1
|
Luo Y, Yu L, Zhang P, Lin W, Xu H, Dou Z, Zhao G, Peng W, Zeng F, Yu S. Larger hypothalamic subfield volumes in patients with chronic insomnia disorder and relationships to levels of corticotropin-releasing hormone. J Affect Disord 2024; 351:870-877. [PMID: 38341156 DOI: 10.1016/j.jad.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The hypothalamus is a well-established core structure in the sleep-wake cycle. While previous studies have not consistently found whole hypothalamus volume changes in chronic insomnia disorder (CID), differences may exist at the smaller substructural level of the hypothalamic nuclei. The study aimed to investigate the differences in total and subfield hypothalamic volumes, between CID patients and healthy controls (HCs) in vivo, through an advanced deep learning-based automated segmentation tool. A total of 150 patients with CID and 155 demographically matched HCs underwent T1-weighted structural magnetic resonance scanning. We utilized FreeSurfer v7.2 for automated segmentation of the hypothalamus and its five nuclei. Additionally, correlation and causal mediation analyses were performed to investigate the association between hypothalamic volume changes, insomnia symptom severity, and hypothalamus-pituitary-adrenal (HPA) axis-related blood biomarkers. CID patients exhibited larger volumes in the right anterior inferior, left anterior superior, and left posterior subunits of the hypothalamus compared to HCs. Moreover, we observed a positive association between blood corticotropin-releasing hormone (CRH) levels and insomnia severity, with anterior inferior hypothalamus (a-iHyp) hypertrophy mediating this relationship. In conclusion, we found significant volume increases in several hypothalamic subfield regions in CID patients, highlighting the central role of the HPA axis in the pathophysiology of insomnia.
Collapse
Affiliation(s)
- Yucai Luo
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyong Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pan Zhang
- Nervous System Disease Treatment Center, Traditional Chinese Medicine Hospital of Meishan, Meishan, China
| | - Wenting Lin
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Xu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zeyang Dou
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangli Zhao
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Fang Zeng
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyi Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Acupuncture and Brain Science Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Van Drunen R, Eckel-Mahan K. Circadian Rhythms of the Hypothalamus: From Function to Physiology. Clocks Sleep 2021; 3:189-226. [PMID: 33668705 PMCID: PMC7931002 DOI: 10.3390/clockssleep3010012] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
The nearly ubiquitous expression of endogenous 24 h oscillations known as circadian rhythms regulate the timing of physiological functions in the body. These intrinsic rhythms are sensitive to external cues, known as zeitgebers, which entrain the internal biological processes to the daily environmental changes in light, temperature, and food availability. Light directly entrains the master clock, the suprachiasmatic nucleus (SCN) which lies in the hypothalamus of the brain and is responsible for synchronizing internal rhythms. However, recent evidence underscores the importance of other hypothalamic nuclei in regulating several essential rhythmic biological functions. These extra-SCN hypothalamic nuclei also express circadian rhythms, suggesting distinct regions that oscillate either semi-autonomously or independent of SCN innervation. Concurrently, the extra-SCN hypothalamic nuclei are also sensitized to fluctuations in nutrient and hormonal signals. Thus, food intake acts as another powerful entrainer for the hypothalamic oscillators' mediation of energy homeostasis. Ablation studies and genetic mouse models with perturbed extra-SCN hypothalamic nuclei function reveal their critical downstream involvement in an array of functions including metabolism, thermogenesis, food consumption, thirst, mood and sleep. Large epidemiological studies of individuals whose internal circadian cycle is chronically disrupted reveal that disruption of our internal clock is associated with an increased risk of obesity and several neurological diseases and disorders. In this review, we discuss the profound role of the extra-SCN hypothalamic nuclei in rhythmically regulating and coordinating body wide functions.
Collapse
Affiliation(s)
- Rachel Van Drunen
- MD Anderson UTHealth School Graduate School of Biomedical Sciences, Houston TX 77030, USA;
- Brown Foundation Institute of Molecular Medicine University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Kristin Eckel-Mahan
- MD Anderson UTHealth School Graduate School of Biomedical Sciences, Houston TX 77030, USA;
- Brown Foundation Institute of Molecular Medicine University of Texas McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
3
|
Cipolla-Neto J, Amaral FGD. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr Rev 2018; 39:990-1028. [PMID: 30215696 DOI: 10.1210/er.2018-00084] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Melatonin is a ubiquitous molecule present in almost every live being from bacteria to humans. In vertebrates, besides being produced in peripheral tissues and acting as an autocrine and paracrine signal, melatonin is centrally synthetized by a neuroendocrine organ, the pineal gland. Independently of the considered species, pineal hormone melatonin is always produced during the night and its production and secretory episode duration are directly dependent on the length of the night. As its production is tightly linked to the light/dark cycle, melatonin main hormonal systemic integrative action is to coordinate behavioral and physiological adaptations to the environmental geophysical day and season. The circadian signal is dependent on its daily production regularity, on the contrast between day and night concentrations, and on specially developed ways of action. During its daily secretory episode, melatonin coordinates the night adaptive physiology through immediate effects and primes the day adaptive responses through prospective effects that will only appear at daytime, when melatonin is absent. Similarly, the annual history of the daily melatonin secretory episode duration primes the central nervous/endocrine system to the seasons to come. Remarkably, maternal melatonin programs the fetuses' behavior and physiology to cope with the environmental light/dark cycle and season after birth. These unique ways of action turn melatonin into a biological time-domain-acting molecule. The present review focuses on the above considerations, proposes a putative classification of clinical melatonin dysfunctions, and discusses general guidelines to the therapeutic use of melatonin.
Collapse
Affiliation(s)
- José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
4
|
Paladino N, Mul Fedele ML, Duhart JM, Marpegan L, Golombek DA. Modulation of mammalian circadian rhythms by tumor necrosis factor-α. Chronobiol Int 2014; 31:668-79. [PMID: 24527954 DOI: 10.3109/07420528.2014.886588] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Systemic low doses of the endotoxin lipopolysaccharide (LPS, 100 µg/kg) administered during the early night induce phase-delays of locomotor activity rhythms in mice. Our aim was to evaluate the role of tumor necrosis factor (Tnf)-alpha and its receptor 1/p55 (Tnfr1) in the modulation of LPS-induced circadian effects on the suprachiasmatic nucleus (SCN). We observed that Tnfr1-defective mice (Tnfr1 KO), although exhibiting similar circadian behavior and light response to that of control mice, did not show LPS-induced phase-delays of locomotor activity rhythms, nor LPS-induced cFos and Per2 expression in the SCN and Per1 expression in the paraventricular hypothalamic nucleus (PVN) as compared to wild-type (WT) mice. We also analyzed Tnfr1 expression in the SCN of WT mice, peaking during the early night, when LPS has a circadian effect. Peripheral inoculation of LPS induced an increase in cytokine/chemokine levels (Tnf, Il-6 and Ccl2) in the SCN and in the PVN. In conclusion, in this study, we show that LPS-induced circadian responses are mediated by Tnf. Our results also suggest that this cytokine stimulates the SCN after LPS peripheral inoculation; and the time-related effect of LPS (i.e. phase shifts elicited only at early night) might depend on the increased levels of Tnfr1 expression. We also confirmed that LPS modulates clock gene expression in the SCN and PVN in WT but not in Tnfr1 KO mice. HIGHLIGHTS We demonstrate a fundamental role for Tnf and its receptor in circadian modulation by immune stimuli at the level of the SCN biological clock.
Collapse
Affiliation(s)
- Natalia Paladino
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes , Buenos Aires , Argentina
| | | | | | | | | |
Collapse
|
5
|
Stuebner E, Vichayanrat E, Low DA, Mathias CJ, Isenmann S, Haensch CA. Twenty-four hour non-invasive ambulatory blood pressure and heart rate monitoring in Parkinson's disease. Front Neurol 2013; 4:49. [PMID: 23720648 PMCID: PMC3654335 DOI: 10.3389/fneur.2013.00049] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/23/2013] [Indexed: 11/18/2022] Open
Abstract
Non-motor symptoms are now commonly recognized in Parkinson's disease (PD) and can include dysautonomia. Impairment of cardiovascular autonomic function can occur at any stage of PD but is typically prevalent in advanced stages or related to (anti-Parkinsonian) drugs and can result in atypical blood pressure (BP) readings and related symptoms such as orthostatic hypotension (OH) and supine hypertension. OH is usually diagnosed with a head-up-tilt test (HUT) or an (active) standing test (also known as Schellong test) in the laboratory, but 24 h ambulatory blood pressure monitoring (ABPM) in a home setting may have several advantages, such as providing an overview of symptoms in daily life alongside pathophysiology as well as assessment of treatment interventions. This, however, is only possible if ABPM is administrated correctly and an autonomic protocol (including a diary) is followed which will be discussed in this review. A 24-h ABPM does not only allow the detection of OH, if it is present, but also the assessment of cardiovascular autonomic dysfunction during and after various daily stimuli, such as postprandial and alcohol dependent hypotension, as well as exercise and drug induced hypotension. Furthermore, information about the circadian rhythm of BP and heart rate (HR) can be obtained and establish whether or not a patient has a fall of BP at night (i.e., "dipper" vs. non-"dipper"). The information about nocturnal BP may also allow the investigation or detection of disorders such as sleep dysfunction, nocturnal movement disorders, and obstructive sleep apnea, which are common in PD. Additionally, a 24-h ABPM should be conducted to examine the effectiveness of OH therapy. This review will outline the methodology of 24 h ABPM in PD, summarize findings of such studies in PD, and briefly consider common daily stimuli that might affect 24 h ABPM.
Collapse
Affiliation(s)
- Eva Stuebner
- Autonomic Laboratory, Department of Neurology and Clinical Neurophysiology, Faculty of Health, HELIOS-Klinikum Wuppertal, University of Witten/HerdeckeWuppertal, Germany
| | - Ekawat Vichayanrat
- Autonomic and Neurovascular Medicine Unit, Division of Brain Sciences, Faculty of Medicine, Imperial College London at St Mary’s HospitalLondon, UK
- Autonomic Unit, Queen Square/Division of Clinical Neurology, National Hospital for Neurology and Neurosurgery, Institute of Neurology, University College LondonLondon, UK
| | - David A. Low
- Autonomic and Neurovascular Medicine Unit, Division of Brain Sciences, Faculty of Medicine, Imperial College London at St Mary’s HospitalLondon, UK
- Autonomic Unit, Queen Square/Division of Clinical Neurology, National Hospital for Neurology and Neurosurgery, Institute of Neurology, University College LondonLondon, UK
| | - Christopher J. Mathias
- Autonomic and Neurovascular Medicine Unit, Division of Brain Sciences, Faculty of Medicine, Imperial College London at St Mary’s HospitalLondon, UK
- Autonomic Unit, Queen Square/Division of Clinical Neurology, National Hospital for Neurology and Neurosurgery, Institute of Neurology, University College LondonLondon, UK
| | - Stefan Isenmann
- Autonomic Laboratory, Department of Neurology and Clinical Neurophysiology, Faculty of Health, HELIOS-Klinikum Wuppertal, University of Witten/HerdeckeWuppertal, Germany
| | - Carl-Albrecht Haensch
- Autonomic Laboratory, Department of Neurology and Clinical Neurophysiology, Faculty of Health, HELIOS-Klinikum Wuppertal, University of Witten/HerdeckeWuppertal, Germany
| |
Collapse
|
6
|
Witt-Enderby PA, Slater JP, Johnson NA, Bondi CD, Dodda BR, Kotlarczyk MP, Clafshenkel WP, Sethi S, Higginbotham S, Rutkowski JL, Gallagher KM, Davis VL. Effects on bone by the light/dark cycle and chronic treatment with melatonin and/or hormone replacement therapy in intact female mice. J Pineal Res 2012; 53:374-84. [PMID: 22639972 DOI: 10.1111/j.1600-079x.2012.01007.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, the effects of the light/dark cycle, hormone replacement therapy (HRT), and nocturnal melatonin supplementation on osteogenic markers and serum melatonin levels were examined in a blind mouse model (MMTV-Neu transgenic mice). Melatonin levels in this mouse strain (FVB/N) with retinal degeneration (rd-/-) fluctuate in a diurnal manner, suggesting that these mice, although blind, still perceive light. Real-time RT-PCR analyses demonstrated that Runx2, Bmp2, Bmp6, Bglap, and Per2 mRNA levels coincide with melatonin levels. The effect of chronic HRT (0.5 mg 17β-estradiol + 50 mg progesterone in 1800 kcal of diet) alone and in combination with melatonin (15 mg/L drinking water) on bone quality and density was also assessed by histomorphometry and microcomputed tomography, respectively. Bone density was significantly increased (P < 0.05) after 1 yr of treatment with the individual therapies, HRT (22% increase) and nocturnal melatonin (20% increase) compared to control. Hormone replacement therapy alone also increased surface bone, decreased trabecular space, and decreased the number of osteoclasts without affecting osteoblast numbers compared to the control group (P < 0.05). Chronic HRT + melatonin therapy did not significantly increase bone density, even though this combination significantly increased Bglap mRNA levels. These data suggest that the endogenous melatonin rhythm modulates markers important to bone physiology. Hormone replacement therapy with or without nocturnal melatonin in cycling mice produces unique effects on bone markers and bone density. The effects of these therapies alone and combined may improve bone health in women in perimenopause and with low nocturnal melatonin levels from too little sleep, too much light, or age.
Collapse
Affiliation(s)
- Paula A Witt-Enderby
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Isobe Y, Hida H, Nishino H. Circadian rhythm of metabolic oscillation in suprachiasmatic nucleus depends on the mitochondrial oxidation state, reflected by cytochrome C oxidase and lactate dehydrogenase. J Neurosci Res 2011; 89:929-35. [PMID: 21416482 DOI: 10.1002/jnr.22609] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 01/07/2011] [Accepted: 01/09/2011] [Indexed: 11/11/2022]
Abstract
Metabolic activity in the suprachiasmatic nucleus (SCN), a center of biological rhythm, is higher during the daytime than at night. The rhythmic oscillation in the SCN is feedback controlled by the Clock/Bmal1 heterodimer binding to the E-box in target genes (e.g., Arg-vasopressin). Similar transcriptional regulation by Npas2/Bmal1 heterodimer formation operates in the brain, which is dependent on the redox state (i.e., NAD/NADH). To clarify the metabolic function of SCN in relation to the redox state and glycolysis levels, we measured glucose, lactate dehydrogenase (LDH), LDH mRNA, and cytochrome C oxidase, energy-producing biochemical materials from mitochondria/cytosol, in rats kept under a light-dark cycle. Mitochondrial cytochrome C oxidase activity, measured by the changes in absorption at 550 nm, was higher during the light period than during the dark period. Glucose concentration was higher during the light period. In contrast, LDH and its coding mRNA were higher during the dark period. Mitochondrial aggregation, which is reflected by mitochondrial membrane potential, indexed by JC-1 fluorescence, was higher during the light period. The results indicate that the glycolysis energy pathway in the SCN, which exhits higher metabolic activity during the day than at night, might be involved in the generation of circadian rhythm.
Collapse
Affiliation(s)
- Yoshiaki Isobe
- Department of Neuro-Physiology and Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan. yisobe@ med.nagoya-cu.ac.jp
| | | | | |
Collapse
|
8
|
Isobe Y, Hida H, Nishino H. Circadian rhythm of enolase in suprachiasmatic nucleus depends on mitochondrial function. J Neurosci Res 2011; 89:936-44. [PMID: 21416483 DOI: 10.1002/jnr.22610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 01/06/2011] [Accepted: 01/09/2011] [Indexed: 11/09/2022]
Abstract
Metabolic activity in the suprachiasmatic nucleus (SCN), a center of biological rhythm, is higher during the daytime than at night. The rhythmic oscillation in the SCN is feedback controlled by the CLOCK/BMAL1 heterodimer binding to the E-box in target genes (e.g., Arg- vasopressin). Similar transcriptional regulation by NPAS2/BMAL1 heterodimer formation operates in the brain, which depends on the redox state (i.e., NAD/NADH). To clarify the metabolic function of SCN in relation to the redox state, two-dimensional electrophoresis was carried out on the mitochondrial fraction of SCN, obtained from rats kept under a light:dark cycle and constant under dim light. The electrophoretic pattern with TOF-mass spectrometry analysis revealed that enolase catalyzes the interconversion of 2-phosphoglycerate and phosphoenolpyruvate. The enolase activity, coupled with lactate dehydrogenase, was higher during the light period than that in the dark. However, enolase mRNA, analyzed by RT-PCR, showed higher levels during the dark period than in the light. The clock gene products Per2, Bmal1, Rev-erbα, and AVP mRNA in the mitochondrial fraction of SCN developed a circadian rhythm showing almost the same peak time as that in whole SCN. These mRNA rhythms ran free except for that of Rev-erbα mRNA. The results indicate that, in the glycolysis-related energy pathway, enolase might be involved in higher metabolic activity during the day than at night, at least in part.
Collapse
Affiliation(s)
- Yoshiaki Isobe
- Department of Neuro-Physiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan. yisobe@ med.nagoya-cu.ac.jp
| | | | | |
Collapse
|
9
|
Pak TR, Chung WCJ, Hinds LR, Handa RJ. Arginine vasopressin regulation in pre- and postpubertal male rats by the androgen metabolite 3beta-diol. Am J Physiol Endocrinol Metab 2009; 296:E1409-13. [PMID: 19383875 PMCID: PMC2692392 DOI: 10.1152/ajpendo.00037.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arginine vasopressin (AVP) is a nonapeptide expressed in several brain regions. In addition to its well-characterized role in osmoregulation, AVP regulates paternal behavior, aggression,circadian rhythms, and the stress response. In the bed nucleus of the stria terminalis (BST), AVP gene expression is tightly regulated by gonadal steroid hormones. However, the degree by which AVP is regulated by gonadal steroid hormones in the suprachiasmatic nucleus (SCN) and medial amygdala (MeA) is unclear. Previous studies have shown that AVP expression in the brain of gonadectomized rats is restored with testosterone, 17beta-estradiol, and 5alpha-dihydrotestosterone(DHT) replacement. In addition, we have demonstrated that 3beta-diol, a metabolite of DHT,increased AVP promoter activity in a neuronal cell line and that the effects of 3beta-diol on AVP promoter activity were mediated by estrogen receptor-beta. To test whether 3beta-diol has a physiological role in the regulation of central AVP expression in vivo, we gonadectomized pre- and postpubertal male rats and followed with once daily injections of estradiol benzoate (EB),DHT-propionate, 3beta-diol-dipropionate, or vehicle. The SCN, BST, and MeA were analyzed for AVP mRNA expression using in situ hybridization. In the BST, intact juveniles had significantly fewer AVP-expressing cells than adults. GDX abolished all AVP mRNA expression in the BST in both age groups, whereas treatment with EB restored >80% and DHTP <10% of the AVP expression. Interestingly, 3beta-diol-proprionate was more effective at inducing AVP expression in juveniles than in adults, suggesting that the regulation of AVP by 3beta-diol might be age dependent [corrected].
Collapse
Affiliation(s)
- Toni R Pak
- Dept. of Cell Biology, Loyola University Chicago, Stritch School of Medicine, 2160 S. First Ave., Maywood, IL 60153, USA.
| | | | | | | |
Collapse
|
10
|
Gaszner B, Van Wijk DCWA, Korosi A, Józsa R, Roubos EW, Kozicz T. Diurnal expression of period 2 and urocortin 1 in neurones of the non-preganglionic Edinger-Westphal nucleus in the rat. Stress 2009; 12:115-24. [PMID: 18850494 DOI: 10.1080/10253890802057221] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Period 2 (Per2) is an important clock gene involved in the regulation of the major circadian clock in the mammalian central nervous system, the suprachiasmatic nucleus. In addition, Per2 is expressed in many other stress-sensitive brain structures. We have previously showed that the non-preganglionic Edinger-Westphal nucleus (npEW) is the main site of the corticotropin-releasing factor peptide family member urocortin 1 (Ucn1) and that this peptide undergoes conspicuous expression changes in response to various stressors. Here, we hypothesized that in the rat npEW both Per2 and Ucn1 would be produced in a diurnal, rhythmical fashion. This hypothesis was tested by following this expected rhythm on two days in rats killed at four time points each day (Zeitgeber times 0, 6, 12, and 18). We showed the co-existence of Per2 and Ucn1 in the npEW with double-label immunofluorescence and demonstrated with quantitative RT-PCR and semi-quantitative immunocytochemistry diurnal rhythms in Per2 mRNA expression and Per2 protein content, each on a single different day, with a minimum at lights-off and a maximum at lights-on. We furthermore revealed a diurnal rhythm in the number of Ucn1-immunopositive neurones and in their Ucn1 peptide content, with a minimum at night and at the beginning of the light period and a peak at lights-off, while the Ucn1 mRNA content paralleled the Per2 mRNA rhythm. The rhythms were accompanied by a diurnal rhythm in plasma corticosterone concentration. Our results are in line with the hypothesis that both Per2 and Ucn1 in the rat npEW are produced in a diurnal fashion, a phenomenon that may be relevant for the regulation of the diurnal rhythm in the stress response.
Collapse
Affiliation(s)
- B Gaszner
- Department of Cellular Animal Physiology, Radboud University Nijmegen, IWWR, EURON European bsy Graduate School of Neuroscience, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
11
|
Pak TR, Chung WCJ, Hinds LR, Handa RJ. Estrogen receptor-beta mediates dihydrotestosterone-induced stimulation of the arginine vasopressin promoter in neuronal cells. Endocrinology 2007; 148:3371-82. [PMID: 17412808 DOI: 10.1210/en.2007-0086] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Arginine vasopressin (AVP) is a neuropeptide involved in the regulation of fluid balance, stress, circadian rhythms, and social behaviors. In the brain, AVP is tightly regulated by gonadal steroid hormones in discrete regions with gonadectomy abolishing and testosterone replacement restoring normal AVP expression in adult males. Previous studies demonstrated that 17beta-estradiol, a primary metabolite of testosterone, is responsible for restoring most of the AVP expression in the brain after castration. However, 5alpha-dihydrotestosterone (DHT) has also been shown to play a role in the regulation of AVP expression, thus implicating the involvement of both androgen and estrogen receptors (ER). Furthermore, DHT, through its conversion to 5alpha-androstane-3beta,17beta-diol, has been shown to modulate estrogen response element-mediated promoter activity through an ER pathway. The present study addressed two central hypotheses: 1) that androgens directly modulate AVP promoter activity and 2) the effect is mediated by an estrogen or androgen receptor pathway. To that end, we overexpressed androgen receptor, ERbeta, and ERbeta splice variants in a neuronal cell line and measured AVP promoter activity using a firefly luciferase reporter assay. Our results demonstrate that DHT and its metabolite 5alpha-androstane-3beta,17beta-diol stimulate AVP promoter activity through ERbeta in a neuronal cell line.
Collapse
Affiliation(s)
- Toni R Pak
- Department of Biomedical Science, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523, USA.
| | | | | | | |
Collapse
|
12
|
Yang J, Chen JM, Song CY, Liu WY, Wang G, Wang CH, Lin BC. Through the central V2, not V1 receptors influencing the endogenous opiate peptide system, arginine vasopressin, not oxytocin in the hypothalamic paraventricular nucleus involves in the antinociception in the rat. Brain Res 2006; 1069:127-38. [PMID: 16409991 DOI: 10.1016/j.brainres.2005.11.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 11/10/2005] [Accepted: 11/12/2005] [Indexed: 11/28/2022]
Abstract
Our previous study has proven that hypothalamic paraventricular nucleus (PVN) played a role in the antinociception. The central bioactive substances involving in the PVN regulating antinociception were investigated in the rat. The results showed that electrical stimulation of the PVN increased the pain threshold, and L-glutamate sodium injection into the PVN elevated the pain threshold, but the PVN cauterization decreased the pain threshold; pain stimulation raised the arginine vasopressin (AVP), not oxytocin (OXT), leucine-enkephalin (L-Ek), beta-endorphin (beta-Ep) and DynorphinA1-13 (DynA1-13) concentrations in the PVN tissue using micropunch method, heightened AVP, L-Ek, beta-Ep and DynA1-13, not OXT concentrations in the PVN perfuse liquid, and reduced the number of AVP-, not OXT, L-Ek, beta-Ep and DynA1-13-immunoreactive neurons in the PVN especially in the posterior magnocellular part of the PVN using immunocytochemistry. There was a negative relationship between the PVN AVP concentration and the pain threshold; pain stimulation enhanced the AVP, not OXT mRNA expression in the PVN using in situ hybridization and RT-PCR; intraventricular injection of anti-AVP serum completely reversed L-glutamate sodium injection into the PVN-induced antinociception, and administration of naloxone - the opiate peptide antagonist, partly blocked this L-glutamate sodium effect, but anti-OXT serum pretreatment did not influence this L-glutamate sodium effect; L-glutamate sodium injection into the PVN-induced analgesia was inhibited by V2 receptor antagonist - d(CH2)5[D-Ile2, Ile4, Ala-NH2(9)]AVP, not V1 receptor antagonist - d(CH2)5Tyr(Me)AVP. The data suggested that the PVN was limited to the central AVP, not OXT, which was through V2, not V1 receptors influencing the endogenous opiate peptide system, to regulate antinociception.
Collapse
Affiliation(s)
- Jun Yang
- Institute for Pharmaceutical and Medicinal Science, Guangdong Bangmin Pharmaceutical Co. Ltd., Jianghai District, Jiangmen, Guangdong 529000 China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Isobe Y, Kawaguchi T, Tauchi H. Thermoregulatory responses in rat pups during the nursing period: effects of separation from the dam on Per2, Bmal1, LDH and Arg-vasopressin mRNAs in the suprachiasmatic nucleus. BIOL RHYTHM RES 2005. [DOI: 10.1080/09291010500138662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Isobe Y, Tauchi H, Kawaguchi T. Development of Per2, Bmal1 and Arg-vasopressin mRNA circadian rhythms in the suprachiasmatic nucleus of rat pups under a light – dark cycle and constant dim light. BIOL RHYTHM RES 2005. [DOI: 10.1080/09291010500138720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Isobe Y, Torii T, Kawaguchi T, Nishino H. Dexamethasone induces different wheel running activity than corticosterone through vasopressin release from the suprachiasmatic nucleus. Brain Res 2004; 1028:219-24. [PMID: 15527747 DOI: 10.1016/j.brainres.2004.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2004] [Indexed: 11/21/2022]
Abstract
During the analysis of wheel running activity, we found that corticosterone (1 mg/100 g BW) injection decreased wheel activity, while dexamethasone (0.1 mg/100 g) increased the activity. To clarify the functional differences between corticosterone and dexamethasone, we measured Arg-vasopressin (AVP) release from the suprachiasmatic nucleus (SCN) slice culture in vitro and AVP coding mRNA in the SCN in vivo. The corticosterone (0.2 and 2 microg/ml, final concentration in medium) decreased the AVP release, while it increased by dexamethasone (0.2 and 2 microg/ml). An AVP mRNA in the SCN was decreased by both corticosterone (1 mg/100 g) and dexamethasone (0.1 mg/100 g). The differences in wheel activity by corticosterone and dexamethasone are discussed from the changes of AVP in the SCN.
Collapse
Affiliation(s)
- Yoshiaki Isobe
- Department of Neuro-physiology and Brain Sciences, Nagoya City University, Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan.
| | | | | | | |
Collapse
|