1
|
Mhlanga-Mutangadura T, Bullock G, Cerda-Gonzalez S, Katz ML. Neuronal Ceroid Lipofuscinosis in a Mixed-Breed Dog with a Splice Site Variant in CLN6. Genes (Basel) 2024; 15:661. [PMID: 38927597 PMCID: PMC11203140 DOI: 10.3390/genes15060661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
A 23-month-old neutered male dog of unknown ancestry presented with a history of progressive neurological signs that included anxiety, cognitive impairment, tremors, seizure activity, ataxia, and pronounced visual impairment. The clinical signs were accompanied by global brain atrophy. Due to progression in the severity of disease signs, the dog was euthanized at 26 months of age. An examination of the tissues collected at necropsy revealed dramatic intracellular accumulations of autofluorescent inclusions in the brain, retina, and cardiac muscle. The inclusions were immunopositive for subunit c of mitochondrial ATP synthase, and their ultrastructural appearances were similar to those of lysosomal storage bodies that accumulate in some neuronal ceroid lipofuscinosis (NCL) diseases. The dog also exhibited widespread neuroinflammation. Based on these findings, the dog was deemed likely to have suffered from a form of NCL. A whole genome sequence analysis of the proband's DNA revealed a homozygous C to T substitution that altered the intron 3-exon 4 splice site of CLN6. Other mutations in CLN6 cause NCL diseases in humans and animals, including dogs. The CLN6 protein was undetectable with immunolabeling in the tissues of the proband. Based on the clinical history, fluorescence and electron-microscopy, immunohistochemistry, and molecular genetic findings, the disorder in this dog was classified as an NCL resulting from the absence of the CLN6 protein. Screening the dog's genome for a panel of breed-specific polymorphisms indicated that its ancestry included numerous breeds, with no single breed predominating. This suggests that the CLN6 disease variant is likely to be present in other mixed-breed dogs and at least some ancestral breeds, although it is likely to be rare since other cases have not been reported to date.
Collapse
Affiliation(s)
- Tendai Mhlanga-Mutangadura
- Canine Genetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (T.M.-M.); (G.B.)
| | - Garrett Bullock
- Canine Genetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (T.M.-M.); (G.B.)
| | | | - Martin L. Katz
- Canine Genetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; (T.M.-M.); (G.B.)
- Neurodegenerative Diseases Research Laboratory, Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
2
|
Nicolaou P, Tanteles GA, Votsi C, Zamba-Papanicolaou E, Papacostas SS, Christodoulou K, Christou YP. A Novel CLN6 Variant Associated With Juvenile Neuronal Ceroid Lipofuscinosis in Patients With Absence of Visual Loss as a Presenting Feature. Front Genet 2021; 12:746101. [PMID: 34868216 PMCID: PMC8640139 DOI: 10.3389/fgene.2021.746101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also known as Batten disease, are a group of autosomal recessive lysosomal storage disorders that are characterized by neurodegeneration, progressive cognitive decline, motor impairment, ataxia, loss of vision, seizures, and premature death. To date, pathogenic variants in more than 13 genes have been associated with NCLs. CLN6 encodes an endoplasmic reticulum non-glycosylated transmembrane protein, which is involved in lysosomal acidification. Mutations in CLN6 cause late-infantile juvenile NCL (JNCL) adult-onset NCL, and Kufs disease. Members from two available families with JNCL were clinically evaluated, and samples were collected from consenting individuals. The molecular investigation was performed by whole-exome sequencing, Sanger sequencing, and family segregation analysis. Furthermore, in silico prediction analysis and structural modeling of the identified CLN6 variants were performed. We report clinical and genetic findings of three patients from two Greek-Cypriot families (families 915 and 926) with JNCL. All patients were males, and the first symptoms appeared at the age of 6 years. The proband of family 926 presented with loss of motor abilities, ataxia, spasticity, seizure, and epilepsy. The proband of family 915 had ataxia, spasticity, dysarthria, dystonia, and intellectual disability. Both probands did not show initial signs of vision and/or hearing loss. Molecular analysis of family 926 revealed two CLN6 biallelic variants: the novel, de novo p.Tyr295Cys and the known p.Arg136His variants. In family 915, both patients were homozygous for the p.Arg136His CLN6 variant. Prediction analysis of the two CLN6 variants characterized them as probably damaging and disease-causing. Structural modeling of the variants predicted that they probably cause protein structural differentiation. In conclusion, we describe two unrelated Cypriot families with JNCL. Both families had variants in the CLN6 gene; however, they presented with slightly different symptoms, and notably none of the patients has loss of vision. In silico prediction and structural analyses indicate that both variants are most likely pathogenic.
Collapse
Affiliation(s)
- Paschalis Nicolaou
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George A Tanteles
- Department of Clinical Genetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christina Votsi
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Eleni Zamba-Papanicolaou
- Department of Neuroepidemiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Savvas S Papacostas
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyproula Christodoulou
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Yiolanda-Panayiota Christou
- Department of Neurobiology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
3
|
p.Asn77Lys homozygous CLN6 mutation in two unrelated Japanese patients with Kufs disease, an adult onset neuronal ceroid lipofuscinosis. Clin Chim Acta 2021; 523:191-195. [PMID: 34597687 DOI: 10.1016/j.cca.2021.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/26/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND The neuronal ceroid lipofuscinosis (NCL) are a group of autosomal recessive neurodegenerative disorders that are characterized by the accumulation of ceroid lipofuscins. The NCLs are categorized into four classes based on the age of onset. Kufs disease is a rare adult-onset NCL caused by mutations in the CLN6 gene, which is rarely observed in the Japanese population. CASE We previously reported a case study on a patient with Kufs disease, whose parents had a consanguineous marriage. Later, we observed another unrelated patient with Kufs. Here we present the case and mutational gene report in patients with Kufs disease. CONCLUSIONS Gene analysis results of the first patient revealed a homozygous mutation c231C > G, p.Asn77Lys in exon 3 and a homozygous c.297 + 48 A > T mutation in intron 3 in the CLN6 gene. The Asn amino acid is perfectly conserved among species. In silico analysis showed that the mutation is predicted to be probably damaging. Moreover, the second patient with Kufs disease also had the same homozygous mutations. These data suggest that the missense mutation must be pathogenic. Furthermore, the patients had lived in the same district; therefore, they both potentially inherited the founder effect mutations.
Collapse
|
4
|
Golikova PI, Petukhova DA, Sukhomyasova AL, Nikolaeva TY, Gurinova EE, Ivanova RN, Maksimova NR. [Clinical and genetic description of neuronal ceroid lipofuscinosis 6 type in the yakut family]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:71-76. [PMID: 34481439 DOI: 10.17116/jnevro202112108171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuronal ceroid lipofuscinosis type 6 (NCL 6) is a rare progressive neurodegenerative disease that belongs to the group of lysosomal storage diseases. A clinical and genetic description of NCL 6 in a Yakut family was carried out. The proband and her sibling showed characteristic clinical signs, including myoclonic epilepsy, ataxia, psychomotor regression, dementia, and visual impairment. The onset of the disease in the age range from 3-4 years. The disease is caused by the frameshift mutation c.396dupT (p.Val133CysfsTer18) in exon 4 of the CLN6 in a homozygous state, which was detected using targeted next generation sequencing. Diagnosis of NCL is difficult due to the pronounced genetic heterogeneity of the disease, as well as the similarity with other hereditary metabolic diseases in clinical manifestations. The method of DNA diagnostics of NCL type 6 using NGS and direct sequencing according to Sanger has been introduced into the practice of medical genetic counseling.
Collapse
Affiliation(s)
- P I Golikova
- Ammosov North-Eastern Federal University, Yakutsk, Russia
| | - D A Petukhova
- Ammosov North-Eastern Federal University, Yakutsk, Russia
| | - A L Sukhomyasova
- Ammosov North-Eastern Federal University, Yakutsk, Russia.,Republic Hospital No. 1 - National Center of Medicine, Yakutsk, Russia
| | - T Ya Nikolaeva
- Ammosov North-Eastern Federal University, Yakutsk, Russia
| | - E E Gurinova
- Republic Hospital No. 1 - National Center of Medicine, Yakutsk, Russia
| | - R N Ivanova
- Ammosov North-Eastern Federal University, Yakutsk, Russia.,Republic Hospital No. 1 - National Center of Medicine, Yakutsk, Russia
| | - N R Maksimova
- Ammosov North-Eastern Federal University, Yakutsk, Russia
| |
Collapse
|
5
|
Rossi M, van der Veen S, Merello M, Tijssen MAJ, van de Warrenburg B. Myoclonus-Ataxia Syndromes: A Diagnostic Approach. Mov Disord Clin Pract 2020; 8:9-24. [PMID: 33426154 DOI: 10.1002/mdc3.13106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/30/2020] [Accepted: 10/14/2020] [Indexed: 12/30/2022] Open
Abstract
Background A myriad of disorders combine myoclonus and ataxia. Most causes are genetic and an increasing number of genes are being associated with myoclonus-ataxia syndromes (MAS), due to recent advances in genetic techniques. A proper etiologic diagnosis of MAS is clinically relevant, given the consequences for genetic counseling, treatment, and prognosis. Objectives To review the causes of MAS and to propose a diagnostic algorithm. Methods A comprehensive and structured literature search following PRISMA criteria was conducted to identify those disorders that may combine myoclonus with ataxia. Results A total of 135 causes of combined myoclonus and ataxia were identified, of which 30 were charted as the main causes of MAS. These include four acquired entities: opsoclonus-myoclonus-ataxia syndrome, celiac disease, multiple system atrophy, and sporadic prion diseases. The distinction between progressive myoclonus epilepsy and progressive myoclonus ataxia poses one of the main diagnostic dilemmas. Conclusions Diagnostic algorithms for pediatric and adult patients, based on clinical manifestations including epilepsy, are proposed to guide the differential diagnosis and corresponding work-up of the most important and frequent causes of MAS. A list of genes associated with MAS to guide genetic testing strategies is provided. Priority should be given to diagnose or exclude acquired or treatable disorders.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section Neuroscience Department Buenos Aires Argentina.,Argentine National Scientific and Technological Research Council (CONICET) Buenos Aires Argentina
| | - Sterre van der Veen
- Pontificia Universidad Católica Argentina (UCA) Buenos Aires Argentina.,Department of Neurology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Marcelo Merello
- Movement Disorders Section Neuroscience Department Buenos Aires Argentina.,Argentine National Scientific and Technological Research Council (CONICET) Buenos Aires Argentina.,Pontificia Universidad Católica Argentina (UCA) Buenos Aires Argentina
| | - Marina A J Tijssen
- Department of Neurology University of Groningen, University Medical Center Groningen Groningen The Netherlands.,Expertise Center Movement Disorders Groningen University Medical Center Groningen (UMCG) Groningen The Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition & Behaviour Radboud University Medical Center Nijmegen The Netherlands
| |
Collapse
|
6
|
Rapid progression of a walking disability in a 5-year-old boy with a CLN6 mutation. Brain Dev 2019; 41:726-730. [PMID: 31029456 DOI: 10.1016/j.braindev.2019.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Neuronal ceroid lipofuscinoses (NCLs; CLN) are mainly autosomal recessive neurodegenerative disorders characterized by the accumulation of autofluorescent lipopigments in neuronal and other cells. Symptoms include visual disabilities, motor decline, and epilepsy. Causative genes are CLN1, CLN2, CLN3, CLN5, CLN6, CLN7, CLN8, CLN10, CLN11, CLN12, CLN13, and CLN14. We present the fourth Japanese case with a CLN6 mutation. CASE PRESENTATION At 3 years of age, our patient became clumsy and fell down easily. He developed focal seizures with impaired consciousness and was started on carbamazepine. He showed ataxic walking and dysarthria with increased deep tendon reflexes. Interictal electroencephalogram revealed slow waves in the left temporal and occipital areas. Brain magnetic resonance imaging showed cerebellar atrophy and ventriculomegaly. In optical coherence tomography (OCT), the inner layer of the retina was thick and highly reflective. Exome sequencing revealed a known homozygous mutation, C.794_976del, p. (Ser265del) in CLN6. DISCUSSION A total of 130 cases of NCL with CLN6 mutations have been reported globally, of which only four were from Japan including the current patient. The deletion of serine at position 265 has been reported in six cases. Ser265 is located in a region of short repeated sequences that is susceptible to mutation. Clinical trials of gene therapy using adeno-associated virus serotype 9 have started for NCL6, making early diagnosis crucial. OCT examination might be helpful in achieving a diagnosis.
Collapse
|
7
|
LOU T, HUANG Y, DONG M. [Genetic study of a family of neuronal ceroid lipofuscinosis caused by a heterozygous mutation of CLN6 gene]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:373-377. [PMID: 31901039 PMCID: PMC8800761 DOI: 10.3785/j.issn.1008-9292.2019.08.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/15/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To analyze the genetic cause of a family with autosomal recessive neuronal ceroid lipofuscinoses (NCL). METHODS The proband was screened for mutations within the coding region of the candidate genes through high-throughput targeted sequencing. Potential causative mutations were verified by PCR and Sanger sequencing in the proband and his parents. RT-PCR and TA clone sequencing were performed to investigate whether the mRNAs were abnormally spliced. RESULTS The sequencing results revealed compound heterozygous mutations of CLN6:c.486+2T>C and c.486+4A>T, which were respectively inherited from his parents. RT-PCR and TA cloning sequencing suggested that the mRNAs were abnormally spliced in two forms due to both mutations. CONCLUSIONS The compound heterozygous mutations of CLN6:c.486+2T>C and c.486+4A>T are possibly the genetic causes of the NCL family. Detection of the novel mutation has extended mutation spectrum of CLN6.
Collapse
Affiliation(s)
| | | | - Minyue DONG
- 董旻岳(1964—), 男, 博士, 主任医师, 博士生导师, 主要从事生殖遗传学研究; E-mail:
;
https://orcid.org/0000-0002-4344-7924
| |
Collapse
|
8
|
Ren XT, Wang XH, Ding CH, Shen X, Zhang H, Zhang WH, Li JW, Ren CH, Fang F. Next-Generation Sequencing Analysis Reveals Novel Pathogenic Variants in Four Chinese Siblings With Late-Infantile Neuronal Ceroid Lipofuscinosis. Front Genet 2019; 10:370. [PMID: 31105743 PMCID: PMC6494930 DOI: 10.3389/fgene.2019.00370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/08/2019] [Indexed: 12/24/2022] Open
Abstract
Neuronal Ceroid Lipofuscinoses (NCLs) are progressive degenerative diseases mainly affect brain and retina. They are characterized by accumulation of autofluorescent storage material, mitochondrial ATPase subunit C, or sphingolipid activator proteins A and D in lysosomes of most cells. Heterogenous storage material in NCLs is not completely disease-specific. Most of CLN proteins and their natural substrates are not well-characterized. Studies have suggested variants of Late-Infantile NCLs (LINCLs) include the major type CLN2 and minor types CLN5, CLN6, CLN7, and CLN8. Therefore, combination of clinical and molecular analysis has become a more effective diagnosis method. We studied 4 late-infantile NCL siblings characterized by seizures, ataxia as early symptoms, followed by progressive regression in intelligence and behavior, but mutations are located in different genes. Symptoms and progression of 4 types of LINCLs are compared. Pathology of LINCLs is also discussed. We performed Nest-Generation Sequencing on these phenotypically similar families. Three novel variants c.1551+1insTGAT in TPP1, c.244G>T in CLN6, c.554-5A>G in MFSD8 were identified. Potential outcome of the mutations in structure and function of proteins are studied. In addition, we observed some common and unique clinical features of Chinese LINCL patient as compared with those of Western patients, which greatly improved our understanding of the LINCLs.
Collapse
Affiliation(s)
- Xiao-Tun Ren
- Department of Neurology, National Centre for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiao-Hui Wang
- Department of Neurology, National Centre for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chang-Hong Ding
- Department of Neurology, National Centre for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | | | | | - Wei-Hua Zhang
- Department of Neurology, National Centre for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jiu-Wei Li
- Department of Neurology, National Centre for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chang-Hong Ren
- Department of Neurology, National Centre for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Fang Fang
- Department of Neurology, National Centre for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Chin JJ, Behnam B, Davids M, Sharma P, Zein WM, Wang C, Chepa-Lotrea X, Gallantine WB, Toro C, Adams DR, Tifft CJ, Gahl WA, Malicdan MCV. Novel mutations in CLN6 cause late-infantile neuronal ceroid lipofuscinosis without visual impairment in two unrelated patients. Mol Genet Metab 2019; 126:188-195. [PMID: 30528883 DOI: 10.1016/j.ymgme.2018.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/02/2018] [Accepted: 12/02/2018] [Indexed: 12/25/2022]
Abstract
CLN6 is a transmembrane protein located in the endoplasmic reticulum that is involved in lysosomal acidification. Mutations in CLN6 cause late-infantile neuronal ceroid lipofuscinosis (LINCL), and teenage and adult onset NCL without visual impairment. Here we describe two pediatric patients with LINCL from unrelated families who were evaluated at the National Institutes of Health. Both children exhibited typical phenotypes associated with LINCL except that they lacked the expected visual impairment. Whole exome sequencing identified novel biallelic mutations in CLN6, i.e., c.218-220dupGGT (p.Trp73dup) and c.296A > G (p.Lys99Arg) in Proband 1 and homozygous c.723G > T (p.Met241Ile) in Proband 2. Expression analysis in dermal fibroblasts showed a small increase in CLN6 protein levels. Electron micrographs of these fibroblasts demonstrated large numbers of small membrane-bound vesicles, in addition to lipofuscin deposits. LysoTracker™ Red intensity was increased in fibroblasts from both patients. This study supports a role for CLN6 in lysosomal homeostasis, and highlights the importance of considering CLN6 mutations in the diagnosis of Batten Disease even in patients with normal vision.
Collapse
Affiliation(s)
- Joseph J Chin
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Babak Behnam
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mariska Davids
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Prashant Sharma
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Wadih M Zein
- National Eye Institute, National Institute of Health, Bethesda, MD, United States
| | - Camille Wang
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xenia Chepa-Lotrea
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Camilo Toro
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - David R Adams
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Cynthia J Tifft
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
10
|
Nafi O, Ramadan B, Riess O, Buchert R, Froukh T. Two cases of variant late infantile ceroid lipofuscinosis in Jordan. World J Clin Cases 2019; 7:203-208. [PMID: 30705896 PMCID: PMC6354087 DOI: 10.12998/wjcc.v7.i2.203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/26/2018] [Accepted: 12/15/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Late infantile ceroid lipofuscinosis is a rare neurodegenerative disorder that appears between the ages of 2 and 4 years and is difficult to diagnose. In this report we present two sisters with this condition, and the clinical course consisted of delayed developmental skills initially and later regression of previously acquired skills. The cases were initially considered as childhood disintegrative disorder (CDD); however, when whole exome sequencing (WES) genetic testing was done, they proved to be variant late infantile ceroid lipofuscinosis. This is the first report from Jordan.
CASE SUMMARY Clinical presentation included developmental delay and initially speech delay, followed by lose of sphincter control. Motor development was normal until 4 years of age, then they developed ataxia (fear of going downstairs) and weakness while walking. Atonic and myoclonic seizures become intractable, and this was followed by inability to stand or sit and loss of expressive language. In addition to complete blood count test, liver function test, kidney function test, serum electrolyte test, and blood sugar test, serum amino acid profile, B12 level test, thyroid function test, and a brain computed tomography scan were also normal. An electroencephalogram showed a generalized spike and wave pattern, and magnetic resonance imaging showed little to no abnormalities. After dealing with the cases as CDD, WES testing proved a final diagnosis of variant late infantile ceroid lipofuscinosis. Current treatment is anti-epileptic drugs and supportive care at home, and they are now in vegetative state.
CONCLUSION This report highlights the importance of WES for the identification of genetic diseases, especially neurodegenerative disorders.
Collapse
Affiliation(s)
- Omar Nafi
- Department of Pediatrics, Faculty of Medicine, Mutah University, Al Karak 61710, Jordan
| | - Bashar Ramadan
- Department of Pediatrics, Faculty of Medicine, Mutah University, Al Karak 61710, Jordan
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, Rare Disease Center, University of Tübingen, Tübingen 72076, Germany
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, Rare Disease Center, University of Tübingen, Tübingen 72076, Germany
| | - Tawfiq Froukh
- Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman 11118, Jordan
| |
Collapse
|
11
|
Lv Y, Wang Z, Liu C, Cui L. Identification of a novel CACNA1A mutation in a Chinese family with autosomal recessive progressive myoclonic epilepsy. Neuropsychiatr Dis Treat 2017; 13:2631-2636. [PMID: 29089769 PMCID: PMC5656343 DOI: 10.2147/ndt.s145774] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Progressive myoclonic epilepsy (PME) is a heterogeneous neurodegenerative disorder, which is commonly manifested with refractory seizures and neurologic deterioration. The prognosis of PME is poor, so early diagnosis of PME is critical. The aim of our study is to identify the novel pathogenic gene in a Chinese family with PME, which may be helpful in future. SUBJECTS AND METHODS A three-generation consanguineous Chinese Han family with PME was recruited. A novel homozygous variant was identified by the genetic technique of exome sequencing and certificated by Sanger sequencing and functional prediction. RESULTS A novel homozygous variant, c.6975_6976insCAG, in the CACNA1A was identified in the PME family. The novel variant encoding the alpha-1A subunit of the calcium channel Cav2.1 was found in two siblings in the Chinese family and was absent in 50 normal controls. Our research indicates that the homozygous c.6975_6976insCAG might be the pathogenic mutation for PME. CONCLUSION As a molecular diagnostic strategy, our research explores the mutation gene spectrum of PME and has resulted in significant predictions for genetic counseling.
Collapse
Affiliation(s)
- Yudan Lv
- Department of Neurology, Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Zan Wang
- Department of Neurology, Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Chang Liu
- Department of Neurology, Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Li Cui
- Department of Neurology, Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|