1
|
Wu Y, Wang A, Fu L, Liu M, Li K, Chian S, Yao W, Wang B, Wang J. Fentanyl Induces Novel Conditioned Place Preference in Adult Zebrafish, Disrupts Neurotransmitter Homeostasis, and Triggers Behavioral Changes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13533. [PMID: 36294112 PMCID: PMC9603063 DOI: 10.3390/ijerph192013533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Abuse of new psychoactive substances increases risk of addiction, which can lead to serious brain disorders. Fentanyl is a synthetic opioid commonly used in clinical practice, and behavioral changes resulting from fentanyl addiction have rarely been studied with zebrafish models. In this study, we evaluated the rewarding effects of intraperitoneal injections of fentanyl at concentrations of 10, 100, and 1000 mg/L on the group shoaling behavior in adult zebrafish. Additional behavioral tests on individual zebrafish, including novel tank, novel object exploration, mirror attack, social preference, and T-maze memory, were utilized to evaluate fentanyl-induced neuro-behavioral toxicity. The high doses of 1000 mg/L fentanyl produced significant reward effects in zebrafish and altered the neuro-behavioral profiles: reduced cohesion in shoaling behavior, decreased anxiety levels, reduced exploratory behavior, increased aggression behavior, affected social preference, and suppressed memory in an appetitive associative learning task. Behavioral changes in zebrafish were shown to be associated with altered neurotransmitters, such as elevated glutamine (Gln), gamma-aminobutyric acid (GABA), dopamine hydrochloride (DA), and 5-hydroxytryptamine (5-HT). This study identified potential fentanyl-induced neurotoxicity through multiple neurobehavioral assessments, which provided a method for assessing risk of addiction to new psychoactive substances.
Collapse
Affiliation(s)
- Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Anli Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lixiang Fu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
- Office of Criminal Science and Technology, Xiaoshan District Branch of Hangzhou Public Security Bureau, Hangzhou 310002, China
| | - Meng Liu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Kang Li
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Song Chian
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310053, China
| |
Collapse
|
2
|
Haller J. Aggression, Aggression-Related Psychopathologies and Their Models. Front Behav Neurosci 2022; 16:936105. [PMID: 35860723 PMCID: PMC9289268 DOI: 10.3389/fnbeh.2022.936105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Neural mechanisms of aggression and violence are often studied in the laboratory by means of animal models. A multitude of such models were developed over the last decades, which, however, were rarely if ever compared systematically from a psychopathological perspective. By overviewing the main models, I show here that the classical ones exploited the natural tendency of animals to defend their territory, to fight for social rank, to defend themselves from imminent dangers and to defend their pups. All these forms of aggression are functional and adaptive; consequently, not necessarily appropriate for modeling non-natural states, e.g., aggression-related psychopathologies. A number of more psychopathology-oriented models were also developed over the last two decades, which were based on the etiological factors of aggression-related mental disorders. When animals were exposed to such factors, their aggressiveness suffered durable changes, which were deviant in the meaning that they broke the evolutionarily conserved rules that minimize the dangers associated with aggression. Changes in aggression were associated with a series of dysfunctions that affected other domains of functioning, like with aggression-related disorders where aggression is just one of the symptoms. The comparative overview of such models suggests that while the approach still suffers from a series of deficits, they hold the important potential of extending our knowledge on aggression control over the pathological domain of this behavior.
Collapse
|
3
|
Flanigan ME, Russo SJ. Recent advances in the study of aggression. Neuropsychopharmacology 2019; 44:241-244. [PMID: 30242209 PMCID: PMC6300544 DOI: 10.1038/s41386-018-0226-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Meghan E. Flanigan
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience, Center for Affective Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustav L. Levy Place, New York, NY 10029 USA
| | - Scott J. Russo
- 0000 0001 0670 2351grid.59734.3cDepartment of Neuroscience, Center for Affective Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustav L. Levy Place, New York, NY 10029 USA
| |
Collapse
|
4
|
Haller J. Preclinical models of conduct disorder – principles and pharmacologic perspectives. Neurosci Biobehav Rev 2018; 91:112-120. [DOI: 10.1016/j.neubiorev.2016.05.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/09/2016] [Accepted: 05/25/2016] [Indexed: 12/11/2022]
|
5
|
Haller J. The Role of the Lateral Hypothalamus in Violent Intraspecific Aggression-The Glucocorticoid Deficit Hypothesis. Front Syst Neurosci 2018; 12:26. [PMID: 29937719 PMCID: PMC6002688 DOI: 10.3389/fnsys.2018.00026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/16/2018] [Indexed: 02/03/2023] Open
Abstract
This review argues for a central role of the lateral hypothalamus in those deviant forms of aggression, which result from chronic glucocorticoid deficiency. Currently, this nucleus is considered a key region of the mechanisms that control predatory aggression. However, recent findings demonstrate that it is strongly activated by aggression in subjects with a chronically downregulated hypothalamus-pituitary-adrenocortical (HPA) axis; moreover, this activation is causally involved in the emergence of violent aggression. The review has two parts. In the first part, we review human findings demonstrating that under certain conditions, strong stressors downregulate the HPA-axis on the long run, and that the resulting glucocorticoid deficiency is associated with violent aggression including aggressive delinquency and aggression-related psychopathologies. The second part addresses neural mechanisms in animals. We show that the experimental downregulation of HPA-axis function elicits violent aggression in rodents, and the activation of the brain circuitry that originally subserves predatory aggression accompanies this change. The lateral hypothalamus is not only an integral part of this circuitry, but can elicit deviant and violent forms of aggression. Finally, we formulate a hypothesis on the pathway that connects unfavorable social conditions to violent aggression via the neural circuitry that includes the lateral hypothalamus.
Collapse
Affiliation(s)
- József Haller
- Department of Behavioural Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Institute of Behavioural Sciences and Law Enforcement, National University of Public Service, Budapest, Hungary
| |
Collapse
|
6
|
Haller J. The role of central and medial amygdala in normal and abnormal aggression: A review of classical approaches. Neurosci Biobehav Rev 2017; 85:34-43. [PMID: 28918358 DOI: 10.1016/j.neubiorev.2017.09.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/21/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022]
Abstract
The involvement of the amygdala in aggression is supported by overwhelming evidence. Frequently, however, the amygdala is studied as a whole, despite its complex internal organization. To reveal the role of various subdivisions, here we review the involvement of the central and medial amygdala in male rivalry aggression, maternal aggression, predatory aggression, and models of abnormal aggression where violent behavior is associated with increased or decreased arousal. We conclude that: (1) rivalry aggression is controlled by the medial amygdala; (2) predatory aggression is controlled by the central amygdala; (3) hypoarousal-associated violent aggression recruits both nuclei, (4) a specific upregulation of the medial amygdala was observed in hyperarousal-driven aggression. These patterns of amygdala activation were used to build four alternative models of the aggression circuitry, each being specific to particular forms of aggression. The separate study of the roles of amygdala subdivisions may not only improve our understanding of aggressive behavior, but also the differential control of aggression and violent behaviors of various types, including those associated with various psychopathologies.
Collapse
Affiliation(s)
- Jozsef Haller
- Institute of Experimental Medicine, Budapest, Hungary; National University of Public Service, Budapest, Hungary.
| |
Collapse
|
7
|
Studies into abnormal aggression in humans and rodents: Methodological and translational aspects. Neurosci Biobehav Rev 2017; 76:77-86. [DOI: 10.1016/j.neubiorev.2017.02.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/25/2017] [Accepted: 02/13/2017] [Indexed: 02/06/2023]
|
8
|
Cordero MI, Just N, Poirier GL, Sandi C. Effects of paternal and peripubertal stress on aggression, anxiety, and metabolic alterations in the lateral septum. Eur Neuropsychopharmacol 2016; 26:357-367. [PMID: 26776368 DOI: 10.1016/j.euroneuro.2015.11.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/03/2015] [Accepted: 11/23/2015] [Indexed: 12/15/2022]
Abstract
Early-life stress and biological predispositions are linked to mood and personality disorders related to aggressive behavior. We previously showed that exposure to peripubertal stress leads to increased anxiety-like behaviors and aggression against males and females, as well as increased aggression against females in their male offspring. Here, we investigated whether paternal (pS) and individual (iS) exposure to peripubertal stress may exert additive effects on the long-term programming of anxiety-like and aggressive behaviors in rats. Given the key role of the lateral septum (LS) in the regulation of anxiety and aggressive behaviors and the hypothesized alterations in balance between neural excitation and inhibition in aggression-related disorders, markers for these processes were examined in the LS. Peripubertal stress was applied both in naïve male rats and in the offspring of peripubertally stressed males, and anxiety-like and aggressive behaviors were assessed at adulthood. Proton magnetic resonance spectroscopy at 6-months, and post-mortem analysis of glutamic acid decarboxylase 67 (GAD67) at 12-months were conducted in LS. We confirmed that aggressive behavior was increased by pS and iS, while only iS increased anxiety-like behavior. Individual stress led to reduced GABA, confirmed by reduced GAD67 immunolabelling, and increased glutamate, N-acetyl-aspartate, phosphocholine and creatine; while pS specifically led to reduced phosphocreatine. pS and iS do not interact and exert a differential impact on the analyzed aspects of brain function and anxiety-like behaviors. These data support the view that early-life stress can affect the behavioral and neurodevelopmental trajectories of individuals and their offspring, which may involve different neurobiological mechanisms.
Collapse
Affiliation(s)
- M I Cordero
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland; Faculty of Health, Psychology and Social Care, Manchester Metropolitan University, Brooks Building, 53 Bonsall Street, Manchester M15 6GX, United Kingdom.
| | - N Just
- Animal Imaging and Technology Core, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Radiology, University of Lausanne, Lausanne, Switzerland
| | - G L Poirier
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - C Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
9
|
Haller J. The glucocorticoid/aggression relationship in animals and humans: an analysis sensitive to behavioral characteristics, glucocorticoid secretion patterns, and neural mechanisms. Curr Top Behav Neurosci 2014; 17:73-109. [PMID: 24515548 DOI: 10.1007/7854_2014_284] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Glucocorticoids control a wide array of biological processes from glucose homeostasis to neuronal function. The mechanisms mediating their effects are similarly varied and include rapid and transient nongenomic effects on calcium trafficking, various neurotransmitter receptors, and other membrane/cytoplasmic proteins, as well as slowly developing but durable genomic effects that are mediated by a large number of glucocorticoid-sensitive genes that are affected after variable lag-times. Given this complexity, we suggest that the aggression/glucocorticoid relationship cannot be reduced to the simple "stimulation/inhibition" question. Here, we review the effects of glucocorticoids on aggression by taking into account the complexities of glucocorticoid actions. Acute and chronic effects were differentiated because these are mediated by different mechanisms. The effects of chronic increases and decreases in glucocorticoid production were discussed separately, because the activation of mechanisms that are not normally activated and the loss of normal functions should not be confounded. Findings in healthy/normal subjects and those obtained in subjects that show abnormal forms of behavior or psychopathologies were also differentiated, because the effects of glucocorticoids are indirect, and largely depend on the properties of neurons they act upon, which are altered in subjects with psychopathologies. In addition, the conditions of glucocorticoid measurements were also thoroughly evaluated. Although the role of glucocorticoids in aggression is perceived as controversial by many investigators, a detailed analysis that is sensitive to glucocorticoid and behavioral measure as well as to the mediating mechanism suggests that this role is rather clear-cut; moreover, there is a marked similarity between animal and human findings.
Collapse
Affiliation(s)
- József Haller
- Institute of Experimental Medicine, 67, Budapest, 1450, Hungary,
| |
Collapse
|
10
|
Zhao C, Eisinger B, Gammie SC. Characterization of GABAergic neurons in the mouse lateral septum: a double fluorescence in situ hybridization and immunohistochemical study using tyramide signal amplification. PLoS One 2013; 8:e73750. [PMID: 23967349 PMCID: PMC3742568 DOI: 10.1371/journal.pone.0073750] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/26/2013] [Indexed: 01/02/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) neurotransmission in the lateral septum (LS) is implicated in modulating various behavioral processes, including emotional reactivity and maternal behavior. However, identifying the phenotype of GABAergic neurons in the CNS has been hampered by the longstanding inability to reliably detect somal immunoreactivity for GABA or glutamic acid decarboxylase (GAD), the enzyme that produces GABA. In this study, we designed unique probes for both GAD65 (GAD2) and GAD67 (GAD1), and used fluorescence in Situ hybridization (FISH) with tyramide signal amplification (TSA) to achieve unequivocal detection of cell bodies of GABAergic neurons by GAD mRNAs. We quantitatively characterized the expression and chemical phenotype of GABAergic neurons across each subdivision of LS and in cingulate cortex (Cg) and medial preoptic area (MPOA) in female mice. Across LS, almost all GAD65 mRNA-expressing neurons were found to contain GAD67 mRNA (approximately 95-98%), while a small proportion of GAD67 mRNA-containing neurons did not express GAD65 mRNA (5-14%). Using the neuronal marker NeuN, almost every neuron in LS (> 90%) was also found to be GABA-positive. Interneuron markers using calcium-binding proteins showed that LS GABAergic neurons displayed immunoreactivity for calbindin (CB) or calretinin (CR), but not parvalbumin (PV); almost all CB- or CR-immunoreactive neurons (98-100%) were GABAergic. The proportion of GABAergic neurons immunoreactive for CB or CR varied depending on the subdivisions examined, with the highest percentage of colocalization in the caudal intermediate LS (LSI) (approximately 58% for CB and 35% for CR). These findings suggest that the vast majority of GABAergic neurons within the LS have the potential for synthesizing GABA via the dual enzyme systems GAD65 and GAD67, and each subtype of GABAergic neurons identified by distinct calcium-binding proteins may exert unique roles in the physiological function and neuronal circuitry of the LS.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | | | |
Collapse
|
11
|
Takahashi A, Miczek KA. Neurogenetics of aggressive behavior: studies in rodents. Curr Top Behav Neurosci 2013; 17:3-44. [PMID: 24318936 DOI: 10.1007/7854_2013_263] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Aggressive behavior is observed in many animal species, such as insects, fish, lizards, frogs, and most mammals including humans. This wide range of conservation underscores the importance of aggressive behavior in the animals' survival and fitness, and the likely heritability of this behavior. Although typical patterns of aggressive behavior differ between species, there are several concordances in the neurobiology of aggression among rodents, primates, and humans. Studies with rodent models may eventually help us to understand the neurogenetic architecture of aggression in humans. However, it is important to recognize the difference between the ecological and ethological significance of aggressive behavior (species-typical aggression) and maladaptive violence (escalated aggression) when applying the findings of aggression research using animal models to human or veterinary medicine. Well-studied rodent models for aggressive behavior in the laboratory setting include the mouse (Mus musculus), rat (Rattus norvegicus), hamster (Mesocricetus auratus), and prairie vole (Microtus ochrogaster). The neural circuits of rodent aggression have been gradually elucidated by several techniques, e.g., immunohistochemistry of immediate-early gene (c-Fos) expression, intracranial drug microinjection, in vivo microdialysis, and optogenetics techniques. Also, evidence accumulated from the analysis of gene-knockout mice shows the involvement of several genes in aggression. Here, we review the brain circuits that have been implicated in aggression, such as the hypothalamus, prefrontal cortex (PFC), dorsal raphe nucleus (DRN), nucleus accumbens (NAc), and olfactory system. We then discuss the roles of glutamate and γ-aminobutyric acid (GABA), excitatory and inhibitory amino acids in the brain, as well as their receptors, in controlling aggressive behavior, focusing mainly on recent findings. At the end of this chapter, we discuss how genes can be identified that underlie individual differences in aggression, using the so-called forward genetics approach.
Collapse
Affiliation(s)
- Aki Takahashi
- Mouse Genomics Resource Laboratory, National Institute of Genetics, (NIG), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan,
| | | |
Collapse
|
12
|
Haller J. The neurobiology of abnormal manifestations of aggression--a review of hypothalamic mechanisms in cats, rodents, and humans. Brain Res Bull 2012; 93:97-109. [PMID: 23085544 DOI: 10.1016/j.brainresbull.2012.10.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/08/2012] [Accepted: 10/09/2012] [Indexed: 01/01/2023]
Abstract
Aggression research was for long dominated by the assumption that aggression-related psychopathologies result from the excessive activation of aggression-promoting brain mechanisms. This assumption was recently challenged by findings with models of aggression that mimic etiological factors of aggression-related psychopathologies. Subjects submitted to such procedures show abnormal attack features (mismatch between provocation and response, disregard of species-specific rules, and insensitivity toward the social signals of opponents). We review here 12 such laboratory models and the available human findings on the neural background of abnormal aggression. We focus on the hypothalamus, a region tightly involved in the execution of attacks. Data show that the hypothalamic mechanisms controlling attacks (general activation levels, local serotonin, vasopressin, substance P, glutamate, GABA, and dopamine neurotransmission) undergo etiological factor-dependent changes. Findings suggest that the emotional component of attacks differentiates two basic types of hypothalamic mechanisms. Aggression associated with increased arousal (emotional/reactive aggression) is paralleled by increased mediobasal hypothalamic activation, increased hypothalamic vasopressinergic, but diminished hypothalamic serotonergic neurotransmission. In aggression models associated with low arousal (unemotional/proactive aggression), the lateral but not the mediobasal hypothalamus is over-activated. In addition, the anti-aggressive effect of serotonergic neurotransmission is lost and paradoxical changes were noticed in vasopressinergic neurotransmission. We conclude that there is no single 'neurobiological road' to abnormal aggression: the neural background shows qualitative, etiological factor-dependent differences. Findings obtained with different models should be viewed as alternative mechanisms rather than conflicting data. The relevance of these findings for understanding and treating of aggression-related psychopathologies is discussed. This article is part of a Special Issue entitled 'Extrasynaptic ionotropic receptors'.
Collapse
Affiliation(s)
- Jozsef Haller
- Department of Behavioral Neurobiology, Hungarian Academy of Sciences, Institute of Experimental Medicine, H-1083 Budapest, Szigony utca 43, Hungary.
| |
Collapse
|
13
|
Zhao C, Driessen T, Gammie SC. Glutamic acid decarboxylase 65 and 67 expression in the lateral septum is up-regulated in association with the postpartum period in mice. Brain Res 2012; 1470:35-44. [PMID: 22750123 DOI: 10.1016/j.brainres.2012.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/29/2012] [Accepted: 06/02/2012] [Indexed: 12/31/2022]
Abstract
The postpartum period in mammals undergoes a variety of physiological adaptations, including metabolic, behavioral and neuroendocrine alterations. GABA signaling has been strongly linked to various emotional states, stress responses and offspring protection. However, whether GABA signaling may change in the lateral septum (LS), a core brain region for regulating behavioral, emotional and stress responses in postpartum mice has not previously been examined. In this study, we tested whether the expression of two isoforms of glutamic acid decarboxylase (GAD), GAD65 (GAD2) and GAD67 (GAD1), the rate-limiting enzyme for GABA synthesis, exhibits altered expression in postpartum mice relative to nonmaternal, virgin mice. Using microdissected septal tissue from virgin and age-matched postpartum females, quantitative real-time PCR and Western blotting were carried out to assess GAD mRNA and protein expression, respectively. We found both protein and mRNA expression of GAD67 in the whole septum was up-regulated in postpartum mice. By contrast, no significant difference in the whole septum was observed in GAD65 expression. We then conducted a finer level of analysis using smaller microdissections and found GAD67 to be significantly increased in rostral LS, but not in caudal LS or medial septum (MS). Further, GAD65 mRNA expression in rostral LS, but not in caudal LS or MS was also significantly elevated in postpartum mice. These findings suggest that an increased GABA production in rostral LS of the postpartum mice via elevated GAD65 and GAD67 expression may contribute to multiple alterations in behavioral and emotional states, and responses to stress that occur during the postpartum period. Given that rostral LS contains GABA neurons that are projection neurons or local interneurons, it still needs to be determined whether the function of elevated GABA is for local or distant action or both.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Zoology, University of Wisconsin-Madison, 1117 West Johnson Street, Madison, WI 53706, USA.
| | | | | |
Collapse
|
14
|
Souza MF, Toniazo VM, Frazzon APG, Barros HMT. Influence of progesterone on GAD65 and GAD67 mRNA expression in the dorsolateral striatum and prefrontal cortex of female rats repeatedly treated with cocaine. Braz J Med Biol Res 2010; 42:1068-75. [PMID: 19855903 DOI: 10.1590/s0100-879x2009001100011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 09/24/2009] [Indexed: 11/22/2022] Open
Abstract
Female rats are intensely affected by cocaine, with estrogen probably playing an important role in this effect. Progesterone modulates the GABA system and attenuates the effects of cocaine; however, there is no information about its relevance in changing GABA synthesis pathways after cocaine administration to female rats. Our objective was to investigate the influence of progesterone on the effects of repeated cocaine administration on the isoenzymes of glutamic acid decarboxylase (GAD(65) and GAD(67)) mRNA in brain areas involved in the addiction circuitry. Ovariectomized, intact and progesterone replacement-treated female rats received saline or cocaine (30 mg/kg, ip) acutely or repeatedly. GAD isoenzyme mRNA levels were determined in the dorsolateral striatum (dSTR) and prefrontal cortex (PFC) by RT-PCR, showing that repeated, but not acute, cocaine decreased GADs/beta-actin mRNA ratio in the dSTR irrespective of the hormonal condition (GAD(65): P < 0.001; and GAD(67): P = 0.004). In the PFC, repeated cocaine decreased GAD(65) and increased GAD(67) mRNA ratio (P < 0.05). Progesterone replacement decreased both GAD isoenzymes mRNA ratio after acute cocaine in the PFC (P < 0.001) and repeated cocaine treatment reversed this decrease (P < 0.001). These results suggest that cocaine does not immediately affect GAD mRNA expression, while repeated cocaine decreases both GAD(65) and GAD(67) mRNA in the dSTR of female rats, independently of their hormonal conditions. In the PFC, repeated cocaine increases the expression of GAD isoenzymes, which were decreased due to progesterone replacement.
Collapse
Affiliation(s)
- M F Souza
- Laboratório de Psicofarmacologia, Departamento de Farmacologia e Toxicologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | | | | | | |
Collapse
|
15
|
Paliperidone suppresses the development of the aggressive phenotype in a developmentally sensitive animal model of escalated aggression. Psychopharmacology (Berl) 2009; 203:653-63. [PMID: 19066856 DOI: 10.1007/s00213-008-1412-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 11/03/2008] [Indexed: 12/23/2022]
Abstract
RATIONALE Atypical antipsychotics are commonly prescribed to clinically referred youngsters for treatment of heightened aggressive behavior associated with various psychiatric disorders. Previously, we demonstrated risperidone's anti-aggressive effects using a well-validated animal model of offensive aggression. Paliperidone, the main active metabolite of risperidone, is a potent serotonin-2A and dopamine-2 receptor antagonist with slightly different pharmacodynamic properties compared to risperidone. Given that much of risperidone's therapeutic efficacy is due to its active metabolite, paliperidone may effectively suppress aggression with fewer adverse side effects. OBJECTIVES Investigate whether paliperidone administration would reduce heightened aggressive behavior induced by low-dose cocaine exposure in a developmentally sensitive model of offensive aggression. MATERIALS AND METHODS Male Syrian hamsters (n = 12/group) were administered an acute dose of paliperidone (0.05, 0.1, 0.2, and 0.3 mg/kg) and then tested for aggressive behavior using the resident-intruder paradigm. To investigate the effects of chronic paliperidone administration, a separate set of animals (n = 12/group) was exposed to repeated paliperidone administration (0.1 mg kg(-1) day(-1)) during different developmental periods and varying lengths of time (1-4 weeks). RESULTS Experiment 1 results revealed a dose-dependent decrease in bite and attack behaviors with an effective dose observed at 0.1 mg/kg. In Experiment 2, the maximal reduction in aggressive behavior in response to chronic paliperidone treatment was observed in animals treated during the third week of adolescence, and this reduction occurred without concomitant alterations in non-aggressive behaviors. CONCLUSIONS These results support the specific aggression-suppressing properties of paliperidone and the potential use of this compound in the treatment of maladaptive aggression in clinical settings.
Collapse
|
16
|
Schwartzer JJ, Connor DF, Morrison RL, Ricci LA, Melloni RH. Repeated risperidone administration during puberty prevents the generation of the aggressive phenotype in a developmentally immature animal model of escalated aggression. Physiol Behav 2008; 95:176-81. [PMID: 18617196 DOI: 10.1016/j.physbeh.2008.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 05/22/2008] [Accepted: 05/23/2008] [Indexed: 01/11/2023]
Abstract
Risperidone has been shown to be clinically effective for the treatment of aggressive behavior in children, yet until recently no information was available regarding whether risperidone exhibits aggression-specific suppression in preclinical studies employing validated developmentally immature animal models of escalated aggression. Recently, using a pharmacologic animal model of escalated offensive aggression, we reported that acute risperidone treatment selectively and dose-dependently reduces the expression of the adult aggressive phenotype, with a significant reduction in aggressive responses observed at 0.1 mg/kg, i.e., a dose within the range administered to children and adolescents in the clinical setting. This study examined whether repeated exposure to risperidone during puberty would prevent the generation of the highly escalated aggressive phenotype in this animal model. To test this hypothesis, the aggression-eliciting stimulus (i.e., cocaine hydrochloride, 0.5 mg/kg/dayx28 days) was co-administered with an aggression-suppressing dose of risperidone (i.e., 0.1 mg/kg/day) during different time frames of puberty and for varied lengths of time (i.e., 1-4 weeks), and then animals were scored for targeted measures of offensive aggression during late puberty. Risperidone administration prevented the generation of the adult aggressive phenotype, with a complete blockade of matured offensive responses (i.e., lateral attacks and flank/rump bites) seen only after prolonged periods of exposure to risperidone (i.e., 3-4 weeks). The selective prevention of these aggressive responses, while leaving other measures of aggression intact (e.g., upright offensive postures), suggest that risperidone is acting in a highly discriminatory anti-aggressive fashion, targeting neurobehavioral elements important for the mature aggressive response pattern.
Collapse
Affiliation(s)
- Jared J Schwartzer
- Program in Behavioral Neuroscience, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | | | | | | | | |
Collapse
|
17
|
Summers CH, Watt MJ, Ling TL, Forster GL, Carpenter RE, Korzan WJ, Lukkes JL, Overli O. Glucocorticoid interaction with aggression in non-mammalian vertebrates: reciprocal action. Eur J Pharmacol 2005; 526:21-35. [PMID: 16298361 DOI: 10.1016/j.ejphar.2005.09.059] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2005] [Indexed: 11/29/2022]
Abstract
Socially aggressive interaction is stressful, and as such, glucocorticoids are typically secreted during aggressive interaction in a variety of vertebrates, which may both potentiate and inhibit aggression. The behavioral relationship between corticosterone and/or cortisol in non-mammalian (as well as mammalian) vertebrates is dependent on timing, magnitude, context, and coordination of physiological and behavioral responses. Chronically elevated plasma glucocorticoids reliably inhibit aggressive behavior, consistent with an evolutionarily adaptive behavioral strategy among subordinate and submissive individuals. Acute elevation of plasma glucocorticoids may either promote an actively aggressive response via action in specialized local regions of the brain such as the anterior hypothalamus, or is permissive to escalated aggression and/or activity. Although the permissive effect of glucocorticoids on aggression does not suggest an active role for the hormone, the corticosteroids may be necessary for full expression of aggressive behavior, as in the lizard Anolis carolinensis. These effects suggest that short-term stress may generally be best counteracted by an actively aggressive response, at least for socially dominant proactive individuals. An acute and active response may be evolutionarily maladaptive under chronic, uncontrollable and unpredictable circumstances. It appears that subordinate reactive individuals often produce compulsorily chronic responses that inhibit aggression and promote submissive behavior.
Collapse
Affiliation(s)
- Cliff H Summers
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, 57069-2390, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Jackson D, Burns R, Trksak G, Simeone B, DeLeon KR, Connor DF, Harrison RJ, Melloni RH. Anterior hypothalamic vasopressin modulates the aggression-stimulating effects of adolescent cocaine exposure in Syrian hamsters. Neuroscience 2005; 133:635-46. [PMID: 15908133 DOI: 10.1016/j.neuroscience.2005.02.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 02/15/2005] [Accepted: 02/20/2005] [Indexed: 12/29/2022]
Abstract
Repeated low-dose cocaine treatment (0.5 mg/kg/day) during adolescence induces offensive aggression in male Syrian hamsters (Mesocricetus auratus). This study examines the hypothesis that adolescent cocaine exposure predisposes hamsters to heightened levels of aggressive behavior by increasing the activity of the anterior hypothalamic-vasopressinergic neural system. In a first experiment, adolescent male hamsters were treated with low-dose cocaine and then scored for offensive aggression in the absence or presence of vasopressin receptor antagonists applied directly to the anterior hypothalamus. Adolescent cocaine-treated hamsters displayed highly escalated offensive aggression that could be reversed by blocking the activity of vasopressin receptors within the anterior hypothalamus. In a second set of experiments, adolescent hamsters were administered low-dose cocaine or vehicle, tested for offensive aggression, and then examined for differences in vasopressin innervation patterns and expression levels in the anterior hypothalamus, as well as the basal- and stimulated-release of vasopressin in this same brain region. Aggressive, adolescent cocaine-treated hamsters showed no differences in vasopressin afferent innervation and/or peptide levels in the anterior hypothalamus compared with non-aggressive, saline-treated littermates. Conversely, significant increases in stimulated, but not basal, vasopressin release were detected from the anterior hypothalamus of aggressive, cocaine-treated animals compared with non-aggressive, saline-treated controls. Together, these data suggest that adolescent cocaine exposure increases aggression by increasing stimulated release of vasopressin in the anterior hypothalamus, providing direct evidence for a causal role of anterior hypothalamic-vasopressin activity in adolescent cocaine-induced offensive aggression. A model for how alterations in anterior hypothalamic-vasopressin neural functioning may facilitate the development of the aggressive phenotype in adolescent-cocaine exposed animals is presented.
Collapse
Affiliation(s)
- D Jackson
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Knyshevski I, Connor DF, Harrison RJ, Ricci LA, Melloni RH. Persistent activation of select forebrain regions in aggressive, adolescent cocaine-treated hamsters. Behav Brain Res 2005; 159:277-86. [PMID: 15817190 DOI: 10.1016/j.bbr.2004.11.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 11/03/2004] [Accepted: 11/08/2004] [Indexed: 12/13/2022]
Abstract
Hamsters repeatedly exposed to cocaine throughout adolescence display highly escalated offensive aggression compared to saline-treated littermates. The current study investigated whether adolescent cocaine exposure activated neurons in areas of hamster forebrain implicated in aggressive behavior by examining the expression of FOS, i.e., the protein product of the immediate early gene c-fos shown to be a reliably sensitive marker of neuronal activation. Adolescent cocaine-treated hamsters and saline-treated littermates were scored for offensive aggression and then sacrificed 1 day later and examined for the number of FOS immunoreactive (FOS-ir) cells in regions of the hamster forebrain important for aggression control. When compared with non-aggressive, saline-treated controls, aggressive cocaine-treated hamsters showed persistent increases in the number of FOS-ir cells in several aggression regions, including the anterior hypothalamus, nucleus circularis, lateral hypothalamus (i.e., the hypothalamic attack area), lateral septum, and medial and corticomedial amygdaloid nuclei. Conversely, aggressive cocaine-treated hamsters showed a significant decrease in FOS-ir cells in the medial supraoptic nucleus, bed nucleus of the stria terminalis, and central amygdala when compared with controls. However, no differences in FOS-ir cells were found in other areas implicated in aggression such as the paraventricular hypothalamic nucleus, or in a number of non-aggression areas. These results suggest that adolescent cocaine exposure may constitutively activate neurons in select forebrain areas critical for the regulation of aggression in hamsters. A model for how persistent activation of neurons in one of these brain regions (i.e., the hypothalamus) may facilitate the development of the aggressive phenotype in adolescent cocaine-exposed animals is presented.
Collapse
Affiliation(s)
- Irina Knyshevski
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|