1
|
Juarez P, Martínez Cerdeño V. Parvalbumin and parvalbumin chandelier interneurons in autism and other psychiatric disorders. Front Psychiatry 2022; 13:913550. [PMID: 36311505 PMCID: PMC9597886 DOI: 10.3389/fpsyt.2022.913550] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Parvalbumin (PV) is a calcium binding protein expressed by inhibitory fast-spiking interneurons in the cerebral cortex. By generating a fast stream of action potentials, PV+ interneurons provide a quick and stable inhibitory input to pyramidal neurons and contribute to the generation of gamma oscillations in the cortex. Their fast-firing rates, while advantageous for regulating cortical signaling, also leave them vulnerable to metabolic stress. Chandelier (Ch) cells are a type of PV+ interneuron that modulate the output of pyramidal neurons and synchronize spikes within neuron populations by directly innervating the pyramidal axon initial segment. Changes in the morphology and/or function of PV+ interneurons, mostly of Ch cells, are linked to neurological disorders. In ASD, the number of PV+ Ch cells is decreased across several cortical areas. Changes in the morphology and/or function of PV+ interneurons have also been linked to schizophrenia, epilepsy, and bipolar disorder. Herein, we review the role of PV and PV+ Ch cell alterations in ASD and other psychiatric disorders.
Collapse
Affiliation(s)
- Pablo Juarez
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospital for Children and UC Davis School of Medicine, Sacramento, CA, United States.,Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, United States
| | - Verónica Martínez Cerdeño
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Hospital for Children and UC Davis School of Medicine, Sacramento, CA, United States.,Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, United States.,MIND Institute, UC Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
2
|
Burns TF, Rajan R. Sensing and processing whisker deflections in rodents. PeerJ 2021; 9:e10730. [PMID: 33665005 PMCID: PMC7906041 DOI: 10.7717/peerj.10730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/17/2020] [Indexed: 11/20/2022] Open
Abstract
The classical view of sensory information mainly flowing into barrel cortex at layer IV, moving up for complex feature processing and lateral interactions in layers II and III, then down to layers V and VI for output and corticothalamic feedback is becoming increasingly undermined by new evidence. We review the neurophysiology of sensing and processing whisker deflections, emphasizing the general processing and organisational principles present along the entire sensory pathway—from the site of physical deflection at the whiskers to the encoding of deflections in the barrel cortex. Many of these principles support the classical view. However, we also highlight the growing number of exceptions to these general principles, which complexify the system and which investigators should be mindful of when interpreting their results. We identify gaps in the literature for experimentalists and theorists to investigate, not just to better understand whisker sensation but also to better understand sensory and cortical processing.
Collapse
Affiliation(s)
- Thomas F Burns
- Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Ramesh Rajan
- Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Oda S, Tsuneoka Y, Yoshida S, Adachi-Akahane S, Ito M, Kuroda M, Funato H. Immunolocalization of muscarinic M1 receptor in the rat medial prefrontal cortex. J Comp Neurol 2018; 526:1329-1350. [PMID: 29424434 PMCID: PMC5900831 DOI: 10.1002/cne.24409] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 01/23/2018] [Accepted: 01/27/2018] [Indexed: 12/20/2022]
Abstract
The medial prefrontal cortex (mPFC) has been considered to participate in many higher cognitive functions, such as memory formation and spatial navigation. These cognitive functions are modulated by cholinergic afferents via muscarinic acetylcholine receptors. Previous pharmacological studies have strongly suggested that the M1 receptor (M1R) is the most important subtype among muscarinic receptors to perform these cognitive functions. Actually, M1R is abundant in mPFC. However, the proportion of somata containing M1R among cortical cellular types, and the precise intracellular localization of M1R remain unclear. In this study, to clarify the precise immunolocalization of M1R in rat mPFC, we examined three major cellular types, pyramidal neurons, inhibitory neurons, and astrocytes. M1R immunopositivity signals were found in the majority of the somata of both pyramidal neurons and inhibitory neurons. In pyramidal neurons, strong M1R immunopositivity signals were usually found throughout their somata and dendrites including spines. On the other hand, the signal strength of M1R immunopositivity in the somata of inhibitory neurons significantly varied. Some neurons showed strong signals. Whereas about 40% of GAD67‐immunopositive neurons and 30% of parvalbumin‐immunopositive neurons (PV neurons) showed only weak signals. In PV neurons, M1R immunopositivity signals were preferentially distributed in somata. Furthermore, we found that many astrocytes showed substantial M1R immunopositivity signals. These signals were also mainly distributed in their somata. Thus, the distribution pattern of M1R markedly differs between cellular types. This difference might underlie the cholinergic modulation of higher cognitive functions subserved by mPFC.
Collapse
Affiliation(s)
- Satoko Oda
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Sachine Yoshida
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Satomi Adachi-Akahane
- Department of Physiology, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Masanori Ito
- Department of Physiology, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Masaru Kuroda
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan.,International institute for integrative sleep medicine (IIIS), Tsukuba University, Ibaraki, 305-8575, Japan
| |
Collapse
|
4
|
Fast gamma oscillations are generated intrinsically in CA1 without the involvement of fast-spiking basket cells. J Neurosci 2015; 35:3616-24. [PMID: 25716860 DOI: 10.1523/jneurosci.4166-14.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Information processing in neuronal networks relies on the precise synchronization of ensembles of neurons, coordinated by the diverse family of inhibitory interneurons. Cortical interneurons can be usefully parsed by embryonic origin, with the vast majority arising from either the caudal or medial ganglionic eminences (CGE and MGE). Here, we examine the activity of hippocampal interneurons during gamma oscillations in mouse CA1, using an in vitro model where brief epochs of rhythmic activity were evoked by local application of kainate. We found that this CA1 KA-evoked gamma oscillation was faster than that in CA3 and, crucially, did not appear to require the involvement of fast-spiking basket cells. In contrast to CA3, we also found that optogenetic inhibition of pyramidal cells in CA1 did not significantly affect the power of the oscillation, suggesting that excitation may not be essential for gamma genesis in this region. We found that MGE-derived interneurons were generally more active than CGE interneurons during CA1 gamma, although a group of CGE-derived interneurons, putative trilaminar cells, were strongly phase-locked with gamma oscillations and, together with MGE-derived axo-axonic and bistratified cells, provide attractive candidates for being the driver of this locally generated, predominantly interneuron-driven model of gamma oscillations.
Collapse
|
5
|
Becchetti A, Aracri P, Meneghini S, Brusco S, Amadeo A. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy. Front Physiol 2015; 6:22. [PMID: 25717303 PMCID: PMC4324070 DOI: 10.3389/fphys.2015.00022] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a focal epilepsy with attacks typically arising in the frontal lobe during non-rapid eye movement (NREM) sleep. It is characterized by clusters of complex and stereotyped hypermotor seizures, frequently accompanied by sudden arousals. Cognitive and psychiatric symptoms may be also observed. Approximately 12% of the ADNFLE families carry mutations on genes coding for subunits of the heteromeric neuronal nicotinic receptors (nAChRs). This is consistent with the widespread expression of these receptors, particularly the α4β2* subtype, in the neocortex and thalamus. However, understanding how mutant nAChRs lead to partial frontal epilepsy is far from being straightforward because of the complexity of the cholinergic regulation in both developing and mature brains. The relation with the sleep-waking cycle must be also explained. We discuss some possible pathogenetic mechanisms in the light of recent advances about the nAChR role in prefrontal regions as well as the studies carried out in murine models of ADNFLE. Functional evidence points to alterations in prefrontal GABA release, and the synaptic unbalance probably arises during the cortical circuit maturation. Although most of the available functional evidence concerns mutations on nAChR subunit genes, other genes have been recently implicated in the disease, such as KCNT1 (coding for a Na+-dependent K+ channel), DEPD5 (Disheveled, Egl-10 and Pleckstrin Domain-containing protein 5), and CRH (Corticotropin-Releasing Hormone). Overall, the uncertainties about both the etiology and the pathogenesis of ADNFLE point to the current gaps in our knowledge the regulation of neuronal networks in the cerebral cortex.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Patrizia Aracri
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Meneghini
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Simone Brusco
- Department of Biotechnology and Biosciences and NeuroMi-Milan Center for Neuroscience, University of Milano-Bicocca Milano, Italy
| | - Alida Amadeo
- Department of Biosciences, University of Milano Milano, Italy
| |
Collapse
|
6
|
Prenatal administration of lipopolysaccharide induces sex-dependent changes in glutamic acid decarboxylase and parvalbumin in the adult rat brain. Neuroscience 2015; 287:78-92. [DOI: 10.1016/j.neuroscience.2014.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/02/2014] [Accepted: 12/09/2014] [Indexed: 11/19/2022]
|
7
|
Hammer S, Carrillo GL, Govindaiah G, Monavarfeshani A, Bircher JS, Su J, Guido W, Fox MA. Nuclei-specific differences in nerve terminal distribution, morphology, and development in mouse visual thalamus. Neural Dev 2014; 9:16. [PMID: 25011644 PMCID: PMC4108237 DOI: 10.1186/1749-8104-9-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/25/2014] [Indexed: 12/04/2022] Open
Abstract
Background Mouse visual thalamus has emerged as a powerful model for understanding the mechanisms underlying neural circuit formation and function. Three distinct nuclei within mouse thalamus receive retinal input, the dorsal lateral geniculate nucleus (dLGN), the ventral lateral geniculate nucleus (vLGN), and the intergeniculate nucleus (IGL). However, in each of these nuclei, retinal inputs are vastly outnumbered by nonretinal inputs that arise from cortical and subcortical sources. Although retinal and nonretinal terminals associated within dLGN circuitry have been well characterized, we know little about nerve terminal organization, distribution and development in other nuclei of mouse visual thalamus. Results Immunolabeling specific subsets of synapses with antibodies against vesicle-associated neurotransmitter transporters or neurotransmitter synthesizing enzymes revealed significant differences in the composition, distribution and morphology of nonretinal terminals in dLGN, vLGN and IGL. For example, inhibitory terminals are more densely packed in vLGN, and cortical terminals are more densely distributed in dLGN. Overall, synaptic terminal density appears least dense in IGL. Similar nuclei-specific differences were observed for retinal terminals using immunolabeling, genetic labeling, axonal tracing and serial block face scanning electron microscopy: retinal terminals are smaller, less morphologically complex, and more densely distributed in vLGN than in dLGN. Since glutamatergic terminal size often correlates with synaptic function, we used in vitro whole cell recordings and optic tract stimulation in acutely prepared thalamic slices to reveal that excitatory postsynaptic currents (EPSCs) are considerably smaller in vLGN and show distinct responses following paired stimuli. Finally, anterograde labeling of retinal terminals throughout early postnatal development revealed that anatomical differences in retinal nerve terminal structure are not observable as synapses initially formed, but rather developed as retinogeniculate circuits mature. Conclusions Taken together, these results reveal nuclei-specific differences in nerve terminal composition, distribution, and morphology in mouse visual thalamus. These results raise intriguing questions about the different functions of these nuclei in processing light-derived information, as well as differences in the mechanisms that underlie their unique, nuclei-specific development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Michael A Fox
- Virginia Tech Carilion Research Institute, 2 Riverside Circle, Roanoke, VA 24016, USA.
| |
Collapse
|
8
|
Kameda H, Hioki H, Tanaka YH, Tanaka T, Sohn J, Sonomura T, Furuta T, Fujiyama F, Kaneko T. Parvalbumin-producing cortical interneurons receive inhibitory inputs on proximal portions and cortical excitatory inputs on distal dendrites. Eur J Neurosci 2012; 35:838-54. [PMID: 22429243 DOI: 10.1111/j.1460-9568.2012.08027.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To examine inputs to parvalbumin (PV)-producing interneurons, we generated transgenic mice expressing somatodendritic membrane-targeted green fluorescent protein specifically in the interneurons, and completely visualized their dendrites and somata. Using immunolabeling for vesicular glutamate transporter (VGluT)1, VGluT2, and vesicular GABA transporter, we found that VGluT1-positive terminals made contacts 4- and 3.1-fold more frequently with PV-producing interneurons than VGluT2-positive and GABAergic terminals, respectively, in the primary somatosensory cortex. Even in layer 4, where VGluT2-positive terminals were most densely distributed, VGluT1-positive inputs to PV-producing interneurons were 2.4-fold more frequent than VGluT2-positive inputs. Furthermore, although GABAergic inputs to PV-producing interneurons were as numerous as VGluT2-positive inputs in most cortical layers, GABAergic inputs clearly preferred the proximal dendrites and somata of the interneurons, indicating that the sites of GABAergic inputs were more optimized than those of VGluT2-positive inputs. Simulation analysis with a PV-producing interneuron model compatible with the present morphological data revealed a plausible reason for this observation, by showing that GABAergic and glutamatergic postsynaptic potentials evoked by inputs to distal dendrites were attenuated to 60 and 87%, respectively, of those evoked by somatic inputs. As VGluT1-positive and VGluT2-positive axon terminals were presumed to be cortical and thalamic glutamatergic inputs, respectively, cortical excitatory inputs to PV-producing interneurons outnumbered the thalamic excitatory and intrinsic inhibitory inputs more than two-fold in any cortical layer. Although thalamic inputs are known to evoke about two-fold larger unitary excitatory postsynaptic potentials than cortical ones, the present results suggest that cortical inputs control PV-producing interneurons at least as strongly as thalamic inputs.
Collapse
Affiliation(s)
- Hiroshi Kameda
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kriebel M, Metzger J, Trinks S, Chugh D, Harvey RJ, Harvey K, Volkmer H. The cell adhesion molecule neurofascin stabilizes axo-axonic GABAergic terminals at the axon initial segment. J Biol Chem 2011; 286:24385-93. [PMID: 21576239 DOI: 10.1074/jbc.m110.212191] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cell adhesion molecules regulate synapse formation and maintenance via transsynaptic contact stabilization involving both extracellular interactions and intracellular postsynaptic scaffold assembly. The cell adhesion molecule neurofascin is localized at the axon initial segment of granular cells in rat dentate gyrus, which is mainly targeted by chandelier cells. Lentiviral shRNA-mediated knockdown of neurofascin in adult rat brain indicates that neurofascin regulates the number and size of postsynaptic gephyrin scaffolds, the number of GABA(A) receptor clusters as well as presynaptic glutamate decarboxylase-positive terminals at the axon initial segment. By contrast, overexpression of neurofascin in hippocampal neurons increases gephyrin cluster size presumably via stimulation of fibroblast growth factor receptor 1 signaling pathways.
Collapse
Affiliation(s)
- Martin Kriebel
- Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, 72770 Reutlingen, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Fish KN, Sweet RA, Lewis DA. Differential distribution of proteins regulating GABA synthesis and reuptake in axon boutons of subpopulations of cortical interneurons. ACTA ACUST UNITED AC 2011; 21:2450-60. [PMID: 21422269 DOI: 10.1093/cercor/bhr007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Subclasses of γ-aminobutyric acid (GABA) interneurons differentially influence cortical network activity. The contribution of differences in GABA synthesis and reuptake in axon boutons to cell type-specific functions is unknown. GABA is synthesized within boutons by glutamic acid decarboxylase 65 (GAD65) and GAD67, while GAT1 is responsible for GABA reuptake. Using an imaging methodology capable of determining the colocalization frequency of different immunocytochemical labels in the same bouton and the quantification of the fluorescence intensity of each label in these same structures, we assessed the bouton levels of GAD65, GAD67, and GAT1 in parvalbumin-expressing chandelier (PV(ch)) and basket (PV(b)) neurons and cannabinoid 1 receptor-expressing basket (CB1r(b)) neurons in the monkey prefrontal cortex. We show that PV(ch) boutons almost exclusively contained GAD67, relative to GAD65, whereas CB1r(b) boutons contained mostly GAD65. In contrast, both GAD65 and GAD67 were easily detected in PV(b) boutons. Furthermore, in comparison with PV(ch) boutons, CB1r(b) boutons expressed low to undetectable levels of GAT1. Our findings provide a new basis for the distinctive functional roles of these perisomatic-innervating interneurons in cortical circuits. In addition, they strongly suggest that altered levels of GAD67 or GAD65, as seen in some psychiatric diseases, would have cell type-specific consequences on the modulation of GABA neurotransmission.
Collapse
Affiliation(s)
- Kenneth N Fish
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
11
|
Pickering C, Chau PP, Söderpalm B, Ericson M. Ethanol and phencyclidine interact with respect to nucleus accumbens dopamine release: differential effects of administration order and pretreatment protocol. Front Behav Neurosci 2010; 4:32. [PMID: 20589092 PMCID: PMC2892999 DOI: 10.3389/fnbeh.2010.00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 05/17/2010] [Indexed: 11/13/2022] Open
Abstract
Executive dysfunction is a common symptom among alcohol-dependent individuals. Phencyclidine (PCP) injection induces dysfunction in the prefrontal cortex of animals but little is known about how PCP affects the response to ethanol. Using the in vivo microdialysis technique in male Wistar rats, we investigated how systemic injection of 5 mg/kg PCP would affect the dopamine release induced by local infusion of 300 mM ethanol into the nucleus accumbens. PCP given 60 min before ethanol entirely blocked ethanol-induced dopamine release. However, when ethanol was administered 60 min before PCP, both drugs induced dopamine release and PCP's effect was potentiated by ethanol (180% increase vs 150%). To test the role of prefrontal cortex dysfunction in ethanol reinforcement, animals were pretreated for 5 days with 2.58 mg/kg PCP according to previously used 'PFC hypofunction protocols'. This, however, did not change the relative response to PCP or ethanol compared to saline-treated controls. qPCR illustrated that this low PCP dose did not significantly change expression of glucose transporters Glut1 (SLC2A1) or Glut3 (SLC2A3), monocarboxylate transporter MCT2 (SLC16A7), glutamate transporters GLT-1 (SLC1A2) or GLAST (SLC1A3), the immediate early gene Arc (Arg3.1) or GABAergic neuron markers GAT-1 (SLC6A1) and parvalbumin. Therefore, we concluded that PCP at a dose of 2.58 mg/kg for 5 days did not induce hypofunction in Wistar rats. However, PCP and ethanol do have overlapping mechanisms of action and these drugs differentially affect mesolimbic dopaminergic transmission depending on the order of administration.
Collapse
Affiliation(s)
- Chris Pickering
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of GothenburgGothenburg, Sweden
| | - Pei Pei Chau
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of GothenburgGothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of GothenburgGothenburg, Sweden
- Beroendekliniken, Sahlgrenska University HospitalGothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of GothenburgGothenburg, Sweden
| |
Collapse
|
12
|
Oda S, Funato H, Adachi-Akahane S, Ito M, Okada A, Igarashi H, Yokofujita J, Kuroda M. Dopamine D5 receptor immunoreactivity is differentially distributed in GABAergic interneurons and pyramidal cells in the rat medial prefrontal cortex. Brain Res 2010; 1329:89-102. [DOI: 10.1016/j.brainres.2010.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 11/29/2022]
|
13
|
Neocortical neuron types in Xenarthra and Afrotheria: implications for brain evolution in mammals. Brain Struct Funct 2008; 213:301-28. [PMID: 19011898 DOI: 10.1007/s00429-008-0198-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 10/16/2008] [Indexed: 12/24/2022]
Abstract
Interpreting the evolution of neuronal types in the cerebral cortex of mammals requires information from a diversity of species. However, there is currently a paucity of data from the Xenarthra and Afrotheria, two major phylogenetic groups that diverged close to the base of the eutherian mammal adaptive radiation. In this study, we used immunohistochemistry to examine the distribution and morphology of neocortical neurons stained for nonphosphorylated neurofilament protein, calbindin, calretinin, parvalbumin, and neuropeptide Y in three xenarthran species-the giant anteater (Myrmecophaga tridactyla), the lesser anteater (Tamandua tetradactyla), and the two-toed sloth (Choloepus didactylus)-and two afrotherian species-the rock hyrax (Procavia capensis) and the black and rufous giant elephant shrew (Rhynchocyon petersi). We also studied the distribution and morphology of astrocytes using glial fibrillary acidic protein as a marker. In all of these species, nonphosphorylated neurofilament protein-immunoreactive neurons predominated in layer V. These neurons exhibited diverse morphologies with regional variation. Specifically, high proportions of atypical neurofilament-enriched neuron classes were observed, including extraverted neurons, inverted pyramidal neurons, fusiform neurons, and other multipolar types. In addition, many projection neurons in layers II-III were found to contain calbindin. Among interneurons, parvalbumin- and calbindin-expressing cells were generally denser compared to calretinin-immunoreactive cells. We traced the evolution of certain cortical architectural traits using phylogenetic analysis. Based on our reconstruction of character evolution, we found that the living xenarthrans and afrotherians show many similarities to the stem eutherian mammal, whereas other eutherian lineages display a greater number of derived traits.
Collapse
|
14
|
Dopamine acting through D2 receptors modulates the expression of PSA-NCAM, a molecule related to neuronal structural plasticity, in the medial prefrontal cortex of adult rats. Exp Neurol 2008; 214:97-111. [PMID: 18718470 DOI: 10.1016/j.expneurol.2008.07.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 07/09/2008] [Accepted: 07/18/2008] [Indexed: 01/28/2023]
Abstract
A "neuroplastic" hypothesis proposes that changes in neuronal structural plasticity may underlie the aetiology of depression and the action of antidepressants. The medial prefrontal cortex (mPFC) is affected by this disorder and shows an intense expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-associated molecule, which is expressed mainly in interneurons. The monoamines serotonin, dopamine and noradrenaline are the principal targets of antidepressant action. Pharmacological manipulation of serotonin levels regulates synaptophysin and PSA-NCAM expression in the adult mPFC. However, the involvement of structural plasticity on the antidepressant effects of dopamine has not been well explored yet. Using immunohistochemistry, we have studied the relationship between dopaminergic fibers and PSA-NCAM expressing neurons in the mPFC and the expression of D2 receptors. In order to evaluate the effects of dopamine in neuronal structural plasticity and on inhibitory neurotransmission, we have analyzed the expression of synaptophysin, PSA-NCAM and GAD67 in the mPFC after cortical dopamine depletion with 6-OHDA and after chronic treatments with the D2 receptor antagonist haloperidol or the D2 receptor agonist PPHT. Many dopaminergic fibers were observed in close apposition to PSA-NCAM expressing neurons and 76% of these cells co-expressed D2 receptor. Both haloperidol treatment and 6-OHDA injection reduced significantly PSA-NCAM, synaptophysin and GAD67 expression in the mPFC. Conversely, PPHT treatment increased the expression of these molecules. Our results give support to the "neuroplastic" hypothesis of depression, suggesting that dopamine acting on D2 receptors may modulate neuronal structural plasticity and inhibitory neurotransmission through changes in PSA-NCAM expression.
Collapse
|
15
|
Klein S, Koch M, Schwabe K. Neuroanatomical changes in the adult rat brain after neonatal lesion of the medial prefrontal cortex. Exp Neurol 2008; 209:199-212. [DOI: 10.1016/j.expneurol.2007.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 08/12/2007] [Accepted: 09/17/2007] [Indexed: 10/22/2022]
|
16
|
Bloomfield C, French SJ, Jones DN, Reavill C, Southam E, Cilia J, Totterdell S. Chandelier cartridges in the prefrontal cortex are reduced in isolation reared rats. Synapse 2008; 62:628-31. [DOI: 10.1002/syn.20521] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Carrera I, Sueiro C, Molist P, Holstein GR, Martinelli GP, Rodríguez-Moldes I, Anadón R. GABAergic system of the pineal organ of an elasmobranch (Scyliorhinus canicula): a developmental immunocytochemical study. Cell Tissue Res 2005; 323:273-81. [PMID: 16158323 DOI: 10.1007/s00441-005-0061-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 07/25/2005] [Indexed: 12/29/2022]
Abstract
The present immunocytochemical study provides evidence of a previously unrecognized, rich, gamma-aminobutyric acid (GABA)-ergic innervation of the pineal organ in the dogfish (Scyliorhinus canicula). In this elasmobranch, the pineal primordium is initially detected at embryonic stage 24 and grows to form a long pineal tube by stage 28. Glutamic acid decarboxylase (GAD)-immunoreactive (-ir) fibers were first observed at stage 26, and by stage 28, thin GAD-ir fibers were detectable at the base of the pineal neuroepithelium. In pre-hatchling embryos, most fibers gave rise to GAD-ir boutons that were localized in the basal region of the neuroepithelium, although a smaller number of labeled terminals ascended to the pineal lumen. A few pale GAD-ir perikarya were observed within the pineal organ of stage 29 embryos, but GAD-ir perikarya were not observed at other developing stages or in adults. In contrast, GABA immunocytochemistry revealed the presence of GABAergic perikarya and fibers in the pineal organ of late stage embryos and adults. Although high densities of GABAergic cells were observed in the paracommissural pretectum, posterior tubercle, and tegmentum of dogfish embryos (regions previously demonstrated to contain pinealopetal cells), the presence of GABA-ir perikarya in the pineal organ strongly suggests that the rich GABAergic innervation of the elasmobranch pineal organ is intrinsic. This contrasts with the central origin of GABAergic fibers in the pineal gland of some mammals.
Collapse
Affiliation(s)
- Iván Carrera
- Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Varea E, Nácher J, Blasco-Ibáñez JM, Gómez-Climent MA, Castillo-Gómez E, Crespo C, Martínez-Guijarro FJ. PSA-NCAM expression in the rat medial prefrontal cortex. Neuroscience 2005; 136:435-43. [PMID: 16216431 DOI: 10.1016/j.neuroscience.2005.08.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 07/25/2005] [Accepted: 08/01/2005] [Indexed: 12/21/2022]
Abstract
The rat medial prefrontal cortex, an area considered homologous to the human prefrontal cortex, is a region in which neuronal structural plasticity has been described during adulthood. Some plastic processes such as neurite outgrowth and synaptogenesis are known to be regulated by the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). Since PSA-NCAM is present in regions of the adult CNS which are undergoing structural remodeling, such as the hypothalamus or the hippocampus, we have analyzed the expression of this molecule in the medial prefrontal cortex of adult rats using immunohistochemistry. PSA-NCAM immunoreactivity was found both in cell bodies and in the neuropil of the three divisions of the medial prefrontal cortex. All cell somata expressing PSA-NCAM corresponded to neurons and 5' bromodeoxyuridine labeling after long survival times demonstrated that these neurons were not recently generated. Many of these PSA-NCAM immunoreactive neurons in the medial prefrontal cortex could be classified as interneurons on the basis of their morphology and glutamate decarboxylase, isoform 67 expression. Some of the PSA-NCAM immunoreactive neurons also expressed somatostatin, neuropeptide Y and calbindin-D28K. By contrast, pyramidal neurons in this cortical region did not appear to express PSA-NCAM. However, some of these principal neurons appeared surrounded by PSA-NCAM immunoreactive puncta. Some of these puncta co-expressed synaptophysin, suggesting the presence of synapses. Since the etiology of some psychiatric disorders has been related to alterations in medial prefrontal cortex structural plasticity, the study of PSA-NCAM expression in this region may open a new approach to the pathophysiology of these mental disorders.
Collapse
Affiliation(s)
- E Varea
- Neurobiology, Cell Biology Department, Universitat de València, Dr. Moliner, 50, 46100 Burjassot, València, Spain
| | | | | | | | | | | | | |
Collapse
|