1
|
Chowdhury AA, Bolton S, Lowe G, Vasquez Osorio E, Hamblyn W, Hoskin PJ. The clinical application of in vivo dosimetry for gynaecological brachytherapy: A scoping review. Tech Innov Patient Support Radiat Oncol 2025; 33:100290. [PMID: 39802319 PMCID: PMC11718348 DOI: 10.1016/j.tipsro.2024.100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/01/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025] Open
Abstract
Brachytherapy is a key treatment for gynaecological malignancies, delivering high doses to the tumour volume whilst sparing nearby normal tissues due to its steep dose gradient. Accuracy is imperative as small shifts can lead to clinically significant under- or over-dosing of the target volume or organs at risk (OARs), respectively. Independent verification of dose delivered during brachytherapy is not routinely performed but it is important to identify gross errors and define action thresholds to guide inter-fraction treatment decisions. In vivo dosimetry (IVD) is one strategy for improving accuracy and identifying potential errors. Despite promising phantom work, clinical application of IVD is lacking. A literature search was performed using Medline and EMBASE without date limits and based on the PICO framework to evaluate the clinical application of IVD in gynaecological brachytherapy. After screening of titles and abstracts, full text papers were reviewed and 28 studies were identified. Several dosimeters were utilised and measurements were typically taken from the rectum, bladder, vagina and within interstitial catheters. Significant differences between calculated and measured dose were attributed to geometric shifts. The studies reviewed demonstrated the feasibility of IVD in brachytherapy for dose verification but further work is required before IVD can be used to optimise treatment. The purpose of this scoping review is to investigate the clinical application of IVD in gynaecological brachytherapy, understand its challenges and identify the steps required to facilitate integration into everyday clinical practice.
Collapse
Affiliation(s)
- Amani A. Chowdhury
- Mount Vernon Cancer Centre, Northwood, United Kingdom
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Steve Bolton
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Gerry Lowe
- Mount Vernon Cancer Centre, Northwood, United Kingdom
| | | | | | - Peter J Hoskin
- Mount Vernon Cancer Centre, Northwood, United Kingdom
- Division of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Georgi PD, Nielsen SK, Hansen AT, Spejlborg H, Rylander S, Lindegaard J, Buus S, Wulff C, Petric P, Tanderup K, Johansen JG. In vivo dosimetry with an inorganic scintillation detector during multi-channel vaginal cylinder pulsed dose-rate brachytherapy: Dosimetry for pulsed dose-rate brachytherapy. Phys Imaging Radiat Oncol 2024; 32:100638. [PMID: 39310220 PMCID: PMC11413746 DOI: 10.1016/j.phro.2024.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Background and purpose In vivo dosimetry is not standard in brachytherapy and some errors go undetected. The aim of this study was to evaluate the accuracy of multi-channel vaginal cylinder pulsed dose-rate brachytherapy using in vivo dosimetry. Materials and methods In vivo dosimetry data was collected during the years 2019-2022 for 22 patients (32 fractions) receiving multi-channel cylinder pulsed dose-rate brachytherapy. An inorganic scintillation detector was inserted in a cylinder channel. Each fraction was analysed as independent data sets. In vivo dosimetry-based source-tracking was used to determine the relative source-to-detector position. Measured dose was compared to planned and re-calculated source-tracking based doses. Assuming no change in organ and applicator geometry throughout treatment, the planned and source-tracking based dose distributions were compared in select volumes via γ-index analysis and dose-volume-histograms. Results The mean ± SD planned vs. measured dose deviations in the first pulse were 0.8 ± 5.9 %. In 31/32 fractions the deviation was within the combined in vivo dosimetry uncertainty (averaging 9.7 %, k = 2) and planning dose calculation uncertainty (1.6 %, k = 2). The dwell-position offsets were < 2 mm for 88 % of channels, with the largest being 5.1 mm (4.0 mm uncertainty, k = 2). 3 %/2 mm γ pass-rates averaged 97.0 % (clinical target volume (CTV)), 100.0 % (rectum), 99.9 % (bladder). The mean ± SD deviation was -1. 1 ± 2.9 % for CTV D98, and -0.2 ± 0.9 % and -1.2 ± 2.5 %, for bladder and rectum D2cm3 respectively, indicating good agreement between intended and delivered dose. Conclusions In vivo dosimetry verified accurate and stable dose delivery in multi-channel vaginal cylinder based pulsed dose-rate brachytherapy.
Collapse
Affiliation(s)
- Peter D. Georgi
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren K. Nielsen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Anders T. Hansen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Harald Spejlborg
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Susanne Rylander
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob Lindegaard
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Simon Buus
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Wulff
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Primoz Petric
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Kari Tanderup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob G. Johansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Sung S, Lee M, Choi HJ, Park H, Cheon BW, Min CH, Yeom YS, Kim H, You SH, Choi HJ. Feasibility of internal-source tracking with C-arm CT/SPECT imaging with limited-angle projection data for online in vivo dose verification in brachytherapy: A Monte Carlo simulation study. Brachytherapy 2023; 22:673-685. [PMID: 37301703 DOI: 10.1016/j.brachy.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/13/2023] [Accepted: 05/07/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE The current protocol for use of the image-guided adaptive brachytherapy (IGABT) procedure entails transport of a patient between the treatment room and the 3-D tomographic imaging room after implantation of the applicators in the body, which movement can cause position displacement of the applicator. Moreover, it is not possible to track 3-D radioactive source movement inside the body, even though there can be significant inter- and intra-fractional patient-setup changes. In this paper, therefore, we propose an online single-photon emission computed tomography (SPECT) imaging technique with a combined C-arm fluoroscopy X-ray system and attachable parallel-hole collimator for internal radioactive source tracking of every source position in the applicator. METHODS AND MATERIALS In the present study, using Geant4 Monte Carlo (MC) simulation, the feasibility of high-energy gamma detection with a flat-panel detector for X-ray imaging was assessed. Further, a parallel-hole collimator geometry was designed based on an evaluation of projection image quality for a 192Ir point source, and 3-D limited-angle SPECT-image-based source-tracking performances were evaluated for various source intensities and positions. RESULTS The detector module attached to the collimator could discriminate the 192Ir point source with about 3.4% detection efficiency when including the total counts in the entire deposited energy region. As the result of collimator optimization, hole size, thickness, and length were determined to be 0.5, 0.2, and 45 mm, respectively. Accordingly, the source intensities and positions also were successfully tracked with the 3-D SPECT imaging system when the C-arm was rotated within 110° in 2 seconds. CONCLUSIONS We expect that this system can be effectively implemented for online IGABT and in vivo patient dose verification.
Collapse
Affiliation(s)
- Saerom Sung
- Department of Radiation Convergence Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Minjae Lee
- Department of Radiation Convergence Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Hyung-Joo Choi
- Department of Radiation Convergence Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Hyojun Park
- Department of Radiation Convergence Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Bo-Wi Cheon
- Department of Radiation Convergence Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Chul Hee Min
- Department of Radiation Convergence Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Yeon Soo Yeom
- Department of Radiation Convergence Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Hyemi Kim
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Republic of Korea
| | - Sei Hwan You
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Republic of Korea
| | - Hyun Joon Choi
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Republic of Korea.
| |
Collapse
|
4
|
Houlihan OA, Workman G, Hounsell AR, Prise KM, Jain S. In vivo dosimetry in pelvic brachytherapy. Br J Radiol 2022; 95:20220046. [PMID: 35635803 PMCID: PMC10996950 DOI: 10.1259/bjr.20220046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/05/2022] Open
Abstract
ADVANCES IN KNOWLEDGE This paper describes the potential role for in vivo dosimetry in the reduction of uncertainties in pelvic brachytherapy, the pertinent factors for consideration in clinical practice, and the future potential for in vivo dosimetry in the personalisation of brachytherapy.
Collapse
Affiliation(s)
- Orla Anne Houlihan
- Department of Clinical Oncology, Northern Ireland Cancer
Centre, Belfast Health and Social Care Trust,
Belfast, UK
- Patrick G. Johnston Centre for Cancer Research, Queen's
University Belfast, Belfast,
UK
| | - Geraldine Workman
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast
Health and Social Care Trust,
Belfast, UK
| | - Alan R Hounsell
- Patrick G. Johnston Centre for Cancer Research, Queen's
University Belfast, Belfast,
UK
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast
Health and Social Care Trust,
Belfast, UK
| | - Kevin M Prise
- Patrick G. Johnston Centre for Cancer Research, Queen's
University Belfast, Belfast,
UK
| | - Suneil Jain
- Department of Clinical Oncology, Northern Ireland Cancer
Centre, Belfast Health and Social Care Trust,
Belfast, UK
- Patrick G. Johnston Centre for Cancer Research, Queen's
University Belfast, Belfast,
UK
| |
Collapse
|
5
|
In Vivo Verification of Treatment Source Dwell Times in Brachytherapy of Postoperative Endometrial Carcinoma: A Feasibility Study. J Pers Med 2022; 12:jpm12060911. [PMID: 35743696 PMCID: PMC9224704 DOI: 10.3390/jpm12060911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: In brachytherapy, there are still many manual procedures that can cause adverse events which can be detected with in vivo dosimetry systems. Plastic scintillator dosimeters (PSD) have interesting properties to achieve this objective such as real-time reading, linearity, repeatability, and small size to fit inside brachytherapy catheters. The purpose of this study was to evaluate the performance of a PSD in postoperative endometrial brachytherapy in terms of source dwell time accuracy. (2) Methods: Measurements were carried out in a PMMA phantom to characterise the PSD. Patient measurements in 121 dwell positions were analysed to obtain the differences between planned and measured dwell times. (3) Results: The repeatability test showed a relative standard deviation below 1% for the measured dwell times. The relative standard deviation of the PSD sensitivity with accumulated absorbed dose was lower than 1.2%. The equipment operated linearly in total counts with respect to absorbed dose and also in count rate versus absorbed dose rate. The mean (standard deviation) of the absolute differences between planned and measured dwell times in patient treatments was 0.0 (0.2) seconds. (4) Conclusions: The PSD system is useful as a quality assurance tool for brachytherapy treatments.
Collapse
|
6
|
Soror T, Siebert FA, Lancellotta V, Placidi E, Fionda B, Tagliaferri L, Kovács G. Quality Assurance in Modern Gynecological HDR-Brachytherapy (Interventional Radiotherapy): Clinical Considerations and Comments. Cancers (Basel) 2021; 13:cancers13040912. [PMID: 33671552 PMCID: PMC7927078 DOI: 10.3390/cancers13040912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary This is a focused review discussing quality assurance during interventional brachytherapy in gynecological cancers. This topic is very large and is usually addressed from the technical and physical sides, therefore, we decided to select “hot-spots” under this large title and discuss them from the point of view of clinicians. We hope that this concise and focused review will help clinicians in improving their quality assurance protocols and draw attention to the discussed issues. Abstract The use of brachytherapy (interventional radiotherapy) in the treatment of gynecological cancers is a crucial element in both definitive and adjuvant settings. The recent developments in high-dose rate remote afterloaders, modern applicators, treatment-planning software, image guidance, and dose monitoring systems have led to improvement in the local control rates and in some cases improved the survival rates. The development of these highly advanced and complicated treatment modalities has been accompanied by challenges, which have made the existence of quality assurance protocols a must to ensure the integrity of the treatment process. Quality assurance aims at standardizing the technical and clinical procedures involved in the treatment of patients, which could eventually decrease the source of uncertainties whether technical (source/equipment related) or clinical. This commentary review sheds light (from a clinical point of view) on some potential sources of uncertainties associated with the use of modern brachytherapy in the treatment of gynecological cancers.
Collapse
Affiliation(s)
- Tamer Soror
- Radiation Oncology Department, University of Lübeck/UKSH-CL, 23538 Lübeck, Germany
- Radiation Oncology Department, National Cancer Institute (NCI), Cairo University, Cairo 11796, Egypt
- Correspondence: ; Tel.: +49-176-2369-5626
| | - Frank-André Siebert
- Clinic of Radiotherapy, University Hospital of Schleswig-Holstein, 24105 Campus Kiel, Germany;
| | - Valentina Lancellotta
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy; (V.L.); (E.P.); (B.F.); (L.T.)
| | - Elisa Placidi
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy; (V.L.); (E.P.); (B.F.); (L.T.)
| | - Bruno Fionda
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy; (V.L.); (E.P.); (B.F.); (L.T.)
| | - Luca Tagliaferri
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy; (V.L.); (E.P.); (B.F.); (L.T.)
| | - György Kovács
- Università Cattolica del Sacro Cuore, Radioterapia Oncologica, Gemelli-INTERACTS, 00168 Roma, Italy;
| |
Collapse
|
7
|
Wilby S, Palmer A, Polak W, Bucchi A. A review of brachytherapy physical phantoms developed over the last 20 years: clinical purpose and future requirements. J Contemp Brachytherapy 2021; 13:101-115. [PMID: 34025743 PMCID: PMC8117707 DOI: 10.5114/jcb.2021.103593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/13/2020] [Indexed: 12/04/2022] Open
Abstract
Within the brachytherapy community, many phantoms are constructed in-house, and less commercial development is observed as compared to the field of external beam. Computational or virtual phantom design has seen considerable growth; however, physical phantoms are beneficial for brachytherapy, in which quality is dependent on physical processes, such as accuracy of source placement. Focusing on the design of physical phantoms, this review paper presents a summary of brachytherapy specific phantoms in published journal articles over the last twenty years (January 1, 2000 - December 31, 2019). The papers were analyzed and tabulated by their primary clinical purpose, which was deduced from their associated publications. A substantial body of work has been published on phantom designs from the brachytherapy community, but a standardized method of reporting technical aspects of the phantoms is lacking. In-house phantom development demonstrates an increasing interest in magnetic resonance (MR) tissue mimicking materials, which is not yet reflected in commercial phantoms available for brachytherapy. The evaluation of phantom design provides insight into the way, in which brachytherapy practice has changed over time, and demonstrates the customised and broad nature of treatments offered.
Collapse
Affiliation(s)
- Sarah Wilby
- Department of Radiotherapy Physics, Clinical Hematology, and Oncology Centre, Portsmouth Hospitals NHS Trust, Cosham, Portsmouth, United Kingdom
- Department of Mechanical Engineering, Faculty of Technology University of Portsmouth, Portsmouth, United Kingdom
| | - Antony Palmer
- Department of Radiotherapy Physics, Clinical Hematology, and Oncology Centre, Portsmouth Hospitals NHS Trust, Cosham, Portsmouth, United Kingdom
- Department of Mechanical Engineering, Faculty of Technology University of Portsmouth, Portsmouth, United Kingdom
| | - Wojciech Polak
- Department of Radiotherapy Physics, Clinical Hematology, and Oncology Centre, Portsmouth Hospitals NHS Trust, Cosham, Portsmouth, United Kingdom
- Department of Mechanical Engineering, Faculty of Technology University of Portsmouth, Portsmouth, United Kingdom
| | - Andrea Bucchi
- Department of Mechanical Engineering, Faculty of Technology University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
8
|
F. Nascimento L, Verellen D, Goossens J, Struelens L, Vanhavere F, Leblans P, Akselrod M. Two-dimensional real-time quality assurance dosimetry system using μ-Al 2O 3:C,Mg radioluminescence films. Phys Imaging Radiat Oncol 2020; 16:26-32. [PMID: 33458340 PMCID: PMC7807545 DOI: 10.1016/j.phro.2020.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE There is a continual need for more accurate and effective dosimetric systems for quality assurance (QA) as radiotherapy evolves in complexity. The purpose of this project was to introduce a new system that minimally perturbs the main beam, while assessing its real time 2D dose-rate and field shapes. The system combined reusability, linear dose-rate response, and high spatial and time resolution in a single radiation detection technology that can be applied to surface dose estimation and QA. MATERIALS AND METHODS We developed a 2D prototype system consisting of a camera, focusing lenses and short pass filter, placed on the head of a linear accelerator, facing an Al2O3:C,Mg radioluminescent film. To check the appropriateness of multi-leaf collimator, stability/reproducibility QA tests were prepared using the treatment planning system: including the routinely used alternating leaves, chair and pyramid checks. RESULTS The Al2O3:C,Mg film did not perturb the dose vs. depth dose curves determined with a point detector (-0.5% difference). Our results showed a dose-rate linear film response (R2 = 0.999), from 5 to 600 MU/min. Measured output factors agreed with reference data within ~1%, indicating a potential for small field dosimetry. Both chair and pyramid measured profiles were comparable with those obtained with the treatment planning system within 1%. The alternating leaves test showed an average discrepancy in the valleys of 14%. CONCLUSIONS The prototype demonstrated promising results. It obviated the need for corrections regarding the relative position of the camera, confirming accurate dose-rate delivery and detection of radiation fields.
Collapse
Affiliation(s)
| | - Dirk Verellen
- Iridium Kankernetwerk, University of Antwerp, Antwerp, Belgium
| | - Jo Goossens
- Iridium Kankernetwerk, University of Antwerp, Antwerp, Belgium
| | | | | | | | - Mark Akselrod
- Landauer, Stillwater Crystal Growth Division, Stillwater, USA
| |
Collapse
|
9
|
Fonseca GP, Johansen JG, Smith RL, Beaulieu L, Beddar S, Kertzscher G, Verhaegen F, Tanderup K. In vivo dosimetry in brachytherapy: Requirements and future directions for research, development, and clinical practice. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2020; 16:1-11. [PMID: 33458336 PMCID: PMC7807583 DOI: 10.1016/j.phro.2020.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/24/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
Brachytherapy can deliver high doses to the target while sparing healthy tissues due to its steep dose gradient leading to excellent clinical outcome. Treatment accuracy depends on several manual steps making brachytherapy susceptible to operational mistakes. Currently, treatment delivery verification is not routinely available and has led, in some cases, to systematic errors going unnoticed for years. The brachytherapy community promoted developments in in vivo dosimetry (IVD) through research groups and small companies. Although very few of the systems have been used clinically, it was demonstrated that the likelihood of detecting deviations from the treatment plan increases significantly with time-resolved methods. Time–resolved methods could interrupt a treatment avoiding gross errors which is not possible with time-integrated dosimetry. In addition, lower experimental uncertainties can be achieved by using source-tracking instead of direct dose measurements. However, the detector position in relation to the patient anatomy remains a main source of uncertainty. The next steps towards clinical implementation will require clinical trials and systematic reporting of errors and near-misses. It is of utmost importance for each IVD system that its sensitivity to different types of errors is well understood, so that end-users can select the most suitable method for their needs. This report aims to formulate requirements for the stakeholders (clinics, vendors, and researchers) to facilitate increased clinical use of IVD in brachytherapy. The report focuses on high dose-rate IVD in brachytherapy providing an overview and outlining the need for further development and research.
Collapse
Affiliation(s)
- Gabriel P Fonseca
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, Doctor Tanslaan 12, 6229 ET Maastricht, the Netherlands
| | - Jacob G Johansen
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
| | - Ryan L Smith
- Alfred Health Radiation Oncology, Alfred Health, 55 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Luc Beaulieu
- Department of Physics, Engineering Physics & Optics and Cancer Research Center, Université Laval, Quebec City, QC, Canada.,Department of Radiation Oncology, Research Center of CHU de Québec, Université Laval, Quebec City, QC, Canada
| | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1420, Houston, TX 77030, United States
| | - Gustavo Kertzscher
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, Doctor Tanslaan 12, 6229 ET Maastricht, the Netherlands
| | - Kari Tanderup
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
| |
Collapse
|
10
|
Error detection thresholds for routine real time in vivo dosimetry in HDR prostate brachytherapy. Radiother Oncol 2020; 149:38-43. [DOI: 10.1016/j.radonc.2020.04.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 01/11/2023]
|
11
|
Richart J, Carmona-Meseguer V, García-Martínez T, Herreros A, Otal A, Pellejero S, Tornero-López A, Pérez-Calatayud J. Review of strategies for MRI based reconstruction of endocavitary and interstitial applicators in brachytherapy of cervical cancer. Rep Pract Oncol Radiother 2018; 23:547-561. [PMID: 30534019 PMCID: PMC6277512 DOI: 10.1016/j.rpor.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/04/2018] [Accepted: 06/23/2018] [Indexed: 12/14/2022] Open
Abstract
Brachytherapy plays an essential role in the curative intent management of locally advanced cervical cancer. The introduction of the magnetic resonance (MR) as a preferred image modality and the development of new type of applicators with interstitial components have further improved its benefits. The aim of this work is to review the current status of one important aspect in the cervix cancer brachytherapy procedure, namely catheter reconstruction. MR compatible intracavitary and interstitial applicators are described. Considerations about the use of MR imaging (MRI) regarding appropriate strategies for applicator reconstruction, technical requirements, MR sequences, patient preparation and applicator commissioning are included. It is recommendable to perform the reconstruction process in the same image study employed by the physician for contouring, that is, T2 weighted (T2W) sequences. Nevertheless, a clear identification of the source path inside the catheters and the applicators is a challenge when using exclusively T2W sequences. For the intracavitary component of the implant, sometimes the catheters may be filled with some substance that produces a high intensity signal on MRI. However, this strategy is not feasible for plastic tubes or titanium needles, which, moreover, induce magnetic susceptibility artifacts. In these situations, the use of applicator libraries available in the treatment planning system (TPS) is useful, since they not only include accurate geometrical models of the intracavitary applicators, but also recent developments have made possible the implementation of the interstitial component. Another strategy to improve the reconstruction process is based on the incorporation of MR markers, such as small pellets, to be used as anchor points. Many institutions employ computed tomography (CT) as a supporting image modality. The registration of CT and MR image sets should be carefully performed, and its uncertainty previously assessed. Besides, an important research work is being carried out regarding the use of ultrasound and electromagnetic tracking technologies.
Collapse
Affiliation(s)
- José Richart
- Hospital Clínica Benidorm, Medical Physics Department, Alicante, Spain
| | - Vicente Carmona-Meseguer
- Hospital La Fe-IRIMED, Department of Radiation Oncology, Medical Physics Section, Valencia, Spain
| | | | - Antonio Herreros
- Hospital Clínic, Department of Radiation Oncology, Medical Physics Section, Barcelona, Spain
| | - Antonio Otal
- Hospital Arnau de Vilanova, Medical Physics Department, Lleida, Spain
| | - Santiago Pellejero
- Complejo Hospitalario de Navarra, Medical Physics Department, Pamplona, Spain
| | - Ana Tornero-López
- Hospital Dr. Negrín, Medical Physics Department, Las Palmas de Gran Canaria, Spain
| | - José Pérez-Calatayud
- Hospital La Fe-IRIMED, Department of Radiation Oncology, Medical Physics Section, Valencia, Spain
| |
Collapse
|
12
|
Johansen JG, Rylander S, Buus S, Bentzen L, Hokland SB, Søndergaard CS, With AKM, Kertzscher G, Tanderup K. Time-resolved in vivo dosimetry for source tracking in brachytherapy. Brachytherapy 2018; 17:122-132. [DOI: 10.1016/j.brachy.2017.08.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 11/25/2022]
|
13
|
Tanderup K, Kirisits C, Damato AL. Treatment delivery verification in brachytherapy: Prospects of technology innovation. Brachytherapy 2018; 17:1-6. [PMID: 29406123 DOI: 10.1016/j.brachy.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kari Tanderup
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Christian Kirisits
- Department of Radiotherapy, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Antonio L Damato
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|