected to transient middle cerebral artery occlusion. Isolated mice were treated with the natriuretic peptide receptor A antagonist A71915 or anti-gamma-delta (γδ) TCR monoclonal antibody, whereas pair-housed mice were treated with recombinant human atrial natriuretic peptide (rhANP). Subdiaphragmatic vagotomy (SDV) was performed 14 days before single- or pair-housed conditions. We found that ISO significantly worsened brain and lung injuries relative to pair housing, which was partially mediated by elevated interleukin (IL)-17A levels and the migration of small intestine-derived inflammatory γδ T-cells into the brain and lung. However, rhANP treatment or SDV could ameliorate ISO-exacerbated post-stroke brain and lung damage by reducing IL-17A levels and inhibiting the migration of inflammatory γδ T-cells into the brain and lung. Our results suggest that rhANP mitigated ISO-induced exacerbation of SAP and ischemic cerebral injury by inhibiting small intestine-derived γδ T-cell migration into the lung and brain, which could be mediated by the subdiaphragmatic vagus nerve.
Collapse
Affiliation(s)
- Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Mengqi Han
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Mengyuan Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiaoyan Chen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yuming Wu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
5
|
Successful use of ketamine to treat severe depression with suicidality post-COVID-19 - A case report. PSYCHIATRY RESEARCH CASE REPORTS 2023; 2:100100. [PMID: 36597498 PMCID: PMC9800325 DOI: 10.1016/j.psycr.2022.100100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Every second patient who suffers from COVID-19 experiences is at risk for depression. The treatment of severe depression with suicidal risk is challenging in patients with COVID-19 given the restrictions in access to and safety concerns with the use of electroconvulsive therapy during the COVID pandemic. Although ketamine is effective in treating depression, especially in presence of acute suicidality, to date, there are no reports on ketamine use to treat severe depression in the context of COVID-19. In this case report, we describe the success of ketamine to treat a person with severe depression and suicidality following COVID-19 infection.
Collapse
|
6
|
Frank D, Gruenbaum BF, Zlotnik A, Semyonov M, Frenkel A, Boyko M. Pathophysiology and Current Drug Treatments for Post-Stroke Depression: A Review. Int J Mol Sci 2022; 23:ijms232315114. [PMID: 36499434 PMCID: PMC9738261 DOI: 10.3390/ijms232315114] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Post-stroke depression (PSD) is a biopsychosocial disorder that affects individuals who have suffered a stroke at any point. PSD has a 20 to 60 percent reported prevalence among stroke survivors. Its effects are usually adverse, can lead to disability, and may increase mortality if not managed or treated early. PSD is linked to several other medical conditions, including anxiety, hyper-locomotor activity, and poor functional recovery. Despite significant awareness of its adverse impacts, understanding the pathogenesis of PSD has proved challenging. The exact pathophysiology of PSD is unknown, yet its complexity has been definitively shown, involving mechanisms such as dysfunction of monoamine, the glutamatergic systems, the gut-brain axis, and neuroinflammation. The current effectiveness of PSD treatment is about 30-40 percent of all cases. In this review, we examined different pathophysiological mechanisms and current pharmacological and non-pharmacological approaches for the treatment of PSD.
Collapse
Affiliation(s)
- Dmitry Frank
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
- Correspondence: or
| | - Benjamin F. Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| | - Michael Semyonov
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| | - Amit Frenkel
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
7
|
Wu Y, Zhang Y, Xie B, Abdelgawad A, Chen X, Han M, Shang Y, Yuan S, Zhang J. RhANP attenuates endotoxin-derived cognitive dysfunction through subdiaphragmatic vagus nerve-mediated gut microbiota-brain axis. J Neuroinflammation 2021; 18:300. [PMID: 34949194 PMCID: PMC8697447 DOI: 10.1186/s12974-021-02356-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Atrial natriuretic peptide (ANP) secreted from atrial myocytes is shown to possess anti-inflammatory, anti-oxidant and immunomodulatory effects. The aim of this study is to assess the effect of ANP on bacterial lipopolysaccharide (LPS)-induced endotoxemia-derived neuroinflammation and cognitive impairment. METHODS LPS (5 mg/kg) was given intraperitoneally to mice. Recombinant human ANP (rhANP) (1.0 mg/kg) was injected intravenously 24 h before and/or 10 min after LPS injection. Subdiaphragmatic vagotomy (SDV) was performed 14 days before LPS injection or 28 days before fecal microbiota transplantation (FMT). ANA-12 (0.5 mg/kg) was administrated intraperitoneally 30 min prior to rhANP treatment. RESULTS LPS (5.0 mg/kg) induced remarkable splenomegaly and an increase in the plasma cytokines at 24 h after LPS injection. There were positive correlations between spleen weight and plasma cytokines levels. LPS also led to increased protein levels of ionized calcium-binding adaptor molecule (iba)-1, cytokines and inducible nitric oxide synthase (iNOS) in the hippocampus. LPS impaired the natural and learned behavior, as demonstrated by an increase in the latency to eat the food in the buried food test and a decrease in the number of entries and duration in the novel arm in the Y maze test. Combined prophylactic and therapeutic treatment with rhANP reversed LPS-induced splenomegaly, hippocampal and peripheral inflammation as well as cognitive impairment. However, rhANP could not further enhance the protective effects of SDV on hippocampal and peripheral inflammation. We further found that PGF mice transplanted with fecal bacteria from rhANP-treated endotoxemia mice alleviated the decreased protein levels of hippocampal polyclonal phosphorylated tyrosine kinase receptor B (p-TrkB), brain-derived neurotrophic factor (BDNF) and cognitive impairment, which was abolished by SDV. Moreover, TrkB/BDNF signaling inhibitor ANA-12 abolished the improving effects of rhANP on LPS-induced cognitive impairment. CONCLUSIONS Our results suggest that rhANP could mitigate LPS-induced hippocampal inflammation and cognitive dysfunction through subdiaphragmatic vagus nerve-mediated gut microbiota-brain axis.
Collapse
Affiliation(s)
- Yuming Wu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, People's Republic of China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, People's Republic of China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, People's Republic of China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | | | - Xiaoyan Chen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, People's Republic of China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengqi Han
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, People's Republic of China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, People's Republic of China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, People's Republic of China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, People's Republic of China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|