1
|
Koprivec D, Belanger C, Beaulieu L, Chatigny PY, Rosenfeld A, Cutajar D, Petasecca M, Howie A, Bucci J, Poder J. Impact of robust optimization on patient specific error thresholds for high dose rate prostate brachytherapy source tracking. Brachytherapy 2025; 24:281-292. [PMID: 39690005 DOI: 10.1016/j.brachy.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/12/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
PURPOSE The purpose of this study was to compare the effect of catheter shift errors and determine patient specific error thresholds (PSETs) for different high dose rate prostate brachytherapy (HDRPBT) plans generated by different forms of inverse optimization. METHODS Three plans were generated for 50 HDRPBT patients and PSETs were determined for each of the 3 plans. Plan 1 was the original Oncentra Prostate (v4.2.2.4, Elekta Brachytherapy, Veenendaal, The Netherlands) plan, the second plan used the graphical processor unit multi-criteria optimization (gMCO) algorithm, and plan 3 used gMCO but had a robustness parameter as an additional optimization criterion (gMCOr). gMCO and gMCOr plans were selected from a pool of 2000 pareto optimal plans. gMCO plan selection involved increasing prostate V100% and reducing rectum Dmax/urethra D01.cc progressively until only 1 plan remained. The gMCOr plan was the most robust plan (using robustness parameter) that met the clinical DVH criteria (V100% ≥ 95%, rectum Dmax ≤ 80%, urethra D0.1cc ≤ 118%). PSETs were determined using catheter shift software. RESULTS The initial dose volume histogram (DVH) characteristics showed all 50 patient plans met a prostate V100% > 95% and resulted in significant reduction in rectum Dmax and urethra D0.1cc for gMCO and gMCOr plans. No single plan showed benefits in PSETs for all shift directions compared to the other plans, however gMCO and gMCOr plans exhibit the best initial DVH characteristics assuming no errors occur. The robustness parameter showed no significant impact when considered in plan optimization. CONCLUSIONS PSETs were found to be equivalent regardless of optimization method. Indicating, no single optimization method can significantly increase the patient specific thresholds.
Collapse
Affiliation(s)
- Dylan Koprivec
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia.
| | - Cedric Belanger
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer de l'Université Laval, CHU de Québec, Département de radio-oncologie et Centre de recherche du CHU de Québec, CHU de Québec - Université Laval, Québec city, Québec, Canada
| | - Luc Beaulieu
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer de l'Université Laval, CHU de Québec, Département de radio-oncologie et Centre de recherche du CHU de Québec, CHU de Québec - Université Laval, Québec city, Québec, Canada
| | - Philippe Y Chatigny
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer de l'Université Laval, CHU de Québec, Département de radio-oncologie et Centre de recherche du CHU de Québec, CHU de Québec - Université Laval, Québec city, Québec, Canada
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Dean Cutajar
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia; St George Cancer Care Centre, Kogarah, New South Wales, Australia
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Andrew Howie
- St George Cancer Care Centre, Kogarah, New South Wales, Australia
| | - Joseph Bucci
- St George Cancer Care Centre, Kogarah, New South Wales, Australia
| | - Joel Poder
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia; St George Cancer Care Centre, Kogarah, New South Wales, Australia; School of Physics, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
2
|
Siavashpour Z, Kiarad R, Aghamiri MR, Babaloui S, Seiri M, Jaberi R. Feasibility of using micro silica bead TLDs for in-Vivo dosimetry of CT-based HDR prostate brachytherapy: An experimental and simulation study. Appl Radiat Isot 2024; 212:111429. [PMID: 38986180 DOI: 10.1016/j.apradiso.2024.111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/20/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE Feasibility of silica-based dosimeters for IVD of HDR prostate brachytherapy. MATERIAL AND METHODS Plastic dosimeter holders and a water-fillable prostate phantom were built in-house. Interstitial prostate brachytherapy and Monte Carlo simulations were performed. The treatment planning, Monte-Carlo simulation, and dosimetry results were compared. RESULTS The relative differences between TLD-TPS, TLD-MCNP, and TPS-MCNP were 0.2-6.9 %, 0.5-6.5 %, and 0.6-6.3 %, respectively. CONCLUSION Micro-silica bead dosimeters can perform offline in situ quality assurance in HDR prostate brachytherapy.
Collapse
Affiliation(s)
- Zahra Siavashpour
- Radiotherapy Oncology Department, Shohada-e Tajrish Educational Hospital, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Kiarad
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran.
| | - Mahmoud Reza Aghamiri
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran, Iran
| | - Somayyeh Babaloui
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mahnaz Seiri
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Science, Tehran, Iran; Advanced Medical Technologies & Equipment Institute, Tehran University of Medical Science, Tehran, Iran
| | - Ramin Jaberi
- Radiation Oncology Research Center, Iran Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Physics, University of Surrey, Guildford, UK
| |
Collapse
|
3
|
Bloemberg J, de Vries M, van Riel LAMJG, de Reijke TM, Sakes A, Breedveld P, van den Dobbelsteen JJ. Therapeutic prostate cancer interventions: a systematic review on pubic arch interference and needle positioning errors. Expert Rev Med Devices 2024; 21:625-641. [PMID: 38946519 DOI: 10.1080/17434440.2024.2374761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION This study focuses on the quantification of and current guidelines on the hazards related to needle positioning in prostate cancer treatment: (1) access restrictions to the prostate gland by the pubic arch, so-called Pubic Arch Interference (PAI) and (2) needle positioning errors. Next, we propose solution strategies to mitigate these hazards. METHODS The literature search was executed in the Embase, Medline ALL, Web of Science Core Collection*, and Cochrane Central Register of Controlled Trials databases. RESULTS The literature search resulted in 50 included articles. PAI was reported in patients with various prostate volumes. The level of reported PAI varied between 0 and 22.3 mm, depending on the patient's position and the measuring method. Low-Dose-Rate Brachytherapy induced the largest reported misplacement errors, especially in the cranio-caudal direction (up to 10 mm) and the largest displacement errors were reported for High-Dose-Rate Brachytherapy in the cranio-caudal direction (up to 47 mm), generally increasing over time. CONCLUSIONS Current clinical guidelines related to prostate volume, needle positioning accuracy, and maximum allowable PAI are ambiguous, and compliance in the clinical setting differs between institutions. Solutions, such as steerable needles, assist in mitigating the hazards and potentially allow the physician to proceed with the procedure.This systematic review was performed in accordance with the PRISMA guidelines. The review was registered at Protocols.io (DOI: dx.doi.org/10.17504/protocols.io.6qpvr89eplmk/v1).
Collapse
Affiliation(s)
- Jette Bloemberg
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Martijn de Vries
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Luigi A M J G van Riel
- Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Theo M de Reijke
- Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Aimée Sakes
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Paul Breedveld
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - John J van den Dobbelsteen
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
4
|
van Wagenberg T, Voncken R, van Beveren C, Berbee M, van Limbergen E, Verhaegen F, Paiva Fonseca G. Time-resolved clinical dose volume metrics, calculations and predictions based on source tracking measurements and uncertainties to aid treatment verification and error detection for HDR brachytherapy-a proof-of-principle study. Phys Med Biol 2024; 69:135006. [PMID: 38870948 DOI: 10.1088/1361-6560/ad580e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Objective.High-dose-rate (HDR) brachytherapy lacks routinely available treatment verification methods. Real-time tracking of the radiation source during HDR brachytherapy can enhance treatment verification capabilities. Recent developments in source tracking allow for measurement of dwell times and source positions with high accuracy. However, more clinically relevant information, such as dose discrepancies, is still needed. To address this, a real-time dose calculation implementation was developed to provide more relevant information from source tracking data. A proof-of-principle of the developed tool was shown using source tracking data obtained from a 3D-printed anthropomorphic phantom.Approach.Software was developed to calculate dose-volume-histograms (DVH) and clinical dose metrics from experimental HDR prostate treatment source tracking data, measured in a realistic pelvic phantom. Uncertainty estimation was performed using repeat measurements to assess the inherent dose measuring uncertainty of thein vivodosimetry (IVD) system. Using a novel approach, the measurement uncertainty can be incorporated in the dose calculation, and used for evaluation of cumulative dose and clinical dose-volume metrics after every dwell position, enabling real-time treatment verification.Main results.The dose calculated from source tracking measurements aligned with the generated uncertainty bands, validating the approach. Simulated shifts of 3 mm in 5/17 needles in a single plan caused DVH deviations beyond the uncertainty bands, indicating errors occurred during treatment. Clinical dose-volume metrics could be monitored in a time-resolved approach, enabling early detection of treatment plan deviations and prediction of their impact on the final dose that will be delivered in real-time.Significance.Integrating dose calculation with source tracking enhances the clinical relevance of IVD methods. Phantom measurements show that the developed tool aids in tracking treatment progress, detecting errors in real-time and post-treatment evaluation. In addition, it could be used to define patient-specific action limits and error thresholds, while taking the uncertainty of the measurement system into consideration.
Collapse
Affiliation(s)
- Teun van Wagenberg
- Department of Radiation Oncology (Maastro), GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Robert Voncken
- Department of Radiation Oncology (Maastro), GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Celine van Beveren
- Department of Radiation Oncology (Maastro), GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Maaike Berbee
- Department of Radiation Oncology (Maastro), GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Evert van Limbergen
- Department of Radiation Oncology (Maastro), GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gabriel Paiva Fonseca
- Department of Radiation Oncology (Maastro), GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
5
|
Koprivec D, Belanger C, Beaulieu L, Chatigny PY, Rosenfeld A, Cutajar D, Petasecca M, Howie A, Bucci J, Poder J. Development of patient and catheter specific error thresholds for high dose rate prostate brachytherapy. Med Phys 2024; 51:2144-2154. [PMID: 38308854 DOI: 10.1002/mp.16971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/21/2023] [Accepted: 01/14/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND In-vivo source tracking has been an active topic of research in the field of high-dose rate brachytherapy in recent years to verify accuracy in treatment delivery. Although detection systems for source tracking are being developed, the allowable threshold of treatment error is still unknown and is likely patient-specific due to anatomy and planning variation. PURPOSE The purpose of this study was to determine patient and catheter-specific shift error thresholds for in-vivo source tracking during high-dose-rate prostate brachytherapy (HDRPBT). METHODS A module was developed in the previously described graphical processor unit multi-criteria optimization (gMCO) algorithm. The module generates systematic catheter shift errors retrospectively into HDRPBT treatment plans, performed on 50 patients. The catheter shift model iterates through the number of catheters shifted in the plan (from 1 to all catheters), the direction of shift (superior, inferior, medial, lateral, cranial, and caudal), and the magnitude of catheter shift (1-6 mm). For each combination of these parameters, 200 error plans were generated, randomly selecting the catheters in the plan to shift. After shifts were applied, dose volume histogram (DVH) parameters were re-calculated. Catheter shift thresholds were then derived based on plans where DVH parameters were clinically unacceptable (prostate V100 < 95%, urethra D0.1cc > 118%, and rectum Dmax > 80%). Catheter thresholds were also Pearson correlated to catheter robustness values. RESULTS Patient-specific thresholds varied between 1 to 6 mm for all organs, in all shift directions. Overall, patient-specific thresholds typically decrease with an increasing number of catheters shifted. Anterior and inferior directions were less sensitive than other directions. Pearson's correlation test showed a strong correlation between catheter robustness and catheter thresholds for the rectum and urethra, with correlation values of -0.81 and -0.74, respectively (p < 0.01), but no correlation was found for the prostate. CONCLUSIONS It was possible to determine thresholds for each patient, with thresholds showing dependence on shift direction, and number of catheters shifted. Not every catheter combination is explorable, however, this study shows the feasibility to determine patient-specific thresholds for clinical application. The correlation of patient-specific thresholds with the equivalent robustness value indicated the need for robustness consideration during plan optimization and treatment planning.
Collapse
Affiliation(s)
- Dylan Koprivec
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Cedric Belanger
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer de l'Université Laval, CHU de Québec, Québec, Canada
- Département de radio-oncologie et Centre de recherche du CHU de Québec, CHU de Québec - Université Laval, Québec, Canada
| | - Luc Beaulieu
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer de l'Université Laval, CHU de Québec, Québec, Canada
- Département de radio-oncologie et Centre de recherche du CHU de Québec, CHU de Québec - Université Laval, Québec, Canada
| | - Philippe Y Chatigny
- Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer de l'Université Laval, CHU de Québec, Québec, Canada
- Département de radio-oncologie et Centre de recherche du CHU de Québec, CHU de Québec - Université Laval, Québec, Canada
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Dean Cutajar
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
- St George Cancer Care Centre, Kogarah, New South Wales, Australia
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Andrew Howie
- St George Cancer Care Centre, Kogarah, New South Wales, Australia
| | - Joseph Bucci
- St George Cancer Care Centre, Kogarah, New South Wales, Australia
| | - Joel Poder
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
- St George Cancer Care Centre, Kogarah, New South Wales, Australia
- School of Physics, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
6
|
Bui TNH, Large M, Poder J, Bucci J, Bianco E, Giampaolo RA, Rivetti A, Da Rocha Rolo M, Pastuovic Z, Corradino T, Pancheri L, Petasecca M. Preliminary Characterization of an Active CMOS Pad Detector for Tracking and Dosimetry in HDR Brachytherapy. SENSORS (BASEL, SWITZERLAND) 2024; 24:692. [PMID: 38276383 PMCID: PMC10818778 DOI: 10.3390/s24020692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
We assessed the accuracy of a prototype radiation detector with a built in CMOS amplifier for use in dosimetry for high dose rate brachytherapy. The detectors were fabricated on two substrates of epitaxial high resistivity silicon. The radiation detection performance of prototypes has been tested by ion beam induced charge (IBIC) microscopy using a 5.5 MeV alpha particle microbeam. We also carried out the HDR Ir-192 radiation source tracking at different depths and angular dose dependence in a water equivalent phantom. The detectors show sensitivities spanning from (5.8 ± 0.021) × 10-8 to (3.6 ± 0.14) × 10-8 nC Gy-1 mCi-1 mm-2. The depth variation of the dose is within 5% with that calculated by TG-43. Higher discrepancies are recorded for 2 mm and 7 mm depths due to the scattering of secondary particles and the perturbation of the radiation field induced in the ceramic/golden package. Dwell positions and dwell time are reconstructed within ±1 mm and 20 ms, respectively. The prototype detectors provide an unprecedented sensitivity thanks to its monolithic amplification stage. Future investigation of this technology will include the optimisation of the packaging technique.
Collapse
Affiliation(s)
- Thi Ngoc Hang Bui
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia; (T.N.H.B.); (M.L.); (J.P.); (J.B.)
| | - Matthew Large
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia; (T.N.H.B.); (M.L.); (J.P.); (J.B.)
| | - Joel Poder
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia; (T.N.H.B.); (M.L.); (J.P.); (J.B.)
- St George Cancer Care Centre, Kogarah, NSW 2217, Australia
- School of Physics, University of Sydney, Camperdown, NSW 2050, Australia
| | - Joseph Bucci
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia; (T.N.H.B.); (M.L.); (J.P.); (J.B.)
- St George Cancer Care Centre, Kogarah, NSW 2217, Australia
| | - Edoardo Bianco
- Department of Electronics and Telecommunications, Polytechnic University of Turin, 10129 Turin, Italy; (E.B.); (R.A.G.)
- Istituto Nazionale di Fisica Nucleare—Section of Turin, 10125 Turin, Italy; (A.R.); (M.D.R.R.)
| | - Raffaele Aaron Giampaolo
- Department of Electronics and Telecommunications, Polytechnic University of Turin, 10129 Turin, Italy; (E.B.); (R.A.G.)
- Istituto Nazionale di Fisica Nucleare—Section of Turin, 10125 Turin, Italy; (A.R.); (M.D.R.R.)
| | - Angelo Rivetti
- Istituto Nazionale di Fisica Nucleare—Section of Turin, 10125 Turin, Italy; (A.R.); (M.D.R.R.)
| | - Manuel Da Rocha Rolo
- Istituto Nazionale di Fisica Nucleare—Section of Turin, 10125 Turin, Italy; (A.R.); (M.D.R.R.)
| | - Zeljko Pastuovic
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia;
| | - Thomas Corradino
- Department of Industrial Engineering, University of Trento, 38123 Trento, Italy (L.P.)
- Trento Institute for Fundamental Physics and Applications, Istituto Nazionale di Fisica Nucleare, 38123 Trento, Italy
| | - Lucio Pancheri
- Department of Industrial Engineering, University of Trento, 38123 Trento, Italy (L.P.)
- Trento Institute for Fundamental Physics and Applications, Istituto Nazionale di Fisica Nucleare, 38123 Trento, Italy
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia; (T.N.H.B.); (M.L.); (J.P.); (J.B.)
| |
Collapse
|
7
|
de Vries M, Wijntjes M, Sikorski J, Moreira P, van de Berg NJ, van den Dobbelsteen JJ, Misra S. MR-guided HDR prostate brachytherapy with teleoperated steerable needles. J Robot Surg 2023; 17:2461-2469. [PMID: 37480476 PMCID: PMC10492758 DOI: 10.1007/s11701-023-01676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/08/2023] [Indexed: 07/24/2023]
Abstract
Conformity of tumour volumes and dose plans in prostate brachytherapy (BT) can be constrained by unwanted needle deflections, needle access restrictions and visualisation limitations. This work validates the feasibility of teleoperated robotic control of an active steerable needle using magnetic resonance (MR) for guidance. With this system, perturbations can be counteracted and critical structures can be circumvented to access currently inaccessible areas. The system comprises of (1) a novel steerable needle, (2) the minimally invasive robotics in an MR environment (MIRIAM) system, and (3) the daVinci Research Kit (dVRK). MR scans provide visual feedback to the operator controlling the dVRK. Needle steering is performed along curved trajectories to avoid the urethra towards targets (representing tumour tissue) in a prostate phantom with a targeting error of 1.2 ± 1.0 mm. This work shows the potential clinical applicability of active needle steering for prostate BT with a teleoperated robotic system in an MR environment.
Collapse
Affiliation(s)
- M de Vries
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.
| | - M Wijntjes
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - J Sikorski
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - P Moreira
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - N J van de Berg
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
- Department of Gynaecological Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - J J van den Dobbelsteen
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - S Misra
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Dürrbeck C, Schuster S, Sauer BC, Abu-Hossin N, Strnad V, Fietkau R, Bert C. Localization of reference points in electromagnetic tracking data and their application for treatment error detection in interstitial breast brachytherapy. Med Phys 2023; 50:5772-5783. [PMID: 37458615 DOI: 10.1002/mp.16629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Electromagnetic tracking (EMT) is a promising technology that holds great potential to advance patient-specific pre-treatment verification in interstitial brachytherapy (iBT). It allows easy determination of the implant geometry without line-of-sight restrictions and without dose exposure to the patient. What it cannot provide, however, is a link to anatomical landmarks, such as the exit points of catheters or needles on the skin surface. These landmarks are required for the registration of EMT data with other imaging modalities and for the detection of treatment errors such as incorrect indexer lengths, and catheter or needle shifts. PURPOSE To develop an easily applicable method to detect reference points in the positional data of the trajectory of an EMT sensor, specifically the exit points of catheters in breast iBT, and to apply the approach to pre-treatment error detection. METHODS Small metal objects were attached to catheter fixation buttons that rest against the breast surface to intentionally induce a local, spatially limited perturbation of the magnetic field on which the working principle of EMT relies. This perturbation can be sensed by the EMT sensor as it passes by, allowing it to localize the metal object and thus the catheter exit point. For the proof-of-concept, different small metal objects (magnets, washers, and bushes) and EMT sensor drive speeds were used to find the optimal parameters. The approach was then applied to treatment error detection and validated in-vitro on a phantom. Lastly, the in-vivo feasibility of the approach was tested on a patient cohort of four patients to assess the impact on the clinical workflow. RESULTS All investigated metal objects were able to measurably perturb the magnetic field, which resulted in missing sensor readings, that is two data gaps, one for the sensor moving towards the tip end and one when retracting from there. The size of the resulting data gaps varied depending on the choice of gap points used for calculation of the gap size; it was found that the start points of the gaps in both directions showed the smallest variability. The median size of data gaps was ⩽8 mm for all tested materials and sensor drive speeds. The variability of the determined object position was ⩽0.5 mm at a speed of 1.0 cm/s and ⩽0.7 mm at 2.5 cm/s, with an increase up to 2.3 mm at 5.0 cm/s. The in-vitro validation of the error detection yielded a 100% detection rate for catheter shifts of ≥2.2 mm. All simulated wrong indexer lengths were correctly identified. The in-vivo feasibility assessment showed that the metal objects did not interfere with the routine clinical workflow. CONCLUSIONS The developed approach was able to successfully detect reference points in EMT data, which can be used for registration to other imaging modalities, but also for treatment error detection. It can thus advance the automation of patient-specific, pre-treatment quality assurance in iBT.
Collapse
Affiliation(s)
- Christopher Dürrbeck
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Sabrina Schuster
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Birte Christina Sauer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Nadin Abu-Hossin
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Vratislav Strnad
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
9
|
Sung S, Lee M, Choi HJ, Park H, Cheon BW, Min CH, Yeom YS, Kim H, You SH, Choi HJ. Feasibility of internal-source tracking with C-arm CT/SPECT imaging with limited-angle projection data for online in vivo dose verification in brachytherapy: A Monte Carlo simulation study. Brachytherapy 2023; 22:673-685. [PMID: 37301703 DOI: 10.1016/j.brachy.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/13/2023] [Accepted: 05/07/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE The current protocol for use of the image-guided adaptive brachytherapy (IGABT) procedure entails transport of a patient between the treatment room and the 3-D tomographic imaging room after implantation of the applicators in the body, which movement can cause position displacement of the applicator. Moreover, it is not possible to track 3-D radioactive source movement inside the body, even though there can be significant inter- and intra-fractional patient-setup changes. In this paper, therefore, we propose an online single-photon emission computed tomography (SPECT) imaging technique with a combined C-arm fluoroscopy X-ray system and attachable parallel-hole collimator for internal radioactive source tracking of every source position in the applicator. METHODS AND MATERIALS In the present study, using Geant4 Monte Carlo (MC) simulation, the feasibility of high-energy gamma detection with a flat-panel detector for X-ray imaging was assessed. Further, a parallel-hole collimator geometry was designed based on an evaluation of projection image quality for a 192Ir point source, and 3-D limited-angle SPECT-image-based source-tracking performances were evaluated for various source intensities and positions. RESULTS The detector module attached to the collimator could discriminate the 192Ir point source with about 3.4% detection efficiency when including the total counts in the entire deposited energy region. As the result of collimator optimization, hole size, thickness, and length were determined to be 0.5, 0.2, and 45 mm, respectively. Accordingly, the source intensities and positions also were successfully tracked with the 3-D SPECT imaging system when the C-arm was rotated within 110° in 2 seconds. CONCLUSIONS We expect that this system can be effectively implemented for online IGABT and in vivo patient dose verification.
Collapse
Affiliation(s)
- Saerom Sung
- Department of Radiation Convergence Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Minjae Lee
- Department of Radiation Convergence Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Hyung-Joo Choi
- Department of Radiation Convergence Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Hyojun Park
- Department of Radiation Convergence Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Bo-Wi Cheon
- Department of Radiation Convergence Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Chul Hee Min
- Department of Radiation Convergence Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Yeon Soo Yeom
- Department of Radiation Convergence Engineering, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Hyemi Kim
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Republic of Korea
| | - Sei Hwan You
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Republic of Korea
| | - Hyun Joon Choi
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Republic of Korea.
| |
Collapse
|
10
|
Vasyltsiv R, Qian X, Xu Z, Ryu S, Zhao W, Howansky A. Feasibility of 4D HDR brachytherapy source tracking using x-ray tomosynthesis: Monte Carlo investigation. Med Phys 2023; 50:4695-4709. [PMID: 37402139 DOI: 10.1002/mp.16579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/16/2023] [Accepted: 06/11/2023] [Indexed: 07/05/2023] Open
Abstract
PURPOSE High dose rate (HDR) brachytherapy rapidly delivers dose to targets with steep dose gradients. This treatment method must adhere to prescribed treatment plans with high spatiotemporal accuracy and precision, as failure to do so may degrade clinical outcomes. One approach to achieving this goal is to develop imaging techniques to track HDR sources in vivo in reference to surrounding anatomy. This work investigates the feasibility of using an isocentric C-arm x-ray imager and tomosynthesis methods to track Ir-192 HDR brachytherapy sources in vivo over time (4D). METHODS A tomosynthesis imaging workflow was proposed and its achievable source detectability, localization accuracy, and spatiotemporal resolution were investigated in silico. An anthropomorphic female XCAT phantom was modified to include a vaginal cylinder applicator and Ir-192 HDR source (0.5 × 0.5 × 5.0 mm3 ), and the workflow was carried out using the MC-GPU Monte Carlo image simulation platform. Source detectability was characterized using the reconstructed source signal-difference-to-noise-ratio (SDNR), localization accuracy by the absolute 3D error in its measured centroid location, and spatiotemporal resolution by the full-width-at-half-maximum (FWHM) of line profiles through the source in each spatial dimension considering a maximum C-arm angular velocity of 30° per second. The dependence of these parameters on acquisition angular range (θtot = 0°-90°), number of views, angular increment between views (Δθ = 0°-15°), and volumetric constraints imposed in reconstruction was evaluated. Organ voxel doses were tallied to derive the workflow's attributable effective dose. RESULTS The HDR source was readily detected and its centroid was accurately localized with the proposed workflow and method (SDNR: 10-40, 3D error: 0-0.144 mm). Tradeoffs were demonstrated for various combinations of image acquisition parameters; namely, increasing the tomosynthesis acquisition angular range improved resolution in the depth-encoded direction, for example from 2.5 mm to 1.2 mm between θtot = 30o and θtot = 90o , at the cost of increasing acquisition time from 1 to 3 s. The best-performing acquisition parameters (θtot = 90o , Δθ = 1°) yielded no centroid localization error, and achieved submillimeter source resolution (0.57 × 1.21 × 5.04 mm3 apparent source dimensions, FWHM). The total effective dose for the workflow was 263 µSv for its required pre-treatment imaging component and 7.59 µSv per mid-treatment acquisition thereafter, which is comparable to common diagnostic radiology exams. CONCLUSIONS A system and method for tracking HDR brachytherapy sources in vivo using C-arm tomosynthesis was proposed and its performance investigated in silico. Tradeoffs in source conspicuity, localization accuracy, spatiotemporal resolution, and dose were determined. The results suggest this approach is feasible for localizing an Ir-192 HDR source in vivo with submillimeter spatial resolution, 1-3 second temporal resolution and minimal additional dose burden.
Collapse
Affiliation(s)
- Roman Vasyltsiv
- Department of Radiology, Stony Brook University, Health Sciences Center L4-120, Stony Brook, New York, USA
| | - Xin Qian
- Department of Radiation Oncology, Stony Brook University, Health Sciences Center L2, Stony Brook, New York, USA
| | - Zhigang Xu
- Department of Radiation Oncology, Stony Brook University, Health Sciences Center L2, Stony Brook, New York, USA
| | - Samuel Ryu
- Department of Radiation Oncology, Stony Brook University, Health Sciences Center L2, Stony Brook, New York, USA
| | - Wei Zhao
- Department of Radiology, Stony Brook University, Health Sciences Center L4-120, Stony Brook, New York, USA
| | - Adrian Howansky
- Department of Radiology, Stony Brook University, Health Sciences Center L4-120, Stony Brook, New York, USA
| |
Collapse
|
11
|
van Wagenberg T, Fonseca GP, Voncken R, van Beveren C, van Limbergen E, Lutgens L, Vanneste BGL, Berbee M, Reniers B, Verhaegen F. Treatment verification in high dose rate brachytherapy using a realistic 3D printed head phantom and an imaging panel. Brachytherapy 2023; 22:269-278. [PMID: 36631373 DOI: 10.1016/j.brachy.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/24/2022] [Accepted: 11/26/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Even though High Dose Rate (HDR) brachytherapy has good treatment outcomes in different treatment sites, treatment verification is far from widely implemented because of a lack of easily available solutions. Previously it has been shown that an imaging panel (IP) near the patient can be used to determine treatment parameters such as the dwell time and source positions in a single material pelvic phantom. In this study we will use a heterogeneous head phantom to test this IP approach, and simulate common treatment errors to assess the sensitivity and specificity of the error-detecting capabilities of the IP. METHODS AND MATERIALS A heterogeneous head-phantom consisting of soft tissue and bone equivalent materials was 3D-printed to simulate a base of tongue treatment. An High Dose Rate treatment plan with 3 different catheters was used to simulate a treatment delivery, using dwell times ranging from 0.3 s to 4 s and inter-dwell distances of 2 mm. The IP was used to measure dwell times, positions and detect simulated errors. Measured dwell times and positions were used to calculate the delivered dose. RESULTS Dwell times could be determined within 0.1 s. Source positions were measured with submillimeter accuracy in the plane of the IP, and average distance accuracy of 1.7 mm in three dimensions. All simulated treatment errors (catheter swap, catheter shift, afterloader errors) were detected. Dose calculations show slightly different distributions with the measured dwell positions and dwell times (gamma pass rate for 1 mm/1% of 96.5%). CONCLUSIONS Using an IP, it was possible to verify the treatment in a realistic heterogeneous phantom and detect certain treatment errors.
Collapse
Affiliation(s)
- Teun van Wagenberg
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gabriel Paiva Fonseca
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Robert Voncken
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Celine van Beveren
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Evert van Limbergen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ludy Lutgens
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ben G L Vanneste
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands; Department of Human Structure and Repair; Department of Radiation Oncology, Ghent University Hospital, Gent, Belgium
| | - Maaike Berbee
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Brigitte Reniers
- Research group NuTeC, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| |
Collapse
|
12
|
Gonod M, Suarez MA, Chacon Avila C, Karakhanyan V, Eustache C, Crouzilles J, Laskri S, Vinchant JF, Aubignac L, Grosjean T. Characterization of a miniaturized scintillator detector for time-resolved treatment monitoring in HDR-brachytherapy. Phys Med Biol 2022; 67. [PMID: 36240766 DOI: 10.1088/1361-6560/ac9a9b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Purpose.HDR brachytherapy combines steep dose gradients in space and time, thereby requiring detectors of high spatial and temporal resolution to perform accurate treatment monitoring. We demonstrate a miniaturized fiber-integrated scintillator detector (MSD) of unmatched compactness which fulfills these conditions.Methods.The MSD consists of a 0.28 mm large and 0.43 mm long detection cell (Gd2O2S:Tb) coupled to a 110 micron outer diameter silica optical fiber. The fiber probe is tested in a phantom using a MicroSelectron 9.1 Ci Ir-192 HDR afterloader. The detection signal is acquired at a rate of 0.08 s with a standard sCMOS camera coupled to a chromatic filter (to cancel spurious Cerenkov signal). The dwell position and time monitoring are analyzed over prostate treatment sequences with dwell times spanning from 0.1 to 11 s. The dose rate at the probe position is both evaluated from a direct measurement and by reconstruction from the measured dwell position using the AAPM TG-43 formalism.Results.A total number of 1384 dwell positions are analyzed. In average, the measured dwell positions differ by 0.023 ± 0.077 mm from planned values over a 6-54 mm source-probe distance range. The standard deviation of the measured dwell positions is below 0.8 mm. 94% of the 966 dwell positions occurring at a source-probe inter-catheter spacing below 20 mm are successfully identified, with a 100% detection rate for dwell times exceeding 0.5 s. The average deviation to the planned dwell times is of 0.005 ± 0.060 s. The instant dose retrieval from dwell position monitoring leads to a relative mismatch to planned values of 0.14% ± 0.7%.Conclusion.A miniaturized Gd2O2S:Tb detector coupled to a standard sCMOS camera can be used for time-resolved treatment monitoring in HDR Brachytherapy.
Collapse
Affiliation(s)
- Mathieu Gonod
- Centre Georges François Leclerc (CGFL)-Dijon, France
| | - Miguel Angel Suarez
- FEMTO-ST Institute-Optics Department-UMR 6174-University of Franche-Comté-CNRS-Besançon, France
| | - Carlos Chacon Avila
- FEMTO-ST Institute-Optics Department-UMR 6174-University of Franche-Comté-CNRS-Besançon, France
| | - Vage Karakhanyan
- FEMTO-ST Institute-Optics Department-UMR 6174-University of Franche-Comté-CNRS-Besançon, France
| | - Clément Eustache
- FEMTO-ST Institute-Optics Department-UMR 6174-University of Franche-Comté-CNRS-Besançon, France
| | - Julien Crouzilles
- SEDI-ATI Fibres Optiques, 8 Rue Jean Mermoz, F-91080 Évry-Courcouronnes, France
| | - Samir Laskri
- SEDI-ATI Fibres Optiques, 8 Rue Jean Mermoz, F-91080 Évry-Courcouronnes, France
| | | | | | - Thierry Grosjean
- FEMTO-ST Institute-Optics Department-UMR 6174-University of Franche-Comté-CNRS-Besançon, France
| |
Collapse
|
13
|
Koprivec D, Rosenfeld A, Cutajar D, Petasecca M, Howie A, Bucci J, Poder J. Feasibility of online adaptive HDR prostate brachytherapy: A novel treatment concept. Brachytherapy 2022; 21:943-955. [PMID: 36068155 DOI: 10.1016/j.brachy.2022.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/18/2022] [Accepted: 07/30/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE The purpose of this study was to determine the feasibility of online adaptive transrectal ultrasound (TRUS)-based high-dose-rate prostate brachytherapy (HDRPBT) through retrospective simulation of source positioning and catheter swap errors on patient treatment plans. METHOD Source positioning errors (catheter shifts in 1 mm increments in the cranial/caudal, anterior/posterior, and medial/lateral directions up to ±6 mm) and catheter swap errors (between the most and least heavily weighted) were introduced retrospectively into DICOM treatment plans of 20 patients that previously received TRUS HDRPBT. Dose volume histogram (DVH) indices were monitored as errors were introduced sequentially into individual catheters, simulating potential errors throughout treatment. Whenever DVH indices were outside institution thresholds: prostate V100% <95%, urethra D0.1cc >118% and rectum Dmax >80%, the plan was adapted using remaining catheters (i.e., simulating previous catheters as previously delivered). The final DVH indices were recorded. RESULTS Prostate coverage (V100% >95%) could be maintained for source position errors up to 6 mm through online plan adaptation. The source position error at which the urethra D0.1cc and rectum Dmax was able to return to clinically acceptable levels using online adaptation varied between 6 mm to 1 mm, depending on the direction of the source position error and patient anatomy. After introduction of catheter swap errors to patient plans, prostate V100% was recoverable using online adaptation to near original plan characteristics. Urethra D0.1cc and rectum Dmax showed less recoverability. CONCLUSION Online adaptive HDRPBT maintains the prostate V100% to clinically acceptable values for majority of directional shifts. However, the current online adaptive method may not correct for source position errors near organs at risk.
Collapse
Affiliation(s)
- Dylan Koprivec
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Dean Cutajar
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia; St George Cancer Care Centre, Kogarah, NSW, Australia
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Andrew Howie
- St George Cancer Care Centre, Kogarah, NSW, Australia
| | - Joseph Bucci
- St George Cancer Care Centre, Kogarah, NSW, Australia
| | - Joel Poder
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia; St George Cancer Care Centre, Kogarah, NSW, Australia
| |
Collapse
|
14
|
Kaveckyte V, Jørgensen EB, Kertzscher G, Johansen JG, Tedgren ÅC. Monte Carlo characterization of high atomic number inorganic scintillators for in vivo dosimetry in 192 Ir brachytherapy. Med Phys 2022; 49:4715-4730. [PMID: 35443079 DOI: 10.1002/mp.15674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/01/2022] [Accepted: 04/06/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND There is increased interest in vivo dosimetry for 192 Ir brachytherapy (BT) treatments using high atomic number (Z) inorganic scintillators. Their high light output enables construction of small detectors with negligible stem effect and simple readout electronics. Experimental determination of absorbed-dose energy dependence of detectors relative to water is prevalent, but it can be prone to high detector positioning uncertainties and does not allow for decoupling of absorbed-dose energy dependence from other factors affecting detector response. PURPOSE To investigate which measurement conditions and detector properties could affect their absorbed-dose energy dependence in BT in vivo dosimetry. METHODS We used a general-purpose MC code penelope for the characterization of high-Z inorganic scintillators with the focus on ZnSe (Z¯=32). Two other promising media CsI (Z¯=54) and Al2 O3 (Z¯=11) were included for comparison in selected scenarios. We determined absorbed-dose energy dependence of crystals relative to water under different scatter conditions (calibration phantom 12 × 12 × 30 cm3 , characterization phantoms 20 × 20 × 20 cm3 , 30 × 30 × 30 cm3 , 40 × 40 × 40 cm3 , and patient-like elliptic phantom 40 × 30 × 25 cm3 ). To mimic irradiation conditions during prostate treatments, we evaluated whether the presence of pelvic bones and calcifications affect ZnSe response. ZnSe detector design influence was also investigated. RESULTS In contrast to low-Z organic and medium-Z inorganic scintillators, ZnSe and CsI media have substantially greater absorbed-dose energy dependence relative to water. The response was phantom-size dependent and changed by 11 % between limited- and full-scatter conditions for ZnSe, but not for Al2 O3 . For a given phantom size, a part of the absorbed-dose energy dependence of ZnSe is caused not due to in-phantom scatter but due to source anisotropy. Thus, the absorbed-dose energy dependence of high-Z scintillators is a function of not only the radial distance but also the polar angle. Pelvic bones did not affect ZnSe response, whereas large and intermediate size calcifications reduced it by 9 % and 5 %, respectively, when placed midway between the source and the detector. CONCLUSIONS Unlike currently prevalent low- and medium-Z scintillators, high-Z crystals are sensitive to characterization and in vivo measurement conditions. However, good agreement between MC data for ZnSe in the present study and experimental data for ZnSe:O by Jørgensen et al (2021) suggest that detector signal is proportional to the average absorbed dose to the detector cavity. This enables an easy correction for non-TG43-like scenarios (e.g., patient sizes and calcifications) through MC simulations. Information that should be provided to the clinic by the detector vendors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vaiva Kaveckyte
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, SE-581 85, Sweden
| | - Erik B Jørgensen
- Department of Clinical Medicine, Aarhus University, Aarhus, DK-8000, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus, DK-8000, Denmark
| | - Gustavo Kertzscher
- Department of Oncology, Aarhus University Hospital, Aarhus, DK-8000, Denmark
| | - Jacob G Johansen
- Department of Clinical Medicine, Aarhus University, Aarhus, DK-8000, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus, DK-8000, Denmark
| | - Åsa Carlsson Tedgren
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, SE-581 85, Sweden.,Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, SE-171 76, Sweden.,Department of Oncology-Pathology, Karolinska Institute, Stockholm, SE-171 76, Sweden
| |
Collapse
|
15
|
Poder J, Koprivec D, Dookie Y, Howie A, Cutajar D, Damato AL, Côté N, Petasecca M, Bucci J, Rosenfeld A. HDR prostate brachytherapy plan robustness and its effect on in-vivo source tracking error thresholds: A multi-institutional study. Med Phys 2022; 49:3529-3537. [PMID: 35388456 PMCID: PMC9322430 DOI: 10.1002/mp.15658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The purpose of this study was to examine the effect of departmental planning techniques on appropriate in-vivo source tracking error thresholds for high dose rate (HDR) prostate brachytherapy (BT) treatments, and to determine if a single in-vivo source tracking error threshold would be appropriate for the same patient anatomy. METHOD The prostate, rectum, and urethra, was contoured on a single patient trans-rectal ultrasound (TRUS) dataset. Anonymised DICOM files were disseminated to 16 departments who created an HDR prostate BT treatment plan on the dataset with a prescription dose of 15 Gy in a single fraction. Departments were asked to follow their own local treatment planning guidelines. Source positioning errors were then simulated in the 16 treatment plans and the effect on dose-volume histogram (DVH) indices calculated. Change in DVH indices were used to determine appropriate in-vivo source tracking error thresholds. Plans were considered to require intervention if the following DVH conditions occurred: prostate V100% < 90%, urethra D0.1cc > 118%, and rectum Dmax > 80%. RESULTS There was wide variation in appropriate in-vivo source tracking error thresholds amongst the 16 participating departments, ranging from 1 - 6 mm. Appropriate in-vivo source tracking error thresholds were also found to depend on the direction of the source positioning error and the end-point. A robustness parameter was derived, and found to correlate with the sensitivity of plans to source positioning errors. CONCLUSION A single HDR prostate BT in-vivo source tracking error threshold cannot be applied across multiple departments, even for the same patient anatomy. The burden on in-vivo source tracking devices may be eased through improving HDR prostate BT plan robustness during the plan optimisation phase. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Joel Poder
- Department of Radiation Oncology, St George Cancer Care Centre, Kogarah, NSW, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Dylan Koprivec
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Yashiv Dookie
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Andrew Howie
- Department of Radiation Oncology, St George Cancer Care Centre, Kogarah, NSW, Australia
| | - Dean Cutajar
- Department of Radiation Oncology, St George Cancer Care Centre, Kogarah, NSW, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Antonio L Damato
- Department of Medical Physics, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Nicolas Côté
- Department of Medical Physics, Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Joseph Bucci
- Department of Radiation Oncology, St George Cancer Care Centre, Kogarah, NSW, Australia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
16
|
Hanlon MD, Smith RL, Franich RD. MaxiCalc: A tool for online dosimetric evaluation of source-tracking based treatment verification in HDR brachytherapy. Phys Med 2022; 94:58-64. [PMID: 34998133 DOI: 10.1016/j.ejmp.2021.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Source tracking is becoming a more widely used approach in HDR brachytherapy treatment verification. While it provides a sensitive method to detect deviations from the treatment plan during delivery, it does not show the clinical significance of any detected changes. By incorporating a tool that calculates volumetric doses and DVH indices from measurements, source tracking systems can be expanded to assess dosimetric significance of any deviations from the plan. METHODS The source tracking dose calculation tool, MaxiCalc, was developed in MATLAB. Validation was performed by comparing doses and DVH indices calculated in MaxiCalc to those calculated by the clinical TPS, for several test plans and 10 clinical plans. Clinical implementation was demonstrated by calculating volumetric doses from a clinical source tracking event. RESULTS MaxiCalc showed excellent agreement with the clinical TPS for point and volumetric doses (mean difference < 0.01% and 0.1% respectively). MaxiCalc calculates dosimetrically equivalent plans to the TPS with agreement < 0.3% for all DVH indices except PTV V200%. Small differences seen for the clinical source tracking event were consistent with the known tracking uncertainties enabling them to be quantified for clinical decision making. Calculations are fast, enabling real-time use. CONCLUSIONS MaxiCalc is an independent tool that calculates doses and DVH indices from dwells measured with any clinical HDR brachytherapy source tracking system. This extends the capabilities of source tracking systems from determining discrepancies in positions or times during delivery to assessing the dosimetric impact of any detected deviations, allowing for more comprehensive treatment verification and evaluation.
Collapse
Affiliation(s)
- Maximilian D Hanlon
- School of Science, RMIT University, Melbourne, Australia; Alfred Health Radiation Oncology, The Alfred, Melbourne, Australia.
| | - Ryan L Smith
- School of Science, RMIT University, Melbourne, Australia; Alfred Health Radiation Oncology, The Alfred, Melbourne, Australia
| | - Rick D Franich
- School of Science, RMIT University, Melbourne, Australia
| |
Collapse
|
17
|
Jørgensen EB, Johansen JG, Overgaard J, Piché-Meunier D, Tho D, Rosales HML, Tanderup K, Beaulieu L, Kertzscher G, Beddar S. A high-Z inorganic scintillator-based detector for time-resolved in vivo dosimetry during brachytherapy. Med Phys 2021; 48:7382-7398. [PMID: 34586641 DOI: 10.1002/mp.15257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/08/2021] [Accepted: 09/09/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE High-dose rate (HDR) and pulsed-dose rate (PDR) brachytherapy would benefit from an independent treatment verification system to monitor treatment delivery and to detect errors in real time. This paper characterizes and provides an uncertainty budget for a detector based on a fiber-coupled high-Z inorganic scintillator capable of performing time-resolved in vivo dosimetry during HDR and PDR brachytherapy. METHOD The detector was composed of a detector probe and an optical reader. The detector probe consisted of either a 0.5 × 0.4 × 0.4 mm3 (HDR) or a 1.0 × 0.4 × 0.4 mm3 (PDR) cuboid ZnSe:O crystal glued onto an optical-fiber cable. The outer diameter of the detector probes was 1 mm, and fit inside standard brachytherapy catheters. The signal from the detector probe was read out at 20 Hz by a photodiode and a data acquisition device inside the optical reader. In order to construct an uncertainty budget for the detector, six characteristics were determined: (1) temperature dependence of the detector probe, (2) energy dependence as a function of the probe-to-source position in 2D (determined with 2 mm resolution using a robotic arm), (3) the signal-to-noise ratio (SNR), (4) short-term stability over 8 h, and (5) long-term stability of three optical readers and four probes used for in vivo monitoring in HDR and PDR treatments over 21 months (196 treatments and 189 detector calibrations, and (6) dose-rate dependence. RESULTS The total uncertainty of the detector at a 20 mm probe-to-source distance was < 5.1% and < 5.8% for the HDR and PDR versions, respectively. Regarding the above characteristics, (1) the sensitivity of the detector decreased by an average of 1.4%/°C for detector probe temperatures varying from 22 to 37°C; (2) the energy dependence of the detector was nonlinear and depended on both probe-to-source distance and the angle between the probe and the brachytherapy source; (3) the median SNRs were 187 and 34 at a 20 mm probe-to-source distance for the HDR and PDR versions, respectively (corresponding median source activities of 4.8 and 0.56 Ci, respectively); (4) the detector response varied by 0.6% in 11 identical irradiations over 8 h; (5) the sensitivity of the four detector probes decreased systematically by 0-1.2%/100 Gy of dose delivered to the probes, and random fluctuations of 4.8% in the sensitivity were observed for the three probes used in PDR and 1.9% for the probe used in HDR; and (6) the detector response was linear with dose rate. CONCLUSION ZnSe:O detectors can be used effectively for in vivo dosimetry and with high accuracy for HDR and PDR brachytherapy applications.
Collapse
Affiliation(s)
- Erik B Jørgensen
- Health Graduate School, Aarhus University, Aarhus, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob G Johansen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Dominique Piché-Meunier
- Département de physique-de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec City, Quebec, Canada.,Département de radio-oncologie et Axe Oncologie, CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Daline Tho
- Département de physique-de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec City, Quebec, Canada.,Département de radio-oncologie et Axe Oncologie, CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Haydee M L Rosales
- Département de physique-de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec City, Quebec, Canada.,Département de radio-oncologie et Axe Oncologie, CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Kari Tanderup
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Luc Beaulieu
- Département de physique-de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec City, Quebec, Canada.,Département de radio-oncologie et Axe Oncologie, CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Gustavo Kertzscher
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.,Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
18
|
Hayashi H, Kimoto N, Maeda T, Tomita E, Asahara T, Goto S, Kanazawa Y, Shitakubo Y, Sakuragawa K, Ikushima H, Okazaki T, Hashizume T. A disposable OSL dosimeter for in vivo measurement of rectum dose during brachytherapy. Med Phys 2021; 48:4621-4635. [PMID: 33760234 DOI: 10.1002/mp.14857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE We aimed to develop a disposable rectum dosimeter and to demonstrate its ability to measure exposure dose to the rectum during brachytherapy for cervical cancer treatment using high-dose rate 192 Ir. Our rectum dosimeter measures the dose with an optically stimulated luminescence (OSL) sheet which was furled to a catheter. The catheter we used is 6 mm in diameter; therefore, it is much less invasive than other rectum dosimeters. The rectum dosimeter developed in this study has the characteristics of being inexpensive and disposable. It is also an easy-to-use detector that can be individually sterilized, making it suitable for clinical use. METHODS To obtain a dose calibration curve, phantom experiments were performed. Irradiation was performed using a cubical acrylic phantom, and the response of the OSL dosimeter was calibrated with the calculation value predicted by the treatment planning system (TPS). Additionally, the dependence of catheter angle on the dosimeter position and repeatability were evaluated. We also measured the absorbed dose to the rectum of patients who were undergoing brachytherapy for cervical cancer (n = 64). The doses measured with our dosimeters were compared with the doses calculated by the TPS. In order to examine the causes of large differences between measured and planned doses, we classified the data into common and specific cases when performing this clinical study. For specific cases, the following three categories were considered: (a) patient movement, (b) gas in the vagina and/or rectum, and (c) artifacts in the X-ray image caused by applicators. RESULTS A dose calibration curve was obtained in the range of 0.1 Gy-10.0 Gy. From the evaluation of the dependence of catheter angle on the dosimeter position and repeatability, we determined that our dosimeter can measure rectum dose with an accuracy of 3.1% (k = 1). In this clinical study, we succeeded in measuring actual doses using our rectum dosimeter. We found that the deviation of the measured dose from the planned dose was derived to be 12.7% (k = 1); this result shows that the clinical study included large elements of uncertainty. The discrepancies were found to be due to patient motion during treatment, applicator movement after planning images were taken, and artifacts in the planning images. CONCLUSIONS We present the idea that a minimally invasive rectum dosimeter can be fabricated using an OSL sheet. Our clinical study demonstrates that a rectum dosimeter made from an OSL sheet has sufficient ability to evaluate rectum dose. Using this dosimeter, valuable information concerning organs at risk can be obtained during brachytherapy.
Collapse
Affiliation(s)
- Hiroaki Hayashi
- College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Natsumi Kimoto
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tatsuya Maeda
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Emi Tomita
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Asahara
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan.,Okayama University Hospital, Kitaku, Okayama, Japan
| | - Sota Goto
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuki Kanazawa
- Graduate School of Health Sciences, Tokushima University, Tokushima, Japan
| | | | | | - Hitoshi Ikushima
- Graduate School of Health Sciences, Tokushima University, Tokushima, Japan.,Tokushima University Hospital, Tokushima, Japan
| | | | | |
Collapse
|
19
|
Fonseca GP, van Wagenberg T, Voncken R, Podesta M, van Beveren C, van Limbergen E, Lutgens L, Vanneste B, Berbee M, Reniers B, Verhaegen F. Brachytherapy treatment verification using gamma radiation from the internal treatment source combined with an imaging panel-a phantom study. Phys Med Biol 2021; 66. [PMID: 33831856 DOI: 10.1088/1361-6560/abf605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/08/2021] [Indexed: 12/15/2022]
Abstract
Brachytherapy has an excellent clinical outcome for different treatment sites. However,in vivotreatment verification is not performed in the majority of hospitals due to the lack of proper monitoring systems. This study investigates the use of an imaging panel (IP) and the photons emitted by a high dose rate (HDR)192Ir source to track source motion and obtain some information related to the patient anatomy. The feasibility of this approach was studied by monitoring the treatment delivery to a 3D printed phantom that mimicks a prostate patient. A 3D printed phantom was designed with a template for needle insertion, a cavity ('rectum') to insert an ultrasound probe, and lateral cavities used to place tissue-equivalent materials. CT images were acquired to create HDR192Ir treatment plans with a range of dwell times, interdwell distances and needle arrangements. Treatment delivery was verified with an IP placed at several positions around the phantom using radiopaque markers on the outer surface to register acquired IP images with the planning CT. All dwell positions were identified using acquisition times ≤0.11 s (frame rates ≥ 9 fps). Interdwell distances and dwell positions (in relation to the IP) were verified with accuracy better than 0.1 cm. Radiopaque markers were visible in the acquired images and could be used for registration with CT images. Uncertainties for image registration (IP and planning CT) between 0.1 and 0.4 cm. The IP is sensitive to tissue-mimicking insert composition and showed phantom boundaries that could be used to improve treatment verification. The IP provided sufficient time and spatial resolution for real-time source tracking and allows for the registration of the planning CT and IP images. The results obtained in this study indicate that several treatment errors could be detected including swapped catheters, incorrect dwell times and dwell positions.
Collapse
Affiliation(s)
- G P Fonseca
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - T van Wagenberg
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - R Voncken
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - M Podesta
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - C van Beveren
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - E van Limbergen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - L Lutgens
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - B Vanneste
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - M Berbee
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| | - B Reniers
- Research group NuTeC, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - F Verhaegen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Doctor Tanslaan 12, 6229 ET Maastricht, The Netherlands
| |
Collapse
|
20
|
Jørgensen EB, Kertzscher G, Buus S, Bentzen L, Hokland SB, Rylander S, Tanderup K, Johansen JG. Accuracy of an in vivo dosimetry-based source tracking method for afterloading brachytherapy - A phantom study. Med Phys 2021; 48:2614-2623. [PMID: 33655555 DOI: 10.1002/mp.14812] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/07/2021] [Accepted: 02/04/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To report on the accuracy of an in vivo dosimetry (IVD)-based source tracking (ST) method for high dose rate (HDR) prostate brachytherapy (BT). METHODS The ST was performed on a needle-by-needle basis. A least square fit of the expected to the measured dose rate was performed using the active dwell positions in the given needle. Two fitting parameters were used to determine the position of each needle relative to the IVD detector: radial (away or toward the detector) and longitudinal (along the axis of the treatment needle). The accuracy of the ST was assessed in a phantom where the geometries of five HDR prostate BT treatments previously treated at our clinic were reproduced. For each of the five treatment geometries, one irradiation was performed with the detector placed in the middle of the implant. Furthermore, four additional irradiations were performed for one of the geometries where the detector was retracted caudally in four steps of 10-15 mm and up to 12 mm inferior of the most inferior active dwell position, which represented the prostate apex. The time resolved dose measurements were retrieved at a rate of 20 Hz using a detector based on an Al2 O3 :C radioluminescence crystal, which was placed inside a standard BT needle. Individual calibrations of the detector were performed prior to each of the nine irradiations. RESULTS Source tracking could be applied in all needles across all nine irradiations. For irradiations with the detector located in the middle region of the implant (a total of 89 needles), the mean ± standard deviation (SD, k = 1) accuracy was -0.01 mm ± 0.38 mm and 0.30 mm ± 0.38 mm in the radial and longitudinal directions, respectively. Caudal retraction of the detector did not lead to reduced accuracy as long as the detector was located superior to the most inferior active dwell positions in all needles. However, reduced accuracy was observed for detector positions inferior to the most inferior active dwell positions which corresponded to detector positions in and inferior to the prostate apex region. Detector positions in the prostate apex and 12 mm inferior to the prostate resulted in mean ± SD (k = 1) ST accuracy of 0.7 mm ± 1 mm and 2.8 mm ± 1.6 mm, respectively, in radial direction, and -1.7 mm ± 1 mm and -2.1 mm ± 1.1 mm, respectively, in longitudinal direction. The largest deviations for the configurations with those detector positions were 2.6 and 5.4 mm, respectively, in the radial direction and -3.5 and -3.8 mm, respectively, in the longitudinal direction. CONCLUSION This phantom study demonstrates that ST based on IVD during prostate BT is adequately accurate for clinical use. The ST yields submillimeter accuracy on needle positions as long as the IVD detector is positioned superior to at least one active dwell position in all needles. Locations of the detector inferior to the prostate apex result in decreased ST accuracy while detector locations in the apex region and above are advantageous for clinical applications.
Collapse
Affiliation(s)
- Erik B Jørgensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Simon Buus
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Lise Bentzen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Susanne Rylander
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Kari Tanderup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob G Johansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
21
|
Debnath SBC, Ferre M, Tonneau D, Fauquet C, Tallet A, Goncalves A, Darreon J. High resolution small-scale inorganic scintillator detector: HDR brachytherapy application. Med Phys 2021; 48:1485-1496. [PMID: 33476399 DOI: 10.1002/mp.14727] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Brachytherapy (BT) deals with high gradient internal dose irradiation made up of a complex system where the source is placed nearby the tumor to destroy cancerous cells. A primary concern of clinical safety in BT is quality assurance to ensure the best matches between the delivered and prescribed doses targeting small volume tumors and sparing surrounding healthy tissues. Hence, the purpose of this study is to evaluate the performance of a point size inorganic scintillator detector (ISD) in terms of high dose rate brachytherapy (HDR-BT) treatment. METHODS A prototype of the dose verification system has been developed based on scintillating dosimetry to measure a high dose rate while using an 192 Ir BT source. The associated dose rate is measured in photons/s employing a highly sensitive photon counter (design data: 20 photons/s). Dose measurement was performed as a function of source-to-detector distance according to TG43U1 recommendations. Overall measurements were carried out inside water phantoms keeping the ISD along the BT needle; a minimum of 0.1 cm distance was maintained between each measurement point. The planned dwell times were measured accurately from the difference of two adjacent times of transit. The ISD system performances were also evaluated in terms of dose linearity, energy dependency, scintillation stability, signal-to-noise ratio (SNR), and signal-to-background ratio (SBR). Finally, a comparison was presented between the ISD measurements and results obtained from TG43 reference dataset. RESULTS The detection efficiency of the ISD was verified by measuring the planned dwell times at different dwell positions. Measurements demonstrated that the ISD has a perfectly linear behavior with dose rate (R2 = 1) and shows high SNR (>35) and SBR (>36) values even at the lowest dose rate investigated at around 10 cm from the source. Standard deviation (1σ) remains within 0.03% of signal magnitude, and less than 0.01% STEM signal was monitored at 0.1 cm source-to-detector distance. Stability of 0.54% is achieved, and afterglow stays less than 1% of the total signal in all the irradiations. Excellent symmetrical behavior of the dose rate regarding source position was observed at different radiation planes. Finally, a comparison with TG-43 reference dataset shows that corrected measurements agreed with simulation data within 1.2% and 1.3%, and valid for the source-to-detector distance greater than 0.25 cm. CONCLUSION The proposed ISD in this study anticipated that the system could be promoted to validate with further clinical investigations. It allows an appropriate dose verification with dwell time estimation during source tracking and suitable dose measurement with a high spatial resolution both nearby (high dose gradient) and far (low dose gradient) from the source position.
Collapse
Affiliation(s)
| | | | - Didier Tonneau
- Aix Marseille Université, CNRS, CINaM UMR 7325, Marseille, 13288, France
| | - Carole Fauquet
- Aix Marseille Université, CNRS, CINaM UMR 7325, Marseille, 13288, France
| | - Agnes Tallet
- Institut Paoli-Calmettes, Marseille, 13009, France
| | - Anthony Goncalves
- Institut Paoli-Calmettes, Marseille, 13009, France.,Aix Marseille Université, CNRS UMR 7258, INSERM UMR 1068, CRCM, Marseille, 13009, France
| | | |
Collapse
|
22
|
Aldelaijan S, Devic S, Bekerat H, Papaconstadopoulos P, Schneider J, Seuntjens J, Cormack RA, Buzurovic IM. Positional and angular tracking of HDR 192 Ir source for brachytherapy quality assurance using radiochromic film dosimetry. Med Phys 2020; 47:6122-6139. [PMID: 33064876 DOI: 10.1002/mp.14540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/31/2020] [Accepted: 09/25/2020] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To quantify and verify the dosimetric impact of high-dose rate (HDR) source positional uncertainty in brachytherapy, and to introduce a model for three-dimensional (3D) position tracking of the HDR source based on a two-dimensional (2D) measurement. This model has been utilized for the development of a comprehensive source quality assurance (QA) method using radiochromic film (RCF) dosimetry including assessment of different digitization uncertainties. METHODS An algorithm was developed and verified to generate 2D dose maps of the mHDR-V2 192 Ir source (Elekta, Veenendaal, Netherlands) based on the AAPM TG-43 formalism. The limits of the dosimetric error associated with source (0.9 mm diameter) positional uncertainty were evaluated and experimentally verified with EBT3 film measurements for 6F (2.0 mm diameter) and 4F (1.3 mm diameter) size catheters at the surface (4F, 6F) and 10 mm further (4F only). To quantify this uncertainty, a source tracking model was developed to incorporate the unique geometric features of all isodose lines (IDLs) within any given 2D dose map away from the source. The tracking model normalized the dose map to its maximum, then quantified the IDLs using blob analysis based on features such as area, perimeter, weighted centroid, elliptic orientation, and circularity. The Pearson correlation coefficients (PCCs) between these features and source coordinates (x, y, z, θy , θz ) were calculated. To experimentally verify the accuracy of the tracking model, EBT3 film pieces were positioned within a Solid Water® (SW) phantom above and below the source and they were exposed simultaneously. RESULTS The maximum measured dosimetric variations on the 6F and 4F catheter surfaces were 39.8% and 36.1%, respectively. At 10 mm further, the variation reduced to 2.6% for the 4F catheter which is in agreement with the calculations. The source center (x, y) was strongly correlated with the low IDL-weighted centroid (PCC = 0.99), while the distance to source (z) was correlated with the IDL areas (PCC = 0.96) and perimeters (PCC = 0.99). The source orientation θy was correlated with the difference between high and low IDL-weighted centroids (PCC = 0.98), while θz was correlated with the elliptic orientation of the 60-90% IDLs (PCC = 0.97) for a maximum distance of z = 5 mm. Beyond 5 mm, IDL circularity was significant, therefore limiting the determination of θz (PCC ≤ 0.48). The measured positional errors from the film sets above and below the source indicated a source position at the bottom of the catheter (-0.24 ± 0.07 mm). CONCLUSIONS Isodose line features of a 2D dose map away from the HDR source can reveal its spatial coordinates. RCF was shown to be a suitable dosimeter for source tracking and dosimetry. This technique offers a novel source QA method and has the potential to be used for QA of commercial and customized applicators.
Collapse
Affiliation(s)
- Saad Aldelaijan
- Department of Radiation Oncology, Dana Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, 02115, USA.,Department of Biomedical Engineering, Montreal Neurological Institute, McGill University, Montréal, QC, H3A 2B4, Canada.,Medical Physics Unit, McGill University, Montréal, QC, H4A 3J1, Canada.,Department of Radiation Oncology, SMBD Jewish General Hospital, Montréal, QC, H3T 1E2, Canada.,Biomedical Physics Department, King Faisal Specialist Hospital & Research Centre, Riyadh, 12713, Saudi Arabia
| | - Slobodan Devic
- Medical Physics Unit, McGill University, Montréal, QC, H4A 3J1, Canada.,Department of Radiation Oncology, SMBD Jewish General Hospital, Montréal, QC, H3T 1E2, Canada
| | - Hamed Bekerat
- Department of Radiation Oncology, SMBD Jewish General Hospital, Montréal, QC, H3T 1E2, Canada
| | | | - James Schneider
- Department of Radiation Oncology, SMBD Jewish General Hospital, Montréal, QC, H3T 1E2, Canada
| | - Jan Seuntjens
- Medical Physics Unit, McGill University, Montréal, QC, H4A 3J1, Canada
| | - Robert A Cormack
- Department of Radiation Oncology, Dana Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Ivan M Buzurovic
- Department of Radiation Oncology, Dana Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
23
|
Fonseca GP, Johansen JG, Smith RL, Beaulieu L, Beddar S, Kertzscher G, Verhaegen F, Tanderup K. In vivo dosimetry in brachytherapy: Requirements and future directions for research, development, and clinical practice. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2020; 16:1-11. [PMID: 33458336 PMCID: PMC7807583 DOI: 10.1016/j.phro.2020.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/24/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
Brachytherapy can deliver high doses to the target while sparing healthy tissues due to its steep dose gradient leading to excellent clinical outcome. Treatment accuracy depends on several manual steps making brachytherapy susceptible to operational mistakes. Currently, treatment delivery verification is not routinely available and has led, in some cases, to systematic errors going unnoticed for years. The brachytherapy community promoted developments in in vivo dosimetry (IVD) through research groups and small companies. Although very few of the systems have been used clinically, it was demonstrated that the likelihood of detecting deviations from the treatment plan increases significantly with time-resolved methods. Time–resolved methods could interrupt a treatment avoiding gross errors which is not possible with time-integrated dosimetry. In addition, lower experimental uncertainties can be achieved by using source-tracking instead of direct dose measurements. However, the detector position in relation to the patient anatomy remains a main source of uncertainty. The next steps towards clinical implementation will require clinical trials and systematic reporting of errors and near-misses. It is of utmost importance for each IVD system that its sensitivity to different types of errors is well understood, so that end-users can select the most suitable method for their needs. This report aims to formulate requirements for the stakeholders (clinics, vendors, and researchers) to facilitate increased clinical use of IVD in brachytherapy. The report focuses on high dose-rate IVD in brachytherapy providing an overview and outlining the need for further development and research.
Collapse
Affiliation(s)
- Gabriel P Fonseca
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, Doctor Tanslaan 12, 6229 ET Maastricht, the Netherlands
| | - Jacob G Johansen
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
| | - Ryan L Smith
- Alfred Health Radiation Oncology, Alfred Health, 55 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Luc Beaulieu
- Department of Physics, Engineering Physics & Optics and Cancer Research Center, Université Laval, Quebec City, QC, Canada.,Department of Radiation Oncology, Research Center of CHU de Québec, Université Laval, Quebec City, QC, Canada
| | - Sam Beddar
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1420, Houston, TX 77030, United States
| | - Gustavo Kertzscher
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, Doctor Tanslaan 12, 6229 ET Maastricht, the Netherlands
| | - Kari Tanderup
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus, Denmark
| |
Collapse
|
24
|
Error detection thresholds for routine real time in vivo dosimetry in HDR prostate brachytherapy. Radiother Oncol 2020; 149:38-43. [DOI: 10.1016/j.radonc.2020.04.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 01/11/2023]
|
25
|
Panettieri V, Rancati T, Onjukka E, Ebert MA, Joseph DJ, Denham JW, Steigler A, Millar JL. External Validation of a Predictive Model of Urethral Strictures for Prostate Patients Treated With HDR Brachytherapy Boost. Front Oncol 2020; 10:910. [PMID: 32596153 PMCID: PMC7300245 DOI: 10.3389/fonc.2020.00910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose: For prostate cancer treatment, comparable or superior biochemical control was reported when using External-Beam-Radiotherapy (EBRT) with High-Dose-Rate-Brachytherapy (HDRB)-boost, compared to dose-escalation with EBRT alone. The conformal doses produced by HDRB could allow further beneficial prostate dose-escalation, but increase in dose is limited by normal tissue toxicity. Previous works showed correlation between urethral dose and incidence of urinary toxicity, but there is a lack of established guidelines on the dose constraints to this organ. This work aimed at fitting a Normal-Tissue-Complication-Probability model to urethral stricture data collected at one institution and validating it with an external cohort, looking at neo-adjuvant androgen deprivation as dose-modifying factor. Materials and Methods: Clinical and dosimetric data of 258 patients, with a toxicity rate of 12.8%, treated at a single institution with a variety of prescription doses, were collected to fit the Lyman–Kutcher–Burman (LKB) model using the maximum likelihood method. Due to the different fractionations, doses were converted into 2 Gy-equivalent doses (α/β = 5 Gy), and urethral stricture was used as an end-point. For validation, an external cohort of 187 patients treated as part of the TROG (Trans Tasman Radiation Oncology Group) 03.04 RADAR trial with a toxicity rate of 8.7%, was used. The goodness of fit was assessed using calibration plots. The effect of neo-adjuvant androgen deprivation (AD) was analyzed separating patients who had received it prior to treatment from those who did not receive it. Results: The obtained LKB parameters were TD50 = 116.7 Gy and m = 0.23; n was fixed to 0.3, based on numerical optimization of the likelihood. The calibration plot showed a good agreement between the observed toxicity and the probability predicted by the model, confirmed by bootstrapping. For the external validation, the calibration plot showed that the observed toxicity obtained with the RADAR patients was well-represented by the fitted LKB model parameters. When patients were stratified by the use of AD TD50 decreased when AD was not present. Conclusions: Lyman–Kutcher–Burman model parameters were fitted to the risk of urethral stricture and externally validated with an independent cohort, to provide guidance on urethral tolerance doses for patients treated with a HDRB boost. For patients that did not receive AD, model fitting provided a lower TD50 suggesting a protective effect on urethra toxicity.
Collapse
Affiliation(s)
- Vanessa Panettieri
- Alfred Health Radiation Oncology, Alfred Hospital, Melbourne, VIC, Australia.,Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC, Australia
| | - Tiziana Rancati
- Prostate Cancer Program, Scientific Directorate, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Eva Onjukka
- Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Martin A Ebert
- Radiation Oncology, Sir Charles Gairdner Hospital, Perth, WA, Australia.,School of Physics, Mathematics and Computing, University of Western Australia, Perth, WA, Australia.,5D Clinics, Claremont, WA, Australia
| | - David J Joseph
- 5D Clinics, Claremont, WA, Australia.,GenesisCare, Subiaco, WA, Australia.,School of Surgery, University of Western Australia, WA, Australia
| | - James W Denham
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - Allison Steigler
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - Jeremy L Millar
- Alfred Health Radiation Oncology, Alfred Hospital, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
26
|
Poder J, Carrara M, Howie A, Cutajar D, Bucci J, Rosenfeld A. Derivation of in vivo source tracking error thresholds for TRUS-based HDR prostate brachytherapy through simulation of source positioning errors. Brachytherapy 2019; 18:711-719. [DOI: 10.1016/j.brachy.2019.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/23/2019] [Accepted: 05/03/2019] [Indexed: 10/26/2022]
|
27
|
Johansen J, Kertzscher G, Jørgensen E, Rylander S, Bentzen L, Hokland S, Søndergaard C, With A, Buus S, Tanderup K. Dwell time verification in brachytherapy based on time resolved in vivo dosimetry. Phys Med 2019; 60:156-161. [DOI: 10.1016/j.ejmp.2019.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/22/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022] Open
|
28
|
Poder J, Cutajar D, Guatelli S, Petasecca M, Howie A, Bucci J, Carrara M, Rosenfeld A. A Monte Carlo study on the feasibility of real-time in vivo source tracking during ultrasound based HDR prostate brachytherapy treatments. Phys Med 2019; 59:30-36. [DOI: 10.1016/j.ejmp.2019.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/14/2018] [Accepted: 02/14/2019] [Indexed: 10/27/2022] Open
|
29
|
Beld E, Seevinck PR, Schuurman J, Viergever MA, Lagendijk JJ, Moerland MA. Development and Testing of a Magnetic Resonance (MR) Conditional Afterloader for Source Tracking in Magnetic Resonance Imaging-Guided High-Dose-Rate (HDR) Brachytherapy. Int J Radiat Oncol Biol Phys 2018; 102:960-968. [DOI: 10.1016/j.ijrobp.2018.04.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/13/2018] [Accepted: 04/24/2018] [Indexed: 01/18/2023]
|
30
|
Tanderup K, Kirisits C, Damato AL. Treatment delivery verification in brachytherapy: Prospects of technology innovation. Brachytherapy 2018; 17:1-6. [PMID: 29406123 DOI: 10.1016/j.brachy.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kari Tanderup
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Christian Kirisits
- Department of Radiotherapy, Medical University of Vienna, Comprehensive Cancer Center, Vienna, Austria
| | - Antonio L Damato
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|