1
|
Castagnola E, Robbins EM, Krahe DD, Wu B, Pwint MY, Cao Q, Cui XT. Stable in-vivo electrochemical sensing of tonic serotonin levels using PEDOT/CNT-coated glassy carbon flexible microelectrode arrays. Biosens Bioelectron 2023; 230:115242. [PMID: 36989659 PMCID: PMC10101938 DOI: 10.1016/j.bios.2023.115242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
Chronic sampling of tonic serotonin (5-hydroxytryptamine, 5-HT) concentrations in the brain is critical for tracking neurological disease development and the time course of pharmacological treatments. Despite their value, in vivo chronic multi-site measurements of tonic 5-HT have not been reported. To fill this technological gap, we batch-fabricated implantable glassy carbon (GC) microelectrode arrays (MEAs) onto a flexible SU-8 substrate to provide an electrochemically stable and biocompatible device/tissue interface. To achieve detection of tonic 5-HT concentrations, we applied a poly(3,4-ethylenedioxythiophene)/carbon nanotube (PEDOT/CNT) electrode coating and optimized a square wave voltammetry (SWV) waveform for selective 5-HT measurement. In vitro, the PEDOT/CNT-coated GC microelectrodes achieved high sensitivity to 5-HT, good fouling resistance, and excellent selectivity against the most common neurochemical interferents. In vivo, our PEDOT/CNT-coated GC MEAs successfully detected basal 5-HT concentrations at different locations within the CA2 region of the hippocampus of both anesthetized and awake mice. Furthermore, the PEDOT/CNT-coated MEAs were able to detect tonic 5-HT in the mouse hippocampus for one week after implantation. Histology reveals that the flexible GC MEA implants caused less tissue damage and reduced inflammatory response in the hippocampus compared to commercially available stiff silicon probes. To the best of our knowledge, this PEDOT/CNT-coated GC MEA is the first implantable, flexible sensor capable of chronic in vivo multi-site sensing of tonic 5-HT.
Collapse
Affiliation(s)
- Elisa Castagnola
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260, Pittsburgh, PA, USA; Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA, 818 Nelson Ave, 71272, USA
| | - Elaine M Robbins
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260, Pittsburgh, PA, USA
| | - Daniela D Krahe
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260, Pittsburgh, PA, USA
| | - Bingchen Wu
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Ave, PA 15213, Pittsburgh, PA, 15261, USA
| | - May Yoon Pwint
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Ave, PA 15213, Pittsburgh, PA, 15261, USA
| | - Qun Cao
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260, Pittsburgh, PA, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 3501 Fifth Ave. Pittsburgh, PA 15260, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219-3110, USA; Center for Neural Basis of Cognition, University of Pittsburgh, 4400 Fifth Ave, PA 15213, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
2
|
Castagnola E, Robbins EM, Krahe D, Wu B, Pwint MY, Cao Q, Cui XT. Implantable flexible multielectrode arrays for multi-site sensing of serotonin tonic levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524488. [PMID: 36711655 PMCID: PMC9882191 DOI: 10.1101/2023.01.17.524488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Real-time multi-channel measurements of tonic serotonin (5-hydroxytryptamine, 5-HT) concentrations across different brain regions are of utmost importance to the understanding of 5-HT’s role in anxiety, depression, and impulse control disorders, which will improve the diagnosis and treatment of these neuropsychiatric illnesses. Chronic sampling of 5-HT is critical in tracking disease development as well as the time course of pharmacological treatments. Despite their value, in vivo chronic multi-site measurements of 5-HT have not been reported. To fill this technological gap, we batch fabricated implantable glassy carbon (GC) microelectrode arrays (MEAs) on a flexible SU-8 substrate to provide an electrochemically stable and biocompatible device/tissue interface. Then, to achieve multi-site detection of tonic 5-HT concentrations, we incorporated the poly(3,4-ethylenedioxythiophene)/functionalized carbon nanotube (PEDOT/CNT) coating on the GC microelectrodes in combination with a new square wave voltammetry (SWV) approach, optimized for selective 5-HT measurement. In vitro , the PEDOT/CNT coated GC microelectrodes achieved high sensitivity towards 5-HT, good fouling resistance in the presence of 5-HT, and excellent selectivity towards the most common neurochemical interferents. In vivo , our PEDOT/CNT-coated GC MEAs were able to successfully detect basal 5-HT concentrations at different locations of the CA2 hippocampal region of mice in both anesthetized and awake head-fixed conditions. Furthermore, the implanted PEDOT/CNT-coated MEA achieved stable detection of tonic 5-HT concentrations for one week. Finally, histology data in the hippocampus shows reduced tissue damage and inflammatory responses compared to stiff silicon probes. To the best of our knowledge, this PEDOT/CNT-coated GC MEA is the first implantable flexible multisite sensor capable of chronic in vivo multi-site sensing of tonic 5-HT. This implantable MEA can be custom-designed according to specific brain region of interests and research questions, with the potential to combine electrophysiology recording and multiple analyte sensing to maximize our understanding of neurochemistry. Highlights PEDOT/CNT-coated GC microelectrodes enabled sensitive and selective tonic detection of serotonin (5-HT) using a new square wave voltammetry (SWV) approach PEDOT/CNT-coated GC MEAs achieved multi-site in vivo 5-HT tonic detection for one week. Flexible MEAs lead to reduced tissue damage and inflammation compared to stiff silicon probes.
Collapse
|
3
|
Adamec R, Toth M, Haller J, Halasz J, Blundell J. A comparison of activation patterns of cells in selected prefrontal cortical and amygdala areas of rats which are more or less anxious in response to predator exposure or submersion stress. Physiol Behav 2011; 105:628-38. [PMID: 21971366 DOI: 10.1016/j.physbeh.2011.09.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/09/2011] [Accepted: 09/13/2011] [Indexed: 12/12/2022]
Abstract
This study had two purposes. First: to compare predator and water submersion stress cFos activation in medial prefrontal cortices (mPFC) and the medial amygdala (MeA). Second: to identify markers of vulnerability to stressors within these areas. Rats were either predator or submersion stressed and tested 1.75 h later for anxiety. Immediately thereafter, rats were sacrificed and cFos expression was examined. Predator and submersion stress equally increased anxiety-like behavior in the elevated plus maze (EPM) and hole board. To examine vulnerability, rats which were less anxious (LA) and more (highly) anxious (MA) in the EPM were selected from among handled control and stressed animals. LA stressed rats were considered stress non-responsive while MA stressed rats were considered stress responsive. Predator stress, but not submersion stress, activated MeA cFos. CFos expression of mPFC cells was elevated in LA rats and reduced in MA rats in predator stressed animals only, correlating negatively with anxiety. These findings are consistent with data implicating greater mPFC excitability in protection against the effects on affect of traumatic stress. The findings also suggest that this conclusion is stressor specific, applying to predator stress but not submersion stress. Both stressors have been suggested to model hyperarousal and comorbid anxiety aspects of PTSD in humans. Hence the use of these paradigms to identify brain bases of vulnerability and resilience to traumatic stress in PTSD has translation potential. On the other hand, our evidence of stressor specificity of vulnerability/resilience markers raises a caution. The data suggest that preclinical markers of vulnerability/resilience in a given stress paradigm are at best suggestive, and translational value must ultimately be confirmed in humans.
Collapse
Affiliation(s)
- Robert Adamec
- Memorial University, St. John's, Newfoundland, Canada.
| | | | | | | | | |
Collapse
|
4
|
Prins J, Olivier B, Korte SM. Triple reuptake inhibitors for treating subtypes of major depressive disorder: the monoamine hypothesis revisited. Expert Opin Investig Drugs 2011; 20:1107-30. [DOI: 10.1517/13543784.2011.594039] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
5
|
The effects of midazolam and d-cycloserine on the release of glutamate and GABA in the basolateral amygdala of low and high anxiety rats during extinction trial of a conditioned fear test. Neurobiol Learn Mem 2010; 94:468-80. [DOI: 10.1016/j.nlm.2010.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 08/23/2010] [Accepted: 08/25/2010] [Indexed: 11/24/2022]
|
6
|
Lehner M, Taracha E, Turzyńska D, Sobolewska A, Hamed A, Kołomańska P, Skórzewska A, Maciejak P, Szyndler J, Bidziński A, Płaźnik A. The role of the dorsomedial part of the prefrontal cortex serotonergic innervation in rat responses to the aversively conditioned context: Behavioral, biochemical and immunocytochemical studies. Behav Brain Res 2008; 192:203-15. [DOI: 10.1016/j.bbr.2008.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/07/2008] [Accepted: 04/10/2008] [Indexed: 11/24/2022]
|
7
|
Lehner M, Taracha E, Skórzewska A, Turzyńska D, Sobolewska A, Maciejak P, Szyndler J, Hamed A, Bidziński A, Wisłowska-Stanek A, Płaźnik A. Expression of c-Fos and CRF in the brains of rats differing in the strength of a fear response. Behav Brain Res 2008; 188:154-67. [DOI: 10.1016/j.bbr.2007.10.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/24/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
|
8
|
Briand LA, Gritton H, Howe WM, Young DA, Sarter M. Modulators in concert for cognition: modulator interactions in the prefrontal cortex. Prog Neurobiol 2007; 83:69-91. [PMID: 17681661 PMCID: PMC2080765 DOI: 10.1016/j.pneurobio.2007.06.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 04/06/2007] [Accepted: 06/22/2007] [Indexed: 12/19/2022]
Abstract
Research on the regulation and function of ascending noradrenergic, dopaminergic, serotonergic, and cholinergic systems has focused on the organization and function of individual systems. In contrast, evidence describing co-activation and interactions between multiple neuromodulatory systems has remained scarce. However, commonalities in the anatomical organization of these systems and overlapping evidence concerning the post-synaptic effects of neuromodulators strongly suggest that these systems are recruited in concert; they influence each other and simultaneously modulate their target circuits. Therefore, evidence on the regulatory and functional interactions between these systems is considered essential for revealing the role of neuromodulators. This postulate extends to contemporary neurobiological hypotheses of major neuropsychiatric disorders. These hypotheses have focused largely on aberrations in the integrity or regulation of individual ascending modulatory systems, with little regard for the likely possibility that dysregulation in multiple ascending neuromodulatory systems and their interactions contribute essentially to the symptoms of these disorders. This review will paradigmatically focus on neuromodulator interactions in the PFC and be further constrained by an additional focus on their role in cognitive functions. Recent evidence indicates that individual neuromodulators, in addition to their general state-setting or gating functions, encode specific cognitive operations, further substantiating the importance of research concerning the parallel recruitment of neuromodulator systems and interactions between these systems.
Collapse
Affiliation(s)
- Lisa A Briand
- University of Michigan, Department of Psychology and Neuroscience Program, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
9
|
Gonzalez LE, Rojnik B, Urrea F, Urdaneta H, Petrosino P, Colasante C, Pino S, Hernandez L. Toxoplasma gondii infection lower anxiety as measured in the plus-maze and social interaction tests in rats. Behav Brain Res 2007; 177:70-9. [PMID: 17169442 DOI: 10.1016/j.bbr.2006.11.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 10/30/2006] [Accepted: 11/02/2006] [Indexed: 11/23/2022]
Abstract
It has been suggested that the parasite Toxoplasma gondii reduces the fear of rodents toward their feline predators, which may lead to an augmented rate of predation and multiplication of the parasite through an increased number of life cycles. To investigate whether T. gondii infection induces selective effects on behavior associated with anxiety, Wistar rats were inoculated i.p. with several doses of T. gondii tachyzoites and tested in two animal tests of anxiety. In the third week following inoculation, rats infected with 100 and 1000 tachyzoites increased plus-maze open arm exploration in a dose-related manner. However, no effect was detected in either social interaction levels or motor activity measures. In the seventh week after inoculation, rats infected with 100 and 1000 tachyzoites showed increased open arm exploration and social investigation without change on any motor activity measures. However, rats infected with a higher dose (1500 tachyzoites) showed a drop in locomotion. These data support the hypothesis that T. gondii impairs mechanism of warning as a function of reduced anxiety. The pattern of brain colonization by the parasite and the host immune response suggests that the predominant invasion to limbic areas works as a natural anxiolytic mechanism.
Collapse
Affiliation(s)
- Luis E Gonzalez
- Los Andes University, Department of Physiology, Mérida 5101-A, Venezuela.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Young BJ, Cook CJ. Reduced basal GABA concentrations in the rat amygdala during pregnancy. Physiol Behav 2006; 87:817-20. [PMID: 16519910 DOI: 10.1016/j.physbeh.2006.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 01/17/2006] [Accepted: 01/24/2006] [Indexed: 11/19/2022]
Abstract
Marked increases in anxiety-like responses to stress occur during pregnancy. Considerable evidence indicates that the basolateral region of the amygdala (BLA) plays an important role in mediating these types of responses. Given the crucial inhibitory influence of GABA on excitatory glutamatergic activity in the BLA, we hypothesized that decreased GABAergic activity in this region may underlie the increased anxiety associated with pregnancy. In vivo microdialysis was used to sample extracellular GABA before and after 30 min of restraint stress. While there was no detectable effect of restraint on extracellular GABA concentrations, basal GABA levels were significantly decreased in pregnant rats compared with either virgin females or males. We suggest that the alterations in anxiety-like behavior that occur during pregnancy may be associated with decreased basal GABA in the BLA.
Collapse
Affiliation(s)
- Brian J Young
- Ministry of Research, Science & Technology, Level 10, 2 The Terrace, PO Box 5336, Wellington, New Zealand.
| | | |
Collapse
|
11
|
Abstract
Anxiety is a complex emotional state associated with sustained heightened autonomic and behavioral arousal and an increase in avoidance behavior. Anxiety-related behavior is a form of risk assessment behavior that is associated with a level of uncertainty or unpredictability regarding the outcome of emotionally salient events, often when both rewarding and aversive outcomes are possible. In this review, we highlight recent advances in our understanding of the neural circuits regulating anxiety states and anxiety-related behavior with an emphasis on the role of brainstem serotonergic systems in modulating anxiety-related circuits. In particular, we explore the possibility that the regulation of anxiety states and anxiety-related behavior by serotonergic systems is dependent on a specific, topographically organized mesolimbocortical serotonergic system that originates in the mid-rostrocaudal and caudal parts of the dorsal raphe nucleus.
Collapse
Affiliation(s)
- Christopher A Lowry
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK.
| | | | | | | | | |
Collapse
|