1
|
Zou S, Lan YL, Gong Y, Chen Z, Xu C. The role of ATP1A3 gene in epilepsy: We need to know more. Front Cell Neurosci 2023; 17:1143956. [PMID: 36866063 PMCID: PMC9972585 DOI: 10.3389/fncel.2023.1143956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
The ATP1A3 gene, which encodes the Na+/K+-ATPase α3 catalytic subunit, plays a crucial role in both physiological and pathological conditions in the brain, and mutations in this gene have been associated with a wide variety of neurological diseases by impacting the whole infant development stages. Cumulative clinical evidence suggests that some severe epileptic syndromes have been linked to mutations in ATP1A3, among which inactivating mutation of ATP1A3 has been intriguingly found to be a candidate pathogenesis for complex partial and generalized seizures, proposing ATP1A3 regulators as putative targets for the rational design of antiepileptic therapies. In this review, we introduced the physiological function of ATP1A3 and summarized the findings about ATP1A3 in epileptic conditions from both clinical and laboratory aspects at first. Then, some possible mechanisms of how ATP1A3 mutations result in epilepsy are provided. We think this review timely introduces the potential contribution of ATP1A3 mutations in both the genesis and progression of epilepsy. Taken that both the detailed mechanisms and therapeutic significance of ATP1A3 for epilepsy are not yet fully illustrated, we think that both in-depth mechanisms investigations and systematic intervention experiments targeting ATP1A3 are needed, and by doing so, perhaps a new light can be shed on treating ATP1A3-associated epilepsy.
Collapse
Affiliation(s)
- Shuang Zou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu-Long Lan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Yu-Long Lan ✉
| | - Yiwei Gong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China,Cenglin Xu ✉
| |
Collapse
|
2
|
Huang D, Song X, Ma J, Li X, Guo Y, Li M, Luo H, Fang Z, Yang C, Xie L, Jiang L. ATP1A3-related phenotypes in Chinese children: AHC, CAPOS, and RECA. Eur J Pediatr 2023; 182:825-836. [PMID: 36484864 DOI: 10.1007/s00431-022-04744-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
UNLABELLED The aim of this research is to study the phenotype, genotype, treatment strategies, and short-term prognosis of Chinese children with ATP1A3 (Na+/K+-ATPase alpha 3 gene)-related disorders in Southwest China. Patients with pathogenic ATP1A3 variants identified using next-generation sequencing were registered at the Children's Hospital of Chongqing Medical University from December 2015 to May 2019. We followed them as a cohort and analyzed their clinical data. Eleven patients were identified with de novo pathogenic ATP1A3 heterozygous variants. One (c.2542 + 1G > T, splicing) has not been reported. Eight patients with alternating hemiplegia of childhood (AHC), one with cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS), and two with relapsing encephalopathy with cerebellar ataxia (RECA) were included. The initial manifestations of AHC included hemiplegia, oculomotor abnormalities, and seizures, and the most common trigger was an upper respiratory tract infection without fever. All patients had paroxysmal hemiplegic attacks during their disease course. The brain MRI showed no abnormalities. Six out of eight AHC cases reached a stable disease state after treatment. The initial symptom of the patient with CAPOS was ataxia followed by developmental regression, seizures, deafness, visual impairment, and dysarthria, and the brain MRI indicated mild cerebellar atrophy. No fluctuation was noted after using Acetazolamide. The initial manifestations of the two RECA cases were dystonia and encephalopathy, respectively. One manifested a rapid-onset course of dystonia triggered by a fever followed by dysarthria and action tremors, and independent walking was impossible. The brain MRI image was normal. The other one presented with disturbance of consciousness, seizures, sleep disturbance, tremor, and dyskinesias. The EEG revealed a slow background (δ activity), and the brain MRI result was normal. No response to Flunarizine was noted for them, and it took 61 and 60 months for them to reach a stable disease state, respectively. CONCLUSION Pathogenic ATP1A3 variants play an essential role in the pathogenesis of Sodium-Potassium pump disorders, and AHC is the most common phenotype. The treatment strategies and prognosis depend on the phenotype categories caused by different variation sites and types. The correlation between the genotype and phenotype requires further exploration. WHAT IS KNOWN • Pathogenic heterozygous ATP1A3 variants cause a spectrum of neurological phenotypes, and ATP1A3-disorders are viewed as a phenotypic continuum presenting with atypical and overlapping features. • The genotype-phenotype correlation of ATP1A3-disorders remains unclear. WHAT IS NEW • In this study, the genotypes and phenotypes of ATP1A3-related disorders from Southwest of China were described. The splice-site variation c.2542+1G>T was detected for the first time in ATP1A3-related disorders. • The prognosis of twins with AHC p. Gly947Arg was more serious than AHC cases with other variants, which was inconsistent with previous reports. The phenomenon indicated the diversity of the correlation between the genotype and phenotype.
Collapse
Affiliation(s)
- Dishu Huang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Xiaojie Song
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Jiannan Ma
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Xiujuan Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Yi Guo
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Mei Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Hanyu Luo
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Zhixu Fang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Chen Yang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China.,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Lingling Xie
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China. .,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China. .,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China. .,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China.
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China. .,National Clinical Research Center for Child Health and Disorders, Chongqing, People's Republic of China. .,China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, People's Republic of China. .,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China. .,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China.
| |
Collapse
|
3
|
Zhang W, Li J, Zhuo X, Zhou J, Feng W, Gong S, Ren X, Ding C, Han T, Fang F. Chinese patients with p.Arg756 mutations of ATP1A3: Clinical manifestations, treatment, and follow-up. Pediatr Investig 2022; 6:5-10. [PMID: 35382416 PMCID: PMC8960925 DOI: 10.1002/ped4.12310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022] Open
Abstract
Importance The phenotypes of ATP1A3 gene mutations are diverse. Relapsing encephalopathy with cerebellar ataxia and fever-induced paroxysmal weakness and encephalopathy (FIPWE) are considered non-classical phenotypes caused by p.Arg756 mutations of ATP1A3. Objective To summarize the clinical manifestations, treatment, and follow-up of Chinese patients with p.Arg756 mutations of ATP1A3. Methods We analyzed the clinical features, treatment, and genotypes of eight children with p.Arg756 mutations of ATP1A3 who were treated in Beijing Children's Hospital from January 2014 to December 2019. Results Eight patients (six boys and two girls) were included; seven had been misdiagnosed with encephalitis. The age of onset ranged from 0.8 to 4.5 years. All patients had encephalopathy and had at least one episode of FIPWE. Cerebellar ataxia was present in nine episodes. Reversible splenial lesions of the corpus callosum were found in two patients in the acute phase. Three types of heterozygous ATP1A3 mutations were found: c.2267G > T (p.R756L) (patient 3 [P3]), c.2266C > T (p.R756C) (P2 and P4), and c.2267G > A (p.R756H) (P1, P5, P6, P7, and P8). Six mutations were de novo; two mutations were inherited. Both patients with p.R756C and one patient (P7) with p.R756H had four episodes of severe ataxia as the main manifestations. However, in the other three episodes, limb weakness was more prominent than ataxia. P5 with p.R756H exhibited overlap with FIPWE and rapid-onset dystonia-parkinsonism. Interpretation Acute encephalopathy followed by febrile disease was characteristic of the disease in patients with p.Arg756 mutations of ATP1A3. However, the weakness and ataxia were variable. Phenotypic crossover and overlap were observed among these patients.
Collapse
Affiliation(s)
- Weihua Zhang
- Department of NeurologyBeijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Jiuwei Li
- Department of NeurologyBeijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Xiuwei Zhuo
- Department of NeurologyBeijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Ji Zhou
- Department of NeurologyBeijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Weixing Feng
- Department of NeurologyBeijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Shuai Gong
- Department of NeurologyBeijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Xiaotun Ren
- Department of NeurologyBeijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Changhong Ding
- Department of NeurologyBeijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Tongli Han
- Department of NeurologyBeijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Fang Fang
- Department of NeurologyBeijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| |
Collapse
|
4
|
De Vrieze J, van de Laar IMBH, de Rijk-van Andel JF, Kamsteeg EJ, Kotsopoulos IAW, de Man SA. Expanding Phenotype of ATP1A3 - Related Disorders: A Case Series. Child Neurol Open 2021; 8:2329048X211048068. [PMID: 34761051 PMCID: PMC8573619 DOI: 10.1177/2329048x211048068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/08/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Neurologic disorders caused by mutations in the ATP1A3 gene were originally reported as three distinct rare clinical syndromes: Alternating Hemiplegia of Childhood (AHC), Rapid-onset Dystonia Parkinsonism (RDP) and Cerebellar ataxia, Areflexia, Pes cavus, Opticus atrophy and Sensorineural hearing loss (CAPOS). In this case series, we describe 3 patients. A mother and her daughter showed an intermediate phenotype different from each other with the same heterozygous missense mutation (p.[R756C]), recently described in literature as Relapsing Encephalopathy With Cerebellar Ataxia (RECA). In addition, a third patient showed an intermediate AHC-RDP phenotype and had a likely pathogenic novel de novo missense mutation (p.[L100 V]). These patients support the growing evidence that AHC, RDP and RECA are part of a continuous ATP1A3 mutation spectrum that is still expanding. Three common features were a sudden onset, asymmetrical neurological symptoms, as well as the presence of triggering factors. When present, the authors argue to perform exome sequencing in an early stage.
Collapse
Affiliation(s)
- Jelena De Vrieze
- Amphia Hospital, Breda, the Netherlands.,University Hospital of Antwerp, Antwerp, Belgium.,Heilig Hart Hospital Lier, Lier, Belgium
| | | | | | | | | | - Stella A de Man
- Amphia Hospital, Breda, the Netherlands.,Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Kapoor D, Garg D, Sharma S. Emerging Role of the Ketogenic Dietary Therapies beyond Epilepsy in Child Neurology. Ann Indian Acad Neurol 2021; 24:470-480. [PMID: 34728937 PMCID: PMC8513984 DOI: 10.4103/aian.aian_20_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 01/18/2023] Open
Abstract
Ketogenic dietary therapies (KDTs) have been in use for refractory paediatric epilepsy for a century now. Over time, KDTs themselves have undergone various modifications to improve tolerability and clinical feasibility, including the Modified Atkins diet (MAD), medium chain triglyceride (MCT) diet and the low glycaemic index treatment (LGIT). Animal and observational studies indicate numerous benefits of KDTs in paediatric neurological conditions apart from their evident benefits in childhood intractable epilepsy, including neurodevelopmental disorders such as autism spectrum disorder, rarer neurogenetic conditions such as Rett syndrome, Fragile X syndrome and Kabuki syndrome, neurodegenerative conditions such as Pelizaeus-Merzbacher disease, and other conditions such as stroke and migraine. A large proportion of the evidence is derived from individual case reports, case series and some small clinical trials, emphasising the vast scope for research in this avenue. The term 'neuroketotherapeutics' has been coined recently to encompass the rapid strides in this field. In the 100th year of its use for paediatric epilepsy, this review covers the role of the KDTs in non-epilepsy neurological conditions among children.
Collapse
Affiliation(s)
- Dipti Kapoor
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| | - Divyani Garg
- Department of Neurology, Lady Hardinge Medical College and Smt. Sucheta Kriplani Hospital, New Delhi, India
| | - Suvasini Sharma
- Department of Pediatrics (Neurology Division), Lady Hardinge Medical College and Kalawati Saran Children's Hospital, New Delhi, India
| |
Collapse
|
6
|
Ng HWY, Ogbeta JA, Clapcote SJ. Genetically altered animal models for ATP1A3-related disorders. Dis Model Mech 2021; 14:272403. [PMID: 34612482 PMCID: PMC8503543 DOI: 10.1242/dmm.048938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Within the past 20 years, particularly with the advent of exome sequencing technologies, autosomal dominant and de novo mutations in the gene encoding the neurone-specific α3 subunit of the Na+,K+-ATPase (NKA α3) pump, ATP1A3, have been identified as the cause of a phenotypic continuum of rare neurological disorders. These allelic disorders of ATP1A3 include (in approximate order of severity/disability and onset in childhood development): polymicrogyria; alternating hemiplegia of childhood; cerebellar ataxia, areflexia, pes cavus, optic atrophy and sensorineural hearing loss syndrome; relapsing encephalopathy with cerebellar ataxia; and rapid-onset dystonia-parkinsonism. Some patients present intermediate, atypical or combined phenotypes. As these disorders are currently difficult to treat, there is an unmet need for more effective therapies. The molecular mechanisms through which mutations in ATP1A3 result in a broad range of neurological symptoms are poorly understood. However, in vivo comparative studies using genetically altered model organisms can provide insight into the biological consequences of the disease-causing mutations in NKA α3. Herein, we review the existing mouse, zebrafish, Drosophila and Caenorhabditis elegans models used to study ATP1A3-related disorders, and discuss their potential contribution towards the understanding of disease mechanisms and development of novel therapeutics.
Collapse
Affiliation(s)
- Hannah W Y Ng
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jennifer A Ogbeta
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Steven J Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.,European Network for Research on Alternating Hemiplegia (ENRAH), 1120 Vienna, Austria
| |
Collapse
|
7
|
Salles PA, Mata IF, Brünger T, Lal D, Fernandez HH. ATP1A3-Related Disorders: An Ever-Expanding Clinical Spectrum. Front Neurol 2021; 12:637890. [PMID: 33868146 PMCID: PMC8047318 DOI: 10.3389/fneur.2021.637890] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/09/2021] [Indexed: 01/29/2023] Open
Abstract
The Na+/K+ ATPases are Sodium-Potassium exchanging pumps, with a heteromeric α-β-γ protein complex. The α3 isoform is required as a rescue pump, after repeated action potentials, with a distribution predominantly in neurons of the central nervous system. This isoform is encoded by the ATP1A3 gene. Pathogenic variants in this gene have been implicated in several phenotypes in the last decades. Carriers of pathogenic variants in this gene manifest neurological and non-neurological features in many combinations, usually with an acute onset and paroxysmal episodes triggered by fever or other factors. The first three syndromes described were: (1) rapid-onset dystonia parkinsonism; (2) alternating hemiplegia of childhood; and, (3) cerebellar ataxia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS syndrome). Since their original description, an expanding number of cases presenting with atypical and overlapping features have been reported. Because of this, ATP1A3-disorders are now beginning to be viewed as a phenotypic continuum representing discrete expressions along a broadly heterogeneous clinical spectrum.
Collapse
Affiliation(s)
- Philippe A Salles
- Department of Neurology and Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States.,Centro de Trastornos del Movimiento, Centro de Trastornos del Movimiento (CETRAM), Santiago, Chile
| | - Ignacio F Mata
- Cleveland Clinic Foundation, Genomic Medicine, Lerner Research Institute, Cleveland, OH, United States
| | - Tobias Brünger
- Cologne Center for Genomics, University Cologne, Cologne, Germany
| | - Dennis Lal
- Cleveland Clinic Foundation, Genomic Medicine, Lerner Research Institute, Cleveland, OH, United States
| | - Hubert H Fernandez
- Department of Neurology and Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
8
|
Tajima D, Nakamura T, Ichinose F, Okamoto N, Tomonoh Y, Uda K, Furukawa R, Tashiro K, Matsuo M. Transient hypoglycorrhachia with paroxysmal abnormal eye movement in early infancy. Brain Dev 2021; 43:482-485. [PMID: 33248857 DOI: 10.1016/j.braindev.2020.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/30/2020] [Accepted: 11/08/2020] [Indexed: 11/17/2022]
Abstract
Paroxysmal abnormal eye movement in early infancy is one of the initial symptoms of glucose transporter 1 deficiency syndrome (GLUT1DS). We describe four early infants with transient hypoglycorrhachia presenting with abnormal eye movements. Their symptoms disappeared after the introduction of a ketogenic diet (KD), and their development was normal. Since no variants in SLC2A1 were detected, the CSF-to-blood glucose ratios (C/B) were re-examined, and within normal range. None of the four patients displayed recurrent symptoms after withdrawal from the KD. Because long-term KD has potential adverse effects and could affect the quality of life of patients and their families, re-examination of CSF glucose during late infancy should be considered in the case of absence of the SLC2A1 pathogenic variant.
Collapse
Affiliation(s)
- Daisuke Tajima
- Department of Pediatrics, Faculty of Medicine, Saga University, Japan; Department of Pediatrics, Karatsu Red Cross Hospital, Japan.
| | - Takuji Nakamura
- Department of Pediatrics, Faculty of Medicine, Saga University, Japan
| | - Fumio Ichinose
- Department of Pediatrics, Faculty of Medicine, Saga University, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Japan
| | - Yuko Tomonoh
- Department of Pediatrics, Faculty of Medicine, Fukuoka University, Japan
| | - Keiko Uda
- Department of Pediatrics, Faculty of Medicine, Saga University, Japan
| | - Rie Furukawa
- Department of Pediatrics, Faculty of Medicine, Saga University, Japan; Department of Pediatrics, Karatsu Red Cross Hospital, Japan
| | - Katsuya Tashiro
- Department of Pediatrics, Faculty of Medicine, Saga University, Japan; Department of Pediatrics, Karatsu Red Cross Hospital, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, Japan
| |
Collapse
|
9
|
Keller Sarmiento IJ, Mencacci NE. Genetic Dystonias: Update on Classification and New Genetic Discoveries. Curr Neurol Neurosci Rep 2021; 21:8. [PMID: 33564903 DOI: 10.1007/s11910-021-01095-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Since the advent of next-generation sequencing, the number of genes associated with dystonia has been growing exponentially. We provide here a comprehensive review of the latest genetic discoveries in the field of dystonia and discuss how the growing knowledge of biology underlying monogenic dystonias may influence and challenge current classification systems. RECENT FINDINGS Pathogenic variants in genes without previously confirmed roles in human disease have been identified in subjects affected by isolated or combined dystonia (KMT2B, VPS16, HPCA, KCTD17, DNAJC12, SLC18A2) and complex dystonia (SQSTM1, IRF2BPL, YY1, VPS41). Importantly, the classical distinction between isolated and combined dystonias has become harder to sustain since many genes have been shown to determine multiple dystonic presentations (e.g., ANO3, GNAL, ADCY5, and ATP1A3). In addition, a growing number of genes initially linked to other neurological phenotypes, such as developmental delay, epilepsy, or ataxia, are now recognized to cause prominent dystonia, occasionally in an isolated fashion (e.g., GNAO1, GNB1, SCN8A, RHOBTB2, and COQ8A). Finally, emerging analyses suggest biological convergence of genes linked to different dystonic phenotypes. While our knowledge on the genetic basis of monogenic dystonias has tremendously grown, their clinical boundaries are becoming increasingly blurry. The current phenotype-based classification may not reflect the molecular structure of the disease, urging the need for new systems based on shared biological pathways among dystonia-linked genes.
Collapse
Affiliation(s)
| | - Niccolò Emanuele Mencacci
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
10
|
Conover ZR, Talai A, Klockau KS, Ing RJ, Chatterjee D. Perioperative Management of Children on Ketogenic Dietary Therapies. Anesth Analg 2020; 131:1872-1882. [PMID: 32769381 DOI: 10.1213/ane.0000000000005018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ketogenic diet therapy (KDT) is an effective treatment modality for children with drug-resistant epilepsy and certain other metabolic and neurologic disorders. With a resurgence of interest in KDT, pediatric anesthesiologists are increasingly encountering children on KDT for a variety of surgical and medical procedures. Maintenance of ketosis is critical throughout the perioperative period, and if not managed appropriately, these patients are at an increased risk of seizures. This review article provides an overview of the clinical indications, contraindications, proposed anticonvulsant mechanisms, initiation, and monitoring of children on KDTs. Recommendations for the perioperative anesthetic management of children on KDT are summarized. A comprehensive table listing the carbohydrate content of common anesthetic drugs is also included.
Collapse
Affiliation(s)
| | | | - Katherine S Klockau
- Pharmacy, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| | | | | |
Collapse
|
11
|
Clinical and Genetic Overview of Paroxysmal Movement Disorders and Episodic Ataxias. Int J Mol Sci 2020; 21:ijms21103603. [PMID: 32443735 PMCID: PMC7279391 DOI: 10.3390/ijms21103603] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Paroxysmal movement disorders (PMDs) are rare neurological diseases typically manifesting with intermittent attacks of abnormal involuntary movements. Two main categories of PMDs are recognized based on the phenomenology: Paroxysmal dyskinesias (PxDs) are characterized by transient episodes hyperkinetic movement disorders, while attacks of cerebellar dysfunction are the hallmark of episodic ataxias (EAs). From an etiological point of view, both primary (genetic) and secondary (acquired) causes of PMDs are known. Recognition and diagnosis of PMDs is based on personal and familial medical history, physical examination, detailed reconstruction of ictal phenomenology, neuroimaging, and genetic analysis. Neurophysiological or laboratory tests are reserved for selected cases. Genetic knowledge of PMDs has been largely incremented by the advent of next generation sequencing (NGS) methodologies. The wide number of genes involved in the pathogenesis of PMDs reflects a high complexity of molecular bases of neurotransmission in cerebellar and basal ganglia circuits. In consideration of the broad genetic and phenotypic heterogeneity, a NGS approach by targeted panel for movement disorders, clinical or whole exome sequencing should be preferred, whenever possible, to a single gene approach, in order to increase diagnostic rate. This review is focused on clinical and genetic features of PMDs with the aim to (1) help clinicians to recognize, diagnose and treat patients with PMDs as well as to (2) provide an overview of genes and molecular mechanisms underlying these intriguing neurogenetic disorders.
Collapse
|
12
|
Capuano A, Garone G, Tiralongo G, Graziola F. Alternating Hemiplegia of Childhood: Understanding the Genotype-Phenotype Relationship of ATP1A3 Variations. APPLICATION OF CLINICAL GENETICS 2020; 13:71-81. [PMID: 32280259 PMCID: PMC7125306 DOI: 10.2147/tacg.s210325] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Alternating hemiplegia of childhood (AHC) is a rare neurological disorder affecting children with an onset before 18 months. Diagnostic clues include transient episodes of hemiplegia alternating in the laterality or quadriparesis, nystagmus and other paroxysmal attacks as tonic and dystonic spells. Epilepsy is also a common feature. In the past, a great effort has been done to understand the genetic basis of the disease leading to the discovery of mutations in the ATP1A3 gene encoding for the alpha3 subunit of Na+/K+ATPase, a protein already related to another disease named Rapid Onset Dystonia Parkinsonism (RDP). ATP1A3 mutations account for more than 70% of cases of AHC. In particular, three hotspot mutations account for about 60% of all cases, and these data have been confirmed in large population studies. Specifically, the p.Asp801Asn variant has been found to cause 30–43% of all cases, p.Glu815Lys is responsible for 16–35% of cases and p.Gly947Arg accounts for 8–15%. These three mutations are associated with different clinical phenotype in terms of symptoms, severity and prognosis. In vitro and in vivo models reveal that a crucial role of Na+/K+ATPase pump activity emerges in maintaining a correct membrane potential, survival and homeostasis of neurons. Herein, we attempt to summarize all clinical, genetic and molecular aspects of AHC considering ATP1A3 as its primary disease-causing determinant.
Collapse
Affiliation(s)
- Alessandro Capuano
- Movement Disorders Clinic, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giacomo Garone
- Movement Disorders Clinic, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.,University Hospital Pediatric Department, IRCCS Bambino Gesù Children's Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Tiralongo
- Movement Disorders Clinic, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Federica Graziola
- Movement Disorders Clinic, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
13
|
Samanta D. Management of Alternating Hemiplegia of Childhood: A Review. Pediatr Neurol 2020; 103:12-20. [PMID: 31836335 DOI: 10.1016/j.pediatrneurol.2019.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/01/2019] [Accepted: 10/10/2019] [Indexed: 01/03/2023]
Abstract
Alternating hemiplegia of childhood is a severe neurological disorder with infantile-onset recurrent episodes of hemiplegia on either side of the body and other paroxysmal events such as seizures, dystonia, tonic episodes, abnormal eye movements or autonomic dysfunction, primarily due to de novo pathogenic mutations in the ATP1A3 gene. The burden of neuromorbidities is significant and includes epilepsy; attention-deficit/hyperactivity disorder; behavioral difficulties; motor, cognitive, adaptive, and learning impairment; ataxia; movement disorders; and migraine. Comprehensive multispecialty clinic with the availability of various specialists with considerable experience in alternating hemiplegia of childhood is beneficial. A comprehensive treatment plan including strict maintenance of a diary about different paroxysmal events is helpful. Disease-modifying therapy of alternating hemiplegia of childhood does not exist, and several agents such as benzodiazepines, flunarizine, topiramate, ketogenic diet, triheptanoin, steroid, amantadine, memantine, aripiprazole, oral ATP, coenzyme Q, acetazolamide, dextromethorphan, and vagus nerve stimulator have been tried with various rates of success by aborting attacks or reducing the frequency or severity of paroxysmal spells. The apparent efficacy of flunarizine is based on its use in hundreds of patients, albeit in open-label experience, but most of the other agents' reports of efficacy were from single case reports or case series of only a handful of patients. Besides reviewing existing data about individual agent active against paroxysmal events, we also review the management principles for coexisting neurological issues. However, with rapid advancement in the understanding of molecular pathogenesis and network abnormality of this disease, the treatment paradigm of alternating hemiplegia of childhood may significantly alter over the next decade.
Collapse
Affiliation(s)
- Debopam Samanta
- Child Neurology Section, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
| |
Collapse
|
14
|
ATP1A3-related epilepsy: Report of seven cases and literature-based analysis of treatment response. J Clin Neurosci 2020; 72:31-38. [PMID: 31959558 DOI: 10.1016/j.jocn.2020.01.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/05/2020] [Indexed: 11/24/2022]
Abstract
ATP1A3 related disease is a clinically heterogeneous condition currently classified as alternating hemiplegia of childhood, rapid-onset dystonia-parkinsonism and cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss. Recently, it has become apparent that a remarkably large subgroup is suffering from often difficult-to-treat epilepsy. The aim of the present study was to assess the prevalence and efficacy of commonly used anti-epileptic-drugs (AEDs) in patients with ATP1A3 related seizures. Therefore, we performed a retrospective study of patients in combination with a systematic literature-based review. Inclusion criteria were: verified ATP1A3 mutation, seizures and information about AED treatment. The literature review yielded records for 188 epileptic ATP1A3 patients. For 14/188 cases, information about anti-epileptic treatment was available. Combined with seven unpublished records of ATP1A3 patients, a sample size of 21 patients was reached. Most used AED were levetiracetam (n = 9), phenobarbital (n = 8), valproic acid (n = 7), and topiramate (n = 5). Seizure reduction was reported for 57% of patients (n = 12). No individual AEDs used (either alone or combined) had a success rate over 50%. There was no significant difference in the response rate between various AEDs. Ketogenic diet was effective in 2/4 patients. 43% of patients (n = 9) did not show any seizure relief. Even though Epilepsy is a significant clinical issue in ATP1A3 patients, only a minority of publications provide any information about patients' anti-epileptic treatment. The findings of treatment effectiveness in only 57% (or lower) of patients, and the non-existence of a clear first-line AED in ATP1A3 related epilepsy stresses the need for further research.
Collapse
|
15
|
Kim WJ, Shim YK, Choi SA, Kim SY, Kim H, Hwang H, Choi J, Kim KJ, Chae JH, Lim BC. Clinical and Genetic Spectrum of ATP1A3-Related Disorders in a Korean Pediatric Population. J Clin Neurol 2020; 16:75-82. [PMID: 31942761 PMCID: PMC6974827 DOI: 10.3988/jcn.2020.16.1.75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 11/28/2022] Open
Abstract
Background and Purpose The aim of this study was to expand the understanding of the genotype-phenotype spectrum of ATP1A3-related disorders and to evaluate the therapeutic effect of a ketogenic diet in patients with alternating hemiplegia of childhood (AHC). Methods The clinical information of 13 patients with ATP1A3 mutations was analyzed by performing retrospective chart reviews. Patients with the AHC phenotype who consented to ketogenic diet were included in the trial. Results Ten patients presented with the clinical phenotype of AHC, two patients presented with rapid-onset dystonia parkinsonism, and one patient presented with cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss. Two novel mutations of the AHC phenotype were identified: p.Ile363Thr and p.Asn743Ser. The clinical phenotypes of three mutations differed from those in previous reports: p.Arg597Pro, p.Thr769Pro, and p.Arg756Cys. One of the two patients who started a ketogenic diet experienced seizure provocation and so immediate stopped consuming the diet, while the other patient continued the ketogenic diet for 1 year, but this produced no clear benefit such as reduction of paroxysmal symptoms. Conclusions Our study is the first case series of ATP1A3-related disorders to be described in Korea and which further expands the understanding of its genotype-phenotype spectrum. A ketogenic diet showed no clear benefit for the patients with AHC.
Collapse
Affiliation(s)
- Woo Joong Kim
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Young Kyu Shim
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Sun Ah Choi
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Soo Yeon Kim
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Hunmin Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hee Hwang
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jieun Choi
- Department of Pediatrics, SMG-SNU Boramae Hospital, Seoul, Korea
| | - Ki Joong Kim
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Jong Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Byung Chan Lim
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea.
| |
Collapse
|
16
|
Graziola F, Garone G, Stregapede F, Bosco L, Vigevano F, Curatolo P, Bertini E, Travaglini L, Capuano A. Diagnostic Yield of a Targeted Next-Generation Sequencing Gene Panel for Pediatric-Onset Movement Disorders: A 3-Year Cohort Study. Front Genet 2019; 10:1026. [PMID: 31737037 PMCID: PMC6828958 DOI: 10.3389/fgene.2019.01026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/24/2019] [Indexed: 11/17/2022] Open
Abstract
In recent years, genetic techniques of diagnosis have shown rapid development, resulting in a modified clinical approach to many diseases, including neurological disorders. Movement disorders, in particular those arising in childhood, pose a diagnostic challenge. First, from a purely phenomenological point of view, the correct clinical classification of signs and symptoms may be difficult and require expert evaluation. This is because the clinical picture is often a mixture of hyperkinetic and hypokinetic disorders, and within hyperkinetic movement disorders, combined phenotypes are not unusual. Second, although several genes that cause movement disorders in children are now well-known, many of them have only been described in adult populations or discovered in patients after many years of disease. Furthermore, diseases that alter their mechanisms from childhood to adulthood are still little known, and many phenotypes in children are the result of a disruption of normal neurodevelopment. High-throughput gene screening addresses these difficulties and has modified the approach to genetic diagnosis. In the exome-sequencing era, customized genetic panels now offer the ability to perform fast and low-cost screening of the genes commonly involved in the pathogenesis of the disease. Here, we describe a 3-year study using a customized gene panel for pediatric-onset movement disorders in a selected cohort of children and adolescents. We report a satisfying diagnostic yield, further confirming the usefulness of gene panel analysis.
Collapse
Affiliation(s)
- Federica Graziola
- Movement Disorders Clinic, Department of Neurosciences, Bambino Gesù Children’s Hospital, Rome, Italy
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giacomo Garone
- Movement Disorders Clinic, Department of Neurosciences, Bambino Gesù Children’s Hospital, Rome, Italy
- University Hospital Pediatric Department, Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Fabrizia Stregapede
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Disease, Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Sciences, Roma Tre University, Rome, Italy
| | - Luca Bosco
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Disease, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Federico Vigevano
- Movement Disorders Clinic, Department of Neurosciences, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Paolo Curatolo
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Enrico Bertini
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Disease, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Lorena Travaglini
- Department of Neuroscience, Unit of Neuromuscular and Neurodegenerative Disease, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Alessandro Capuano
- Movement Disorders Clinic, Department of Neurosciences, Bambino Gesù Children’s Hospital, Rome, Italy
| |
Collapse
|
17
|
Uchitel J, Helseth A, Prange L, McLean M, Ghusayni R, Sachdev M, Hunanyan A, Mikati MA. The epileptology of alternating hemiplegia of childhood. Neurology 2019; 93:e1248-e1259. [PMID: 31484714 DOI: 10.1212/wnl.0000000000008159] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 05/01/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To report our experience and investigate 5 original hypotheses: (1) multiple types of epileptic seizures occur in alternating hemiplegia of childhood (AHC), and these can be the initial presentation; (2) epileptiform abnormalities often appear well after clinical seizures; (3) nonepileptic reduced awareness spells (RAS) occur frequently; (4) epilepsy is commonly drug resistant but may respond to vagal nerve stimulation (VNS); and (5) status epilepticus (SE) is common and is usually refractory and recurrent. METHODS We analyzed a cohort of 51 consecutive patients with AHC. RESULTS Thirty-two of 51 patients had epilepsy: 18 focal seizures, frontal more frequently than temporal, and then posterior. Eleven had primary generalized seizures (tonic-clonic, myoclonic, and/or absence). Epileptic seizures preceded other AHC paroxysmal events in 8 (lag 5.63 ± 6.55 months; p = 0.0365). In 7 of 32, initial EEGs were normal, with the first epileptiform EEG lagging behind by 3.53 ± 4.65 years (p = 0.0484). RAS occurred equally in patients with epilepsy (16 of 32) and patients without epilepsy (10 of 19, p = 1.0). Twenty-eight patients had video-EEG; captured RAS showed no concomitant EEG changes. Nineteen patients (59%) were drug resistant. VNS resulted in >50% reduction in seizures in 5 of 6 (p < 0.04). Twelve patients (38%) had SE (9 of 12 multiple episodes), refractory/superrefractory in all (p < 0.001), and 4 of 12 had regression after SE. CONCLUSIONS Epilepsy in AHC can be focal or generalized. Epileptic seizures may be the first paroxysmal symptom. EEG may become epileptiform only on follow-up. Epilepsy, although frequently drug resistant, can respond to VNS. RAS are frequent and nonepileptic. SE often recurs and is usually refractory/superrefractory. Our observations are consistent with current data on AHC-ATP1A3 pathophysiology.
Collapse
Affiliation(s)
- Julie Uchitel
- From the Division of Pediatric Neurology, Duke University Health System, Duke University School of Medicine, Durham NC
| | - Ashley Helseth
- From the Division of Pediatric Neurology, Duke University Health System, Duke University School of Medicine, Durham NC
| | - Lyndsey Prange
- From the Division of Pediatric Neurology, Duke University Health System, Duke University School of Medicine, Durham NC
| | - Melissa McLean
- From the Division of Pediatric Neurology, Duke University Health System, Duke University School of Medicine, Durham NC
| | - Ryan Ghusayni
- From the Division of Pediatric Neurology, Duke University Health System, Duke University School of Medicine, Durham NC
| | - Monisha Sachdev
- From the Division of Pediatric Neurology, Duke University Health System, Duke University School of Medicine, Durham NC
| | - Arsen Hunanyan
- From the Division of Pediatric Neurology, Duke University Health System, Duke University School of Medicine, Durham NC
| | - Mohamad A Mikati
- From the Division of Pediatric Neurology, Duke University Health System, Duke University School of Medicine, Durham NC.
| |
Collapse
|
18
|
A case of early onset life-threatening epilepsy associated with a novel ATP1A3 gene variant. Brain Dev 2019; 41:285-291. [PMID: 30392841 DOI: 10.1016/j.braindev.2018.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/12/2018] [Accepted: 10/16/2018] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Mutations of the ATP1A3 gene are associated with a wide spectrum of neurological disorders including rapid onset dystonia-parkinsonism and alternating hemiplegia of childhood (AHC). The genotype-phenotype correlations in these cases remain unclear however. We here report a pediatric case of catastrophic early life epilepsy, respiratory failure, postnatal microcephaly, and severe developmental disability associated with a novel heterozygous ATP1A3 mutation. SUBJECT A boy with a normal birth to nonconsanguineous parents was transferred to the NICU due to postnatal respiratory failure at 2 days. He showed extreme hypotonia, episodic oculomotor abnormality and tachycardia, and frequent epileptic seizures. Mechanical ventilation was required but his epileptic seizures were intractable to multiple antiepileptic drugs, including extremely high doses of phenobarbital. METHODS AND RESULTS Whole exome sequencing analysis of the case and his parents identified a de novo heterozygous mutation in the ATP1A3 gene (c.2736_2738CTTdel, p.Phe913del). DISCUSSION The Phe913 residue in the ATP1α3 protein that is deleted in our case is highly conserved among vertebrates. Notably, an amino acid deletion in the same transmembrane domain of this protein, p.Val919del, has been reported previously in typical AHC cases, suggesting that p.Phe913del is a pathogenic mutation. Several reported cases with severe symptoms and very early onset epilepsy harbor ATP1α3 mutations at structural positions in this protein that differ from that of Phe913. Further functional studies are required to clarify the relationship between the loss of Phe913 and the very distinct resulting phenotype.
Collapse
|