1
|
Gale J, Aizenman E. The physiological and pathophysiological roles of copper in the nervous system. Eur J Neurosci 2024; 60:3505-3543. [PMID: 38747014 PMCID: PMC11491124 DOI: 10.1111/ejn.16370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 07/06/2024]
Abstract
Copper is a critical trace element in biological systems due the vast number of essential enzymes that require the metal as a cofactor, including cytochrome c oxidase, superoxide dismutase and dopamine-β-hydroxylase. Due its key role in oxidative metabolism, antioxidant defence and neurotransmitter synthesis, copper is particularly important for neuronal development and proper neuronal function. Moreover, increasing evidence suggests that copper also serves important functions in synaptic and network activity, the regulation of circadian rhythms, and arousal. However, it is important to note that because of copper's ability to redox cycle and generate reactive species, cellular levels of the metal must be tightly regulated to meet cellular needs while avoiding copper-induced oxidative stress. Therefore, it is essential that the intricate system of copper transporters, exporters, copper chaperones and copper trafficking proteins function properly and in coordinate fashion. Indeed, disorders of copper metabolism such as Menkes disease and Wilson disease, as well as diseases linked to dysfunction of copper-requiring enzymes, such as SOD1-linked amyotrophic lateral sclerosis, demonstrate the dramatic neurological consequences of altered copper homeostasis. In this review, we explore the physiological importance of copper in the nervous system as well as pathologies related to improper copper handling.
Collapse
Affiliation(s)
- Jenna Gale
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Elias Aizenman
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Więcek S, Paprocka J. Disorders of Copper Metabolism in Children-A Problem too Rarely Recognized. Metabolites 2024; 14:38. [PMID: 38248841 PMCID: PMC10818781 DOI: 10.3390/metabo14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Copper plays an important role in metabolic processes. Both deficiency and excess of this element have a negative effect and lead to pathological conditions. Copper is a cofactor of many enzymatic reactions. Its concentration depends on the delivery in the diet, the absorption in enterocytes, transport with the participation of ATP7A/ATP7B protein, and proper excretion. Copper homeostasis disorders lead to serious medical conditions such as Menkes disease (MD) and Wilson's disease (WD). A mutation in the ATP7A gene is the cause of Menkes disease, it prevents the supply of copper ions to enzymes dependent on them, such as dopamine β-hydroxylase and lysyl oxidase. This leads to progressive changes in the central nervous system and disorders of the connective tissue. In turn, Wilson's disease is an inherited autosomal recessive disease. It is caused by a mutation of the ATP7B gene encoding the ATP7B protein which means excess copper cannot be removed from the body, leading to the pathological accumulation of this element in the liver and brain. The clinical picture is dominated by the liver, neurological, and/or psychiatric symptoms. Early inclusion of zinc preparations and chelating drugs significantly improves the prognosis in this group of patients. The aim of the study is to analyse, based on the latest literature, the following factors: the etiopathogenesis, clinical picture, diagnostic tests, treatment, prognosis, and complications of disease entities associated with copper disturbances: Menkes disease and Wilson's disease. In addition, it is necessary for general practitioners, neurologists, and gastroenterologists to pay attention to these disease entities because they are recognized too late and too rarely, especially in the paediatric population.
Collapse
Affiliation(s)
- Sabina Więcek
- Department of Paediatrics, Faculty of Medical Sciences, Medical University of Silesia, 40-055 Katowice, Poland
| | - Justyna Paprocka
- Department of Paediatric Neurology, Faculty of Medical Sciences, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
3
|
Wadhawan M, Ahmad F, Yadav S, Rathaur S. Proteomic Analysis Reveals Differential Protein Expression Induced by Inhibition of Prolyl Oligopeptidase in Filarial Parasites. Protein J 2022; 41:613-624. [PMID: 36271977 DOI: 10.1007/s10930-022-10080-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/24/2022]
Abstract
Prolyl oligopeptidase (POP) plays a crucial role in the processing and degradation of neuropeptides and regulates inositol trisphosphate (IP3) signaling in mammals. We have reported that POP inhibition leads to IP3-mediated calcium efflux leading to mitochondrial-mediated apoptosis in the filarial parasite Setaria cervi. This study further elucidates the effect of altered calcium homeostasis on the proteome of filarial parasites. Adult parasites were treated with POP's specific inhibitor, Z-Pro-prolinal (ZPP), for 7 h. Cytosolic and mitochondrial proteome was analyzed using 2D gel electrophoresis coupled with MALDI-MS/MS. Phosphoproteins were also analyzed in the cytosolic fraction of the parasites. The phosphoprotein analysis revealed 7, and 9 spots in the cytosolic fraction of control and ZPP-treated parasites, respectively. The two identified protein spots in the treated set were found to be involved in G protein signaling. In cytosolic fraction, 109 and 112 protein spots were observed in control and treated parasites, respectively. Of these, 56 upregulated and 32 downregulated protein spots were observed in the treated set. On the other hand, 50 and 47 protein spots were detected in the mitochondrial fraction of control and treated parasites, respectively. Of these spots, 18 upregulated and 12 down-regulated protein spots were found in treated parasites. In silico analysis showed that the identified proteins were involved in energy metabolism, calcium signaling, stress response, and cytoskeleton organization. These findings correlate with our previous results suggesting the important regulatory role of POP in signaling and different metabolic pathways of filarial parasites.
Collapse
Affiliation(s)
- Mohit Wadhawan
- Department of Biochemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Faiyaz Ahmad
- Department of Biochemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Smita Yadav
- Department of Biochemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India
| | - Sushma Rathaur
- Department of Biochemistry, Institute of Science, Banaras Hindu University, 221005, Varanasi, India.
| |
Collapse
|
4
|
Van Bogaert P. Long-term outcome of developmental and epileptic encephalopathies. Rev Neurol (Paris) 2022; 178:659-665. [PMID: 35489823 DOI: 10.1016/j.neurol.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
Developmental and epileptic encephalopathies are conditions where there is developmental impairment related to both the underlying etiology independent of epileptiform activity and the epileptic encephalopathy. Usually they have multiple etiologies. Therefore, long-term outcome is related to both etiology-related factors and epilepsy-related factors-age at onset of epilepsy, type(s) of seizure(s), type of electroencephalographic abnormalities, duration of the epileptic disorder. This paper focuses on long-term outcome of six developmental and epileptic encephalopathies with onset from the neonatal period to childhood: early epileptic encephalopathy with suppression bursts, West syndrome, Dravet syndrome, Lennox-Gastaut syndrome, epilepsy with myoclonic atonic seizures and epileptic encephalopathy with continuous spike and waves during slow-wave sleep including Landau-Kleffner syndrome. For each syndrome, definition, main etiologies if multiple, and long-term outcome are discussed.
Collapse
Affiliation(s)
- P Van Bogaert
- Department of Pediatric Neurology, CHU d'Angers, and Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d'Angers, 4, rue Larrey, 49000 Angers, France.
| |
Collapse
|
5
|
Panichsillaphakit E, Kwanbunbumpen T, Chomtho S, Visuthranukul C. Copper-histidine therapy in an infant with novel splice-site variant in the ATP7A gene of Menkes disease: the first experience in South East Asia and literature review. BMJ Case Rep 2022; 15:e247937. [PMID: 35393273 PMCID: PMC8991052 DOI: 10.1136/bcr-2021-247937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2022] [Indexed: 11/03/2022] Open
Abstract
Menkes disease (MD) is an X linked recessive multi-systemic disorder of copper metabolism, resulting from an ATP7A gene mutation. We report a male infant aged 4 months who presented with kinky hair, hypopigmented skin, epilepsy and delayed development. Magnetic resonance imaging (MRI) of brain demonstrated multiple tortuosities of intracranial vessels and brain atrophy. Investigation had showed markedly decreased serum copper and ceruloplasmin. The novel c.2172+1G>T splice-site mutation in the ATP7A gene confirmed MD. He was treated with subcutaneous administration of locally prepared copper-histidine (Cu-His). Following the therapy, hair manifestation was restored and serum ceruloplasmin was normalised 1 month later. Despite the treatment, epilepsy, neurodevelopment and osteoporosis still progressed. He died from severe respiratory tract infection at the age of 9.5 months. These findings suggest that the benefit of Cu-His in our case is limited which might be related to severe presentations and degree of ATP7A mutation.
Collapse
Affiliation(s)
- Ekkarit Panichsillaphakit
- Division of Nutrition, Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Tanisa Kwanbunbumpen
- Division of Nutrition, Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Sirinuch Chomtho
- Pediatric Nutrition Research Unit, Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, The Thai Red Cross Society, Bangkok, Thailand
| | - Chonnikant Visuthranukul
- Pediatric Nutrition Research Unit, Division of Nutrition, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
6
|
Li J, Hu R, Wang J, Yu R, Xiong F, Jiang M. Menkes disease diagnosed by a novel ATP7A frameshift mutation in a patient with infantile spasms-a case report. Transl Pediatr 2021; 10:1965-1971. [PMID: 34430447 PMCID: PMC8349949 DOI: 10.21037/tp-21-275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022] Open
Abstract
Menkes disease (MD) is a rare congenital copper deficiency disease caused by an adenosine triphosphatase copper transporting alpha (ATP7A) gene mutation. It is a progressive and systemic disease that primarily involves the central nervous system and connective tissues. The clinical manifestation of these patients with MD is curly hair, progressive muscle tone reduction, and convulsions, and often leads to death in early infancy. Herein, we present a case of a 9-month-old Chinese male who displayed developmental regression, followed by convulsions, which were characterized by infantile spasms (ISs). The proband also had curly hair, hypopigmented skin, cutis laxa, decreased muscle tone, and micrognathia. The patient's ceruloplasmin levels were below the reference values. Brain magnetic resonance imaging (MRI) showed abnormal signals bilaterally that were symmetrically distributed in the caudate nucleus, globus pallidus, and subcortical white matter of the temporal parietal cortex, white matter in the anterior and posterior corners of the ventricles and the anterior limb of the internal capsule. The electroencephalograph (EEG) showed hypsarrhythmia. Genetic testing revealed a novel frameshift mutation in the ATP7A gene exon 13 and premature termination codon. Copper replacement therapy was initiated after the delayed diagnosis was established. However, the patient still died several months later due to disease progression. Our case reveals a novel frameshift mutation of the ATP7A gene, which expands the gene spectrum of MD. The infants with uncontrollable convulsions, regressive development, curly hair, MD should be considered at early stage and also need the further genetic analysis to confirm MD finally. The correct and timely diagnosis and initiating copper replacement therapy may improve the prognosis.
Collapse
Affiliation(s)
- Jinrong Li
- Department of Pediatrics, West China Second University Hospital of Sichuan University.,Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Ruolan Hu
- Department of Pediatrics, West China Second University Hospital of Sichuan University.,Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Jialing Wang
- Department of Pediatrics, West China Second University Hospital of Sichuan University.,Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Ruixin Yu
- Department of Pediatrics, West China Second University Hospital of Sichuan University.,Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Fei Xiong
- Department of Pediatrics, West China Second University Hospital of Sichuan University.,Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| | - Mingyan Jiang
- Department of Pediatrics, West China Second University Hospital of Sichuan University.,Ministry of Education Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Mhaske A, Dileep K, Kumar M, Poojary M, Pandhare K, Zhang KY, Scaria V, Binukumar B. ATP7A Clinical Genetics Resource - A comprehensive clinically annotated database and resource for genetic variants in ATP7A gene. Comput Struct Biotechnol J 2020; 18:2347-2356. [PMID: 32994893 PMCID: PMC7501406 DOI: 10.1016/j.csbj.2020.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022] Open
Abstract
ATP7A is a critical copper transporter involved in Menkes Disease, Occipital horn Syndrome and X-linked distal spinal muscular atrophy type 3 which are X linked genetic disorders. These are rare diseases and their genetic epidemiology of the diseases is unknown. A number of genetic variants in the genes have been reported in published literature as well as databases, however, understanding the pathogenicity of variants and genetic epidemiology requires the data to be compiled in a unified format. To this end, we systematically compiled genetic variants from published literature and datasets. Each of the variants were systematically evaluated for evidences with respect to their pathogenicity and classified as per the American College of Medical Genetics and the Association of Molecular Pathologists (ACMG-AMP) guidelines into Pathogenic, Likely Pathogenic, Benign, Likely Benign and Variants of Uncertain Significance. Additional integrative analysis of population genomic datasets provides insights into the genetic epidemiology of the disease through estimation of carrier frequencies in global populations. To deliver a mechanistic explanation for the pathogenicity of selected variants, we also performed molecular modeling studies. Our modeling studies concluded that the small structural distortions observed in the local structures of the protein may lead to the destabilization of the global structure. To the best of our knowledge, ATP7A Clinical Genetics Resource is one of the most comprehensive compendium of variants in the gene providing clinically relevant annotations in gene.
Collapse
Affiliation(s)
- Aditi Mhaske
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India
| | - K.V. Dileep
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mukesh Kumar
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi, India
| | - Mukta Poojary
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi, India
| | - Kavita Pandhare
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi, India
| | - Kam Y.J. Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi, India
- Corresponding author at: CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, Sukhdev Vihar, New Delhi 110025, India.
| | - B.K. Binukumar
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110 025, India
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, Mathura Road, Delhi, India
- Corresponding author at: CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, Sukhdev Vihar, New Delhi 110025, India.
| |
Collapse
|
8
|
Wang RM, Yu H, Yang GM, Xu WQ, Xia N, Zhang Y, Ni W, Dong Y, Wu ZY. Clinical features and outcome of Wilson's disease with generalized epilepsy in Chinese patients. CNS Neurosci Ther 2020; 26:842-850. [PMID: 32281751 PMCID: PMC7366741 DOI: 10.1111/cns.13373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/19/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Generalized epilepsy is rarely reported in patients with Wilson disease (WD) and lacks experience in clinical practice. We aim to provide better experience for the diagnosis and treatment for WD patients with epilepsy in the future. METHODS A retrospective study was performed in 13 Chinese WD patients with generalized epilepsy. Each patient was diagnosed with WD by clinical evaluation and genetic screening. Patients were given small doses of antiepileptic drugs (AEDs), followed by copper-chelation therapy when the seizures stabilized. Clinical manifestations, brain imaging changes, and treatment and outcome after a long-term follow-up were analyzed. RESULTS Four out of 13 (30.8%) patients stopped taking copper-chelation drugs for more than 1 year before they were admitted for epilepsy. The incidence of epilepsy of WD patients in our cohort is 1.43% (13/910), lower than those (4.5%-5.9%) in other populations. After the attack of epilepsy, frontal lobes were the most common abnormalities (13/13, 100%) in patients, followed by brain stem (8/13, 61.5%) and thalamus (7/13, 53.8%). After a long-term follow-up, brain imaging and clinical manifestations of 8 (8/9, 88.9%) WD patients were significantly improved. CONCLUSIONS We firstly described WD patients with generalized epilepsy in the Chinese population. WD patients with aggravation of neuropsychiatric symptoms are prone to occur epilepsy; thus, brain MRI should be performed regularly in those patients. Cortical abnormality in brain MRI is a warning sign of epilepsy. Irregular use of copper-chelation drugs and excessive copper deposition in the brain may be the cause of seizures. Long-term standardized treatment for WD can effectively prevent the extensive brain damage and reduce the incidence of epilepsy in WD patients.
Collapse
Affiliation(s)
- Rou-Min Wang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Yu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Guo-Min Yang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wan-Qing Xu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Xia
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wang Ni
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Yamada Y, Prosser RA. Copper in the suprachiasmatic circadian clock: A possible link between multiple circadian oscillators. Eur J Neurosci 2018; 51:47-70. [PMID: 30269387 DOI: 10.1111/ejn.14181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
Abstract
The mammalian circadian clock in the suprachiasmatic nucleus (SCN) is very robust, able to coordinate our daily physiological and behavioral rhythms with exquisite accuracy. Simultaneously, the SCN clock is highly sensitive to environmental timing cues such as the solar cycle. This duality of resiliency and sensitivity may be sustained in part by a complex intertwining of three cellular oscillators: transcription/translation, metabolic/redox, and membrane excitability. We suggest here that one of the links connecting these oscillators may be forged from copper (Cu). Cellular Cu levels are highly regulated in the brain and peripherally, and Cu affects cellular metabolism, redox state, cell signaling, and transcription. We have shown that both Cu chelation and application induce nighttime phase shifts of the SCN clock in vitro and that these treatments affect glutamate, N-methyl-D-aspartate receptor, and associated signaling processes differently. More recently we found that Cu induces mitogen-activated protein kinase-dependent phase shifts, while the mechanisms by which Cu removal induces phase shifts remain unclear. Lastly, we have found that two Cu transporters are expressed in the SCN, and that one of these transporters (ATP7A) exhibits a day/night rhythm. Our results suggest that Cu homeostasis is tightly regulated in the SCN, and that changes in Cu levels may serve as a time cue for the circadian clock. We discuss these findings in light of the existing literature and current models of multiple coupled circadian oscillators in the SCN.
Collapse
Affiliation(s)
- Yukihiro Yamada
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| | - Rebecca A Prosser
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
10
|
Caicedo-Herrera G, Candelo E, Pinilla J, Vidal A, Cruz S, Pachajoa HM. Novel ATP7A gene mutation in a patient with Menkes disease. APPLICATION OF CLINICAL GENETICS 2018; 11:151-155. [PMID: 30538525 PMCID: PMC6254535 DOI: 10.2147/tacg.s180087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background Menkes disease is a congenital neurodegenerative disorder caused by ATP7A gene mutations. Clinical features include epilepsy, growth delay, reduced muscle strength, skin laxity, abnormal hair, and urologic abnormalities. Case presentation We describe an infant with developmental delay, neurologic degeneration, and kinky hair. Molecular test revealed a novel heterozygous mutation in exon 21 of the ATP7A gene. The genotype and phenotype of the patient were compared with those of the patients reported in the literature. Conclusion We propose that this mutation caused a dysfunctional protein resulting in classical Menkes disease. This case adds to the spectrum of pathogenic variants of the ATP7A gene known to cause disease.
Collapse
Affiliation(s)
| | | | - Juan Pinilla
- Dermatology, Fundación Valle Del Lili, Cali, Colombia,
| | - Andrés Vidal
- Dermatology, Fundación Valle Del Lili, Cali, Colombia,
| | - Santiago Cruz
- Paediatric Neurology, Fundación Valle Del Lili, Cali, Colombia,
| | - Harry Mauricio Pachajoa
- Health Sciences Faculty, Universidad Icesi, Cali, Colombia, .,Dermatology, Fundación Valle Del Lili, Cali, Colombia, .,Paediatric Neurology, Fundación Valle Del Lili, Cali, Colombia, .,Department of Genetics, Fundación Valle Del Lili, Cali, Colombia,
| |
Collapse
|
11
|
Abstract
West syndrome (WS) is an early life epileptic encephalopathy associated with infantile spasms, interictal electroencephalography (EEG) abnormalities including high amplitude, disorganized background with multifocal epileptic spikes (hypsarrhythmia), and often neurodevelopmental impairments. Approximately 64% of the patients have structural, metabolic, genetic, or infectious etiologies and, in the rest, the etiology is unknown. Here we review the contribution of etiologies due to various metabolic disorders in the pathology of WS. These may include metabolic errors in organic molecules involved in amino acid and glucose metabolism, fatty acid oxidation, metal metabolism, pyridoxine deficiency or dependency, or acidurias in organelles such as mitochondria and lysosomes. We discuss the biochemical, clinical, and EEG features of these disorders as well as the evidence of how they may be implicated in the pathogenesis and treatment of WS. The early recognition of these etiologies in some cases may permit early interventions that may improve the course of the disease.
Collapse
Affiliation(s)
- Seda Salar
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Solomon L. Moshé
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Department of PediatricsMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Aristea S. Galanopoulou
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| |
Collapse
|
12
|
Affiliation(s)
- Ursula Geronzi
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| | - Federica Lotti
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| | - Salvatore Grosso
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| |
Collapse
|
13
|
Cao B, Yang X, Chen Y, Huang Q, Wu Y, Gu Q, Xiao J, Yang H, Pan H, Chen J, Sun Y, Ren L, Zhao C, Deng Y, Yang Y, Chang X, Yang Z, Zhang Y, Niu Z, Wang J, Wu X, Wang J, Jiang Y. Identification of novel ATP7A mutations and prenatal diagnosis in Chinese patients with Menkes disease. Metab Brain Dis 2017; 32:1123-1131. [PMID: 28397151 DOI: 10.1007/s11011-017-9985-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/28/2017] [Indexed: 11/28/2022]
Abstract
Menkes disease (MD) is a fatal X-linked multisystem disease caused by mutations in ATP7A. In this study, clinical and genetic analysis was performed in 24 male MD patients. Development delay, seizures, kinky coarse hair, and dystonia were found in 24, 22, 24, and 24 patients, respectively. Serum ceruloplasmin/copper tested in 19 patients was low. Abnormal classic features of MD presented in the MRI/MRA of 19 patients. Seventeen mutations of ATP7A were identified in 22 patients. Twelve were novel mutations including three small deletion/insertion, one missense mutation, two nonsense mutations, three splicing-site mutations, and three gross deletions. Twenty-two patients were genetically diagnosed; neither point mutation nor deletion/duplication was found in two of them. c.2179G > A found in five patients might be a hot-spot mutation. Prenatal molecular diagnosis was performed for five unrelated fetuses (1 female and 4 male), which found four fetuses to be wild type and one male carried the same mutation as the proband. This study of the largest sample of Chinese MD patients examined to date discovered the unique phenotype and genotype spectrum in Chinese patients with 12 novel mutations of ATP7A, and that c.2179G > A might be a hot-spot mutation in MD patients. Five successful prenatal diagnosis contributed important information for MD families.
Collapse
Affiliation(s)
- Binbin Cao
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Xiaoping Yang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Yinyin Chen
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Qionghui Huang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
- Department of Pediatrics, Peking University People's Hospital, Beijing, 100044, China
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Qiang Gu
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Jiangxi Xiao
- Department of Radiology, Peking University First Hospital, Beijing, 100034, China
| | - Huixia Yang
- Department of Obstetrics, Peking University First Hospital, Beijing, 100034, China
| | - Hong Pan
- Department of Central Lab, Peking University First Hospital, Beijing, 100034, China
| | - Junya Chen
- Department of Obstetrics, Peking University First Hospital, Beijing, 100034, China
| | - Yu Sun
- Department of Obstetrics, Peking University First Hospital, Beijing, 100034, China
| | - Li Ren
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Chengfeng Zhao
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
- Department of Epilepsy, Central Hospital of Jiamusi, Jiamusi University, Jiamusi, Heilongjiang Province, 154007, China
| | - Yanhua Deng
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Xingzhi Chang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Zhengping Niu
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Juli Wang
- Department of Epilepsy, Central Hospital of Jiamusi, Jiamusi University, Jiamusi, Heilongjiang Province, 154007, China
| | - Xiru Wu
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China
| | - Jingmin Wang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China.
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, No. 1 Xi'anmen Street, West District, Beijing, 100034, China.
| |
Collapse
|
14
|
Sharma S, Prasad AN. Inborn Errors of Metabolism and Epilepsy: Current Understanding, Diagnosis, and Treatment Approaches. Int J Mol Sci 2017; 18:ijms18071384. [PMID: 28671587 PMCID: PMC5535877 DOI: 10.3390/ijms18071384] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 12/22/2022] Open
Abstract
Inborn errors of metabolism (IEM) are a rare cause of epilepsy, but seizures and epilepsy are frequently encountered in patients with IEM. Since these disorders are related to inherited enzyme deficiencies with resulting effects on metabolic/biochemical pathways, the term “metabolic epilepsy” can be used to include these conditions. These epilepsies can present across the life span, and share features of refractoriness to anti-epileptic drugs, and are often associated with co-morbid developmental delay/regression, intellectual, and behavioral impairments. Some of these disorders are amenable to specific treatment interventions; hence timely and appropriate diagnosis is critical to improve outcomes. In this review, we discuss those disorders in which epilepsy is a dominant feature and present an approach to the clinical recognition, diagnosis, and management of these disorders, with a greater focus on primarily treatable conditions. Finally, we propose a tiered approach that will permit a clinician to systematically investigate, identify, and treat these rare disorders.
Collapse
Affiliation(s)
- Suvasini Sharma
- Department of Pediatrics, Lady Hardinge Medical College, New Delhi 110001, India.
| | - Asuri N Prasad
- Department of Pediatrics and Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Children's Hospital of Western Ontario and London Health Sciences Centre, London, ON N6A5W9, Canada.
| |
Collapse
|
15
|
Lin YJ, Ho CS, Hsu CH, Lin JL, Chuang CK, Tsai JD, Chiu NC, Lin HY, Lin SP. A Truncating De Novo Point Mutation in a Young Infant with Severe Menkes Disease. Pediatr Neonatol 2017; 58:89-92. [PMID: 25771438 DOI: 10.1016/j.pedneo.2014.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/22/2014] [Accepted: 05/07/2014] [Indexed: 01/16/2023] Open
Abstract
Menkes disease is a rare neurodegenerative disorder caused by mutations in ATP7A gene. Deficiency in copper-dependent enzymes results in the unique kinky hair appearance, neurodegeneration, developmental delay, seizures, failure to thrive and other connective tissue or organ abnormalities. Other than biochemical tests, DNA-based diagnosis is now playing an important role. More than two hundred mutations in ATP7A gene were identified. Early copper supplementation can help improve neurological symptoms, but not non-neurological problems. Further molecular studies are needed to identify additional mutation types and to understand the mechanism of pathogenesis. This may help in discovering the possible treatment measures to cure the disease. We present a case with the clinical features and biochemical findings, abnormal brain magnetic resonance imaging as well as the effects of treatment with copper-histidine. Direct sequencing of ATP7A gene revealed a de novo point mutation which resulted in an early stop codon with truncated protein.
Collapse
Affiliation(s)
- Yi-Jie Lin
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Che-Sheng Ho
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chyong-Hsin Hsu
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Ju-Li Lin
- Division of Medical Genetics, Department of Pediatrics, Chang-Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Chih-Kuang Chuang
- Division of Biochemical Genetics, Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Jen-Daw Tsai
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan
| | - Nan-Chang Chiu
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Department of Early Childhood Care and Education, Mackay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan
| | - Hsiang-Yu Lin
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Division of Biochemical Genetics, Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Early Childhood Care and Education, Mackay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan
| | - Shuan-Pei Lin
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Division of Biochemical Genetics, Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Early Childhood Care and Education, Mackay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan.
| |
Collapse
|
16
|
Abstract
Inborn errors of metabolism (IEM) are rare conditions that represent more than 1000 diseases, with a global prevalence of approximately 1:2000 individuals. Approximately, 40%-60% of IEM may present with epilepsy as one of the main neurologic signs. Epilepsy in IEM may appear at any age (fetal, newborn, infant, adolescent, or even adult). Different pathophysiological mechanisms may be responsible for the clinical phenotype, such as disturbances in energy metabolism (mitochondrial and fatty oxidation disorders, GLUT-1, and cerebral creatine deficiency), accumulation of complex molecules (lysosomal storage disorders), toxic mechanisms (organic acidurias and urea cycle disorders), or impairment of neurotransmission. Early diagnosis and, in some cases, an effective treatment may result in an excellent evolution of the IEM, in particularly seizure control. This review attempts to delineate a summary of IEM that may present with seizures or epilepsy and emphasizes the management in treatable conditions.
Collapse
Affiliation(s)
- Jaume Campistol
- From the *Neurology Department, Hospital Sant Joan de Déu, Barcelona University, Barcelona, Spain; Center for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; Institute of Pediatric Research, Sant Joan de Déu, Barcelona, Spain.
| |
Collapse
|
17
|
Abstract
Disorders of copper homeostasis are currently recognized across the life span. Their recognition and links to human disease have spanned several decades, beginning with the recognition of a degenerative disorder in the offspring of sheep grazing in copper-deficient pastures, through to the description of infants suffering from a progressive neurodegenerative disorder characterized by epileptic seizures, developmental regression, failure to thrive, and an unusual hair quality (giving the condition its distinctive label of “kinky hair disease”). In this review, we trace the historical background and describe the biochemistry and physiology of copper metabolism and transport, inheritance patterns, molecular genetics, and genotype–phenotype correlations based on current understanding of the disorder. It is clear from the clinical presentations and variants that disorders of copper homeostasis include phenotypes ranging from mild occipital horn syndrome to intermediate and severe forms of classical Menkes disease. The symptoms involve multiple organ systems such as brain, lung, gastrointestinal tract, urinary tract, connective tissue, and skin. A multisystem disorder needs a multidisciplinary approach to care, as treatment interventions permit longer survival for some individuals. Animal models have been developed to help screen treatment options and provide a better understanding of these disorders in the laboratory. Finally, we propose a multidisciplinary approach to promote continued research (both basic and clinical) to improve survival, quality of life, and care for these conditions.
Collapse
Affiliation(s)
| | - Asuri N Prasad
- Department of Pediatrics; Section of Pediatric Neurology; Division of Clinical Neurological Sciences; Child Health Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
18
|
Dahmoush HM, Melhem ER, Vossough A. Metabolic, endocrine, and other genetic disorders. HANDBOOK OF CLINICAL NEUROLOGY 2016; 136:1221-1259. [PMID: 27430466 DOI: 10.1016/b978-0-444-53486-6.00063-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Metabolic, endocrine, and genetic diseases of the brain include a very large array of disorders caused by a wide range of underlying abnormalities and involving a variety of brain structures. Often these disorders manifest as recognizable, though sometimes overlapping, patterns on neuroimaging studies that may enable a diagnosis based on imaging or may alternatively provide enough clues to direct further diagnostic evaluation. The diagnostic workup can include various biochemical laboratory or genetic studies. In this chapter, after a brief review of normal white-matter development, we will describe a variety of leukodystrophies resulting from metabolic disorders involving the brain, including mitochondrial and respiratory chain diseases. We will then describe various acidurias, urea cycle disorders, disorders related to copper and iron metabolism, and disorders of ganglioside and mucopolysaccharide metabolism. Lastly, various other hypomyelinating and dysmyelinating leukodystrophies, including vanishing white-matter disease, megalencephalic leukoencephalopathy with subcortical cysts, and oculocerebrorenal syndrome will be presented. In the following section on endocrine disorders, we will examine various disorders of the hypothalamic-pituitary axis, including developmental, inflammatory, and neoplastic diseases. Neonatal hypoglycemia will also be briefly reviewed. In the final section, we will review a few of the common genetic phakomatoses. Throughout the text, both imaging and brief clinical features of the various disorders will be discussed.
Collapse
Affiliation(s)
- Hisham M Dahmoush
- Department of Radiology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Elias R Melhem
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Arastoo Vossough
- Department of Radiology, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Lenartowicz M, Krzeptowski W, Lipiński P, Grzmil P, Starzyński R, Pierzchała O, Møller LB. Mottled Mice and Non-Mammalian Models of Menkes Disease. Front Mol Neurosci 2015; 8:72. [PMID: 26732058 PMCID: PMC4684000 DOI: 10.3389/fnmol.2015.00072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/06/2015] [Indexed: 12/27/2022] Open
Abstract
Menkes disease is a multi-systemic copper metabolism disorder caused by mutations in the X-linked ATP7A gene and characterized by progressive neurodegeneration and severe connective tissue defects. The ATP7A protein is a copper (Cu)-transporting ATPase expressed in all tissues and plays a critical role in the maintenance of copper homeostasis in cells of the whole body. ATP7A participates in copper absorption in the small intestine and in copper transport to the central nervous system (CNS) across the blood-brain-barrier (BBB) and blood–cerebrospinal fluid barrier (BCSFB). Cu is essential for synaptogenesis and axonal development. In cells, ATP7A participates in the incorporation of copper into Cu-dependent enzymes during the course of its maturation in the secretory pathway. There is a high degree of homology (>80%) between the human ATP7A and murine Atp7a genes. Mice with mutations in the Atp7a gene, called mottled mutants, are well-established and excellent models of Menkes disease. Mottled mutants closely recapitulate the Menkes phenotype and are invaluable for studying Cu-metabolism. They provide useful models for exploring and testing new forms of therapy in Menkes disease. Recently, non-mammalian models of Menkes disease, Drosophila melanogaster and Danio rerio mutants were used in experiments which would be technically difficult to carry out in mammals.
Collapse
Affiliation(s)
- Małgorzata Lenartowicz
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Wojciech Krzeptowski
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences Wólka Kosowska, Poland
| | - Paweł Grzmil
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Rafał Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences Wólka Kosowska, Poland
| | - Olga Pierzchała
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University Kraków, Poland
| | - Lisbeth Birk Møller
- Applied Human Molecular Genetics, Kennedy Center, Rigshospitalet, Copenhagen University Hospital Glostrup, Denmark
| |
Collapse
|
20
|
Costa LSDA, Pegler SP, Lellis RF, Krebs VLJ, Robertson S, Morgan T, Honjo RS, Bertola DR, Kim CA. Menkes disease: importance of diagnosis with molecular analysis in the neonatal period. Rev Assoc Med Bras (1992) 2015; 61:407-10. [DOI: 10.1590/1806-9282.61.05.407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/07/2014] [Indexed: 02/05/2023] Open
Abstract
Summary Menkes disease is a congenital disorder caused by changes in copper metabolism derived from mutations in the ATP7A gene. It is characterized by physical and neurological alterations. In the neonatal period, these alterations can be nonspecific, which makes early diagnosis a challenge. Diagnosis can be suspected when there are low levels of ceruloplasmin and serum copper. Molecular analysis confirms the diagnosis. Treatment is parenteral administration of copper histidine. We report a familial case with molecular confirmation. The proband had clinical and biochemical suspicious. Treatment with copper histidine was indicated, but initiated at the age of 2 months and 27 days only. He did not present improvements and died at 6 months. The mother became pregnant again, a male fetus was identified and copper histidine was manufactured during pregnancy. He was born healthy, biochemical markers were reduced and treatment was indicated. Molecular analysis was performed confirming mutation in both the mother and the proband, while the other son did not have mutation, so treatment was discontinued. We support the clinical relevance of molecular confirmation for the correct diagnosis and genetic counseling, once clinical findings in the neonatal period are nonspecific and early treatment with parenteral copper histidine must be indicated.
Collapse
|
21
|
Lee JS, Lim BC, Kim KJ, Hwang YS, Cheon JE, Kim IO, Seong MW, Park SS, Chae JH. Menkes disease in Korea: ATP7A mutation and epilepsy phenotype. Brain Dev 2015; 37:223-9. [PMID: 24882692 DOI: 10.1016/j.braindev.2014.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Menkes disease (MD) is an X-linked recessive disorder characterized by progressive neuro-degeneration. There are few reports of epilepsy and electroencephalography (EEG) findings and few reports of MD patients in Korea. We explored MD genotypes and phenotypes, including epilepsy, in Korean patients. PATIENTS AND METHODS All patients diagnosed as MD in our hospital, seven males, were included in this study. Their medical records and EEG findings were reviewed retrospectively. RESULTS All male patients had developmental delay/regression with hypotonia, and the appearance of their hair and skin was characteristic of MD. A recurrent missense mutation was found in two patients. Two nonsense mutations and one gross deletion were also found. The five male patients with identified molecular defects experienced anticonvulsant-resistant seizures. EEGs in focal seizures usually revealed interictal focal epileptiform discharges over the posterior region without focal slowing. This was followed by modified hypsarrhythmia with less polymorphic background activity in spasms and anteriorly dominant diffuse slowing with generalized and multifocal epileptiform discharges in myoclonic or generalized tonic seizures. Two patients with the same G727R missense mutation both developed seizures that evolved with age but differed in severity. CONCLUSIONS G727R missense mutation may be relatively common in Korea, as in other countries. There was no clear correlation of genotype with phenotype, even in epilepsy and EEG abnormalities.
Collapse
Affiliation(s)
- Jin Sook Lee
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, South Korea, Seoul National University College of Medicine, South Korea
| | - Byung Chan Lim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, South Korea, Seoul National University College of Medicine, South Korea
| | - Ki Joong Kim
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, South Korea, Seoul National University College of Medicine, South Korea
| | - Yong Seung Hwang
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, South Korea, Seoul National University College of Medicine, South Korea
| | - Jung-Eun Cheon
- Department of Radiology, Seoul National University College of Medicine, South Korea
| | - In-One Kim
- Department of Radiology, Seoul National University College of Medicine, South Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, South Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University Hospital, South Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, South Korea, Seoul National University College of Medicine, South Korea.
| |
Collapse
|
22
|
Zlatic S, Comstra HS, Gokhale A, Petris MJ, Faundez V. Molecular basis of neurodegeneration and neurodevelopmental defects in Menkes disease. Neurobiol Dis 2015; 81:154-61. [PMID: 25583185 DOI: 10.1016/j.nbd.2014.12.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/04/2014] [Accepted: 12/23/2014] [Indexed: 12/16/2022] Open
Abstract
ATP7A mutations impair copper metabolism resulting in three distinct genetic disorders in humans. These diseases are characterized by neurological phenotypes ranging from intellectual disability to neurodegeneration. Severe ATP7A loss-of-function alleles trigger Menkes disease, a copper deficiency condition where systemic and neurodegenerative phenotypes dominate clinical outcomes. The pathogenesis of these manifestations has been attributed to the hypoactivity of a limited number of copper-dependent enzymes, a hypothesis that we refer as the oligoenzymatic pathogenic hypothesis. This hypothesis, which has dominated the field for 25 years, only explains some systemic Menkes phenotypes. However, we argue that this hypothesis does not fully account for the Menkes neurodegeneration or neurodevelopmental phenotypes. Here, we propose revisions of the oligoenzymatic hypothesis that could illuminate the pathogenesis of Menkes neurodegeneration and neurodevelopmental defects through unsuspected overlap with other neurological conditions including Parkinson's, intellectual disability, and schizophrenia.
Collapse
Affiliation(s)
- Stephanie Zlatic
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Avanti Gokhale
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; Center for Social Translational Neuroscience, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
23
|
Menkes disease presenting with epilepsia partialis continua. Case Rep Neurol Med 2014; 2014:525784. [PMID: 25506448 PMCID: PMC4258917 DOI: 10.1155/2014/525784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 11/04/2014] [Accepted: 11/10/2014] [Indexed: 11/18/2022] Open
Abstract
Aim. We aim to describe a female patient with Menkes disease who presented with epilepsia partialis continua. Case Presentation. Seventeen-months-old Saudi infant was presented with repetitive seizures and was diagnosed to have epilepsia partialis continua. Discussion. Menkes disease (OMIM: 309400) is considered a rare, X-linked recessive neurodegenerative disorder resulting from a mutation in the gene coding for the copper transporting ATPase (ATP7A). Affected individuals usually present with kinky hair, skeletal changes, prolonged jaundice, hypothermia, developmental regression, decreased tone, spasticity, weakness, and therapy resistant seizures. Conclusion. Raising awareness of abnormal presentation of this rare disease may help in the control of seizures through subcutaneous copper supplementation.
Collapse
|
24
|
Castro PA, Ramirez A, Sepúlveda FJ, Peters C, Fierro H, Waldron J, Luza S, Fuentealba J, Muñoz FJ, De Ferrari GV, Bush AI, Aguayo LG, Opazo CM. Copper-uptake is critical for the down regulation of synapsin and dynamin induced by neocuproine: modulation of synaptic activity in hippocampal neurons. Front Aging Neurosci 2014; 6:319. [PMID: 25520655 PMCID: PMC4253966 DOI: 10.3389/fnagi.2014.00319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/30/2014] [Indexed: 01/08/2023] Open
Abstract
Extracellular and intracellular copper and zinc regulate synaptic activity and plasticity, which may impact brain functionality and human behavior. We have found that a metal coordinating molecule, Neocuproine, transiently increases free intracellular copper and zinc levels (i.e., min) in hippocampal neurons as monitored by Phen Green and FluoZin-3 fluorescence, respectively. The changes in free intracellular zinc induced by Neocuproine were abolished by the presence of a non-permeant copper chelator, Bathocuproine (BC), indicating that copper influx is needed for the action of Neocuproine on intracellular Zn levels. Moreover, Neocuproine decreased the mRNA levels of Synapsin and Dynamin, and did not affect the expression of Bassoon, tubulin or superoxide dismutase (SOD). Western blot analysis showed that protein levels of synapsin and dynamin were also down regulated in the presence of Neocuproine and that these changes were accompanied by a decrease in calcium transients and neuronal activity. Furthermore, Neocuproine decreased the number of active neurons, effect that was blocked by the presence of BC, indicating that copper influx is needed for the action of Neocuproine. We finally show that Neocuproine blocks the epileptiform-like activity induced by bicuculline in hippocampal neurons. Collectively, our data indicates that presynaptic protein configuration and function of primary hippocampal neurons is sensitive to transient changes in transition metal homeostasis. Therefore, small molecules able to coordinate transition metals and penetrate the blood-brain barrier might modify neurotransmission at the Central Nervous System (CNS). This might be useful to establish therapeutic approaches to control the neuronal hyperexcitabiltity observed in brain conditions that are associated to copper dyshomeotasis such as Alzheimer’s and Menkes diseases. Our work also opens a new avenue to find novel and effective antiepilepsy drugs based in metal coordinating molecules.
Collapse
Affiliation(s)
- Patricio A Castro
- Department of Physiology and Membrane Biology, Shriners Hospital for Children Northern California, University of California at Davis School of Medicine California, USA
| | - Alejandra Ramirez
- Laboratorio de Neurofisiología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción Concepción, Chile ; Oxidation Biology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, Melbourne, Victoria, Australia
| | - Fernando J Sepúlveda
- Laboratorio de Neurofisiología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción Concepción, Chile
| | - Christian Peters
- Laboratorio de Neurofisiología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción Concepción, Chile
| | - Humberto Fierro
- Laboratorio de Neurofisiología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción Concepción, Chile
| | - Javier Waldron
- Laboratorio de Neurofisiología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción Concepción, Chile
| | - Sandra Luza
- Oxidation Biology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, Melbourne, Victoria, Australia
| | - Jorge Fuentealba
- Laboratorio de Neurofisiología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción Concepción, Chile
| | - Francisco J Muñoz
- Laboratory of Molecular Physiology and Channelopathies, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra Barcelona, Spain
| | - Giancarlo V De Ferrari
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Universidad Andrés Bello Santiago, Chile
| | - Ashley I Bush
- Oxidation Biology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, Melbourne, Victoria, Australia
| | - Luis G Aguayo
- Laboratorio de Neurofisiología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción Concepción, Chile
| | - Carlos M Opazo
- Oxidation Biology Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne Parkville, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Verrotti A, Carelli A, Coppola G. Epilepsy in children with Menkes disease: a systematic review of literature. J Child Neurol 2014; 29:1757-64. [PMID: 25038123 DOI: 10.1177/0883073814541469] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Menkes disease is a lethal multisystemic disorder of copper metabolism characterized by connective tissue abnormalities, progressive neurodegeneration and peculiar "kinky hair." Epilepsy is one of the main clinical features of this disease but it has been described in detail by only a few authors. Most patients develop seizures from 2 to 3 months of age, accompanied by a neurodevelopmental regression. The history of epilepsy is usually characterized by 3 stages: an early stage with focal clonic seizures and status epilepticus, an intermediate stage with infantile spasms, and a late stage with multifocal, myoclonic, and tonic seizures. At the onset, epilepsy can be controlled with anticonvulsant therapy, whereas with the progression of disease, it becomes extremely resistant to all antiepileptic drugs. In this article, we analyze clinical and electroencephalographic (EEG) characteristics of epilepsy in patients with this syndrome.
Collapse
Affiliation(s)
| | - Alessia Carelli
- Department of Pediatrics, Perugia University, Perugia, Italy
| | | |
Collapse
|
26
|
Verrotti A, Cusmai R, Darra F, Martelli P, Accorsi P, Bergamo S, Bevivino E, Coppola G, Freri E, Grosso S, Matricardi S, Parisi P, Sartori S, Spalice A, Specchio N, Carelli A, Zini D, Dalla Bernardina B, Giordano L. Epilepsy in Menkes disease: an electroclinical long-term study of 28 patients. Epilepsy Res 2014; 108:1597-603. [PMID: 25218893 DOI: 10.1016/j.eplepsyres.2014.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/24/2014] [Accepted: 08/21/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Epilepsy is a frequent and severe feature of Menkes disease (MD) but only few studies described the long-term evolution of these children. We report a series of 28 epileptic MD patients, with clinical characteristics, EEG abnormalities, brain malformations and long-term outcome. METHODS EEG, clinical characteristics and neuroimaging features in 28 MD patients were analyzed at the onset of epilepsy and after long-term follow-up (at least 4 years). We subdivided the patients into two groups: Group 1, 16 patients who received a subcutaneous copper-histidine treatment, and Group 2 including 12 patients who did not get any therapies. RESULTS The large majority of our patients presented at the onset of epilepsy focal seizures (FS) and infantile spasms (IS). Five patients had recurrent status epilepticus (SE). During the follow-up, patients showed multiple seizure types: 6 patients had generalized tonic clonic seizures (GCT), 6 patients presented IS, 10 children had FS, 11 had myoclonic jerks and 3 had SE. Therapy with various antiepileptic drugs had poor efficacy, except in three patients who showed seizure disappearance with consequent discontinuation of antiepileptic therapy. There was no difference of neurological outcome among the two groups analyzed. CONCLUSIONS Epilepsy in MD is a difficult to treat problem. At the onset, the most frequent type of seizures are FC and IS; in the next months, other kinds of seizures can appear. Many children are drug resistant. Institution of replacement therapy with copper-histidine seems to be not beneficial for epilepsy.
Collapse
Affiliation(s)
| | - Raffaella Cusmai
- Division of Neurology, Metabolic Unit "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | | | - Paola Martelli
- Child Neuropsychiatry, Regional Epilepsy Center, Brescia, Italy
| | | | - Silvia Bergamo
- Pediatric Neurology Unit, Department of Women's and Children's Health, University and City Hospital of Padua, Italy
| | - Elsa Bevivino
- Division of Neurology, Metabolic Unit "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - Giangennaro Coppola
- Child and Adolescent Neuropsychiatry, Faculty of Medicine and Surgery, University of Salerno, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Carlo Besta Neurological Institute, Milan, Italy
| | - Salvatore Grosso
- Pediatric Neurology-Immunology and Endocrinology Unit, Department of Pediatrics, University of Siena, Siena, Italy
| | - Sara Matricardi
- Department of Pediatric Neuroscience, Carlo Besta Neurological Institute, Milan, Italy
| | - Pasquale Parisi
- Child Neurology, Chair of Pediatrics, II Faculty of Medicine, "La Sapienza" University, Rome, Italy
| | - Stefano Sartori
- Pediatric Neurology Unit, Department of Women's and Children's Health, University and City Hospital of Padua, Italy
| | - Alberto Spalice
- Department of Pediatrics, University of Rome "La Sapienza", Rome, Italy
| | - Nicola Specchio
- Division of Neurology, Metabolic Unit "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | | | - Daniela Zini
- Child Neuropsychiatry, University of Verona, Verona, Italy
| | | | - Lucio Giordano
- Child Neuropsychiatry, Regional Epilepsy Center, Brescia, Italy
| |
Collapse
|
27
|
Gaier ED, Eipper BA, Mains RE. Pam heterozygous mice reveal essential role for Cu in amygdalar behavioral and synaptic function. Ann N Y Acad Sci 2014; 1314:15-23. [PMID: 24593825 DOI: 10.1111/nyas.12378] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Copper (Cu) is an essential element with many biological roles, but its roles in the mammalian nervous system are poorly understood. Mice deficient in the cuproenzyme peptidylglycine α-amidating monooxygenase (Pam(+/-) mice) were initially generated to study neuropeptide amidation. Pam(+/-) mice exhibit profound deficits in a few behavioral tasks, including enhancements in innate fear along with deficits in acquired fear. Interestingly, several Pam(+/-) phenotypes were recapitulated in Cu-restricted wild-type mice and rescued in Cu-supplemented Pam(+/-) mice. These behaviors correspond to enhanced excitability and deficient synaptic plasticity in the amygdala of Pam(+/-) mice, which are also rescued by Cu supplementation. Cu and ATP7A are present at synapses, in key positions to respond to and influence synaptic activity. Further study demonstrated that extracellular Cu is necessary for wild-type synaptic plasticity and sufficient to induce long-term potentiation. These experiments support roles for PAM in Cu homeostasis and for synaptic Cu in amygdalar function.
Collapse
Affiliation(s)
- Eric D Gaier
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | | | | |
Collapse
|
28
|
Gala L, Lawson M, Jomova K, Zelenicky L, Congradyova A, Mazur M, Valko M. EPR spectroscopy of a clinically active (1:2) copper(II)-histidine complex used in the treatment of Menkes disease: a Fourier transform analysis of a fluid CW-EPR spectrum. Molecules 2014; 19:980-91. [PMID: 24434671 PMCID: PMC6271212 DOI: 10.3390/molecules19010980] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/23/2013] [Accepted: 12/26/2013] [Indexed: 11/16/2022] Open
Abstract
Redox active transition metal ions (e.g., iron and copper) have been implicated in the etiology of many oxidative stress-related diseases including also neurodegenerative disorders. Unbound copper can catalyze formation of reactive oxygen species (hydroxyl radicals) via Fenton reaction/Haber–Weiss chemistry and therefore, under physiological conditions, free copper is potentially toxic and very rarely exists inside cells. Copper(II) bound to the aminoacid l-histidine represents a species discovered in blood in the mid 60s and since then extensive research on this complex was carried out. Copper bound to l-histidine represents an exchangeable pool of copper(II) in equilibrium with the most abundant blood plasma protein, human serum albumin. The structure of this complex, in aqueous solution, has been a subject of many studies and reviews, however without convincing success. The significance of the (1:2) copper(II)-l-histidine complex at physiological pH documents its therapeutic applications in the treatment of Menkes disease and more recently in the treatment of infantile hypertrophic cardioencephalomyopathy. While recently the (1:2) Cu(II)-l-His complex has been successfully crystallized and the crystal structure was solved by X-ray diffraction, the structure of the complex in fluid solution at physiological pH is not satisfactorily known. The aim of this paper is to study the (1:2) Cu(II)-l-histidine complex at low temperatures by X-band and S-band EPR spectroscopy and at physiological pH at room temperature by Fourier transform CW-EPR spectroscopy.
Collapse
Affiliation(s)
- Lukas Gala
- Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava SK-812 37, Slovakia.
| | - Michael Lawson
- Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava SK-812 37, Slovakia.
| | - Klaudia Jomova
- Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava SK-812 37, Slovakia.
| | - Lubomir Zelenicky
- Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava SK-812 37, Slovakia.
| | - Andrea Congradyova
- Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava SK-812 37, Slovakia.
| | - Milan Mazur
- Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava SK-812 37, Slovakia.
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak Technical University, Bratislava SK-812 37, Slovakia.
| |
Collapse
|
29
|
Electro-clinical features and magnetic resonance imaging correlates in Menkes disease. Brain Dev 2013; 35:398-405. [PMID: 22921468 DOI: 10.1016/j.braindev.2012.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 11/22/2022]
Abstract
BACKGROUND Epilepsy is an early and important feature in Menkes disease (MD), an X-linked recessive neurodegenerative disorder of childhood with defect in copper metabolism. There are only few reports on the electro-clinical and magnetic resonance imaging correlates in Menkes disease. The current study describes the electro-clinical features in MD in relation with the structural findings on MRI. PATIENTS AND METHODS Six patients from five families were evaluated between 2005 and 2011. Their diagnosis was based on the characteristic morphological features, microscopic evidence of pili torti and low copper and ceruloplasmin levels. All the patients underwent MRI and EEG as part of the evaluation. RESULTS All patients had classical form of MD with typical morphological features. All but one patient had refractory seizures. Seizure types included multifocal clonic seizures (n=3), myoclonic jerks (n=4) and tonic spasms (n=1). EEG was markedly abnormal in all except in the patient without clinical seizures. While focal epileptiform discharges predominated before six months of age modified hypsarrhythmia was characteristically noted thereafter. MR Imaging revealed abnormalities in all patients, with cerebral atrophy and delayed myelination being the most common observations. Other features noted were subdural effusion (n=3), leukoencephalopathy (n=3) and basal ganglia signal changes (n=1). Follow up imaging in three patients showed resolution of white matter signal intensity changes. CONCLUSIONS Electro-clinical features in Menkes disease are age dependent and evolve sequentially. White matter changes coincided with acute exacerbation of seizures. There was fair correlation between the electro-clinical features and structural findings on MRI.
Collapse
|
30
|
Abstract
Seizures may be the first and the major presenting feature of an inborn error of metabolism (IEM), for example in a neonate with pyridoxine-dependent epilepsy. In other IEMs, seizures may be preceded by other major symptoms: by a reduced level of consciousness in a child with an organic acidaemia or urea cycle defect; or by loss of skills, progressive weakness, ataxia, and upper motor signs in a child with a lysosomal storage disorder or peroxisomal leukodystrophy. This review concentrates on those IEMs for which specific treatment is available. The common metabolic causes of seizures vary according to the age at presentation. Features from the history, examination, imaging, and first line biochemical investigations can all provide clues to an inborn error. This review attempts to delineate these and to provide a guide to the specific tests that can be used to make the diagnosis of disorders with specific treatment.
Collapse
Affiliation(s)
- Shamima Rahman
- Clinical and Molecular Genetics and Neurosciences Units, University College London Institute of Child Health, London and Metabolic and Neurosciences Units, Great Ormond Street Hospital for Children NHS Trust, London, UK.
| | | | | | | |
Collapse
|
31
|
Gaier ED, Eipper BA, Mains RE. Copper signaling in the mammalian nervous system: synaptic effects. J Neurosci Res 2012; 91:2-19. [PMID: 23115049 DOI: 10.1002/jnr.23143] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 08/05/2012] [Accepted: 08/17/2012] [Indexed: 12/14/2022]
Abstract
Copper is an essential metal present at high levels in the CNS. Its role as a cofactor in mitochondrial ATP production and in essential cuproenzymes is well defined. Menkes and Wilson's diseases are severe neurodegenerative conditions that demonstrate the importance of Cu transport into the secretory pathway. In the brain, intracellular levels of Cu, which is almost entirely protein bound, exceed extracellular levels by more than 100-fold. Cu stored in the secretory pathway is released in a Ca(2+)-dependent manner and can transiently reach concentrations over 100 μM at synapses. The ability of low micromolar levels of Cu to bind to and modulate the function of γ-aminobutyric acid type A (GABA(A)) receptors, N-methyl-D-aspartate (NMDA) receptors, and voltage-gated Ca(2+) channels contributes to its effects on synaptic transmission. Cu also binds to amyloid precursor protein and prion protein; both proteins are found at synapses and brain Cu homeostasis is disrupted in mice lacking either protein. Especially intriguing is the ability of Cu to affect AMP-activated protein kinase (AMPK), a monitor of cellular energy status. Despite this, few investigators have examined the direct effects of Cu on synaptic transmission and plasticity. Although the variability of results demonstrates complex influences of Cu that are highly method sensitive, these studies nevertheless strongly support important roles for endogenous Cu and new roles for Cu-binding proteins in synaptic function/plasticity and behavior. Further study of the many roles of Cu in nervous system function will reveal targets for intervention in other diseases in which Cu homeostasis is disrupted.
Collapse
Affiliation(s)
- E D Gaier
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | |
Collapse
|
32
|
Abstract
The term epileptic encephalopathy is used to describe diffuse brain dysfunction that is caused, at least in part, by some aspect of epilepsy. Early-infantile epileptic encephalopathy (EIEE), West syndrome, late infantile epileptic encephalopathy, and Lennox-Gastaut are four epilepsy syndromes. These epilepsies are also among the most severe with dire consequences including intractable seizures and severe cognitive dysfunction. These epilepsies share several important characteristics: diverse causes; severe and frequent seizures; diffusely abnormal background activity on electroencephalograms that is often profound; medical intractability; and severe consequences for a normal development. Ohtahara proposed that these epilepsies exist on an electroclinical spectrum and that the clinical and electroencephalogram features are dependent on the maturation of the nervous system. One can now add Late Infantile Epileptogenic Encephalopathy (LIEE) or epilepsy with late-onset of epileptic spasms. Recently, similar gene mutations have been found in several different epilepsy syndromes, reinforcing the notion that these epilepsies are not likely to be distinguished based on cause alone. Recognition and accurate classification of these severe epilepsies is important as the first step toward improving treatment and outcomes.
Collapse
Affiliation(s)
- Douglas R Nordli
- Department of Pediatrics, Children's Memorial Hospital, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
33
|
Chwiej J, Dulinska J, Janeczko K, Appel K, Setkowicz Z. Variations in elemental compositions of rat hippocampal formation between acute and latent phases of pilocarpine-induced epilepsy: an X-ray fluorescence microscopy study. J Biol Inorg Chem 2012; 17:731-9. [DOI: 10.1007/s00775-012-0892-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/07/2012] [Indexed: 11/29/2022]
|
34
|
Affiliation(s)
- Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Instituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|