1
|
Richard SA, Sackey M. Elucidating the Pivotal Neuroimmunomodulation of Stem Cells in Spinal Cord Injury Repair. Stem Cells Int 2021; 2021:9230866. [PMID: 34341666 PMCID: PMC8325586 DOI: 10.1155/2021/9230866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/03/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a distressing incident with abrupt onset of the motor as well as sensory dysfunction, and most often, the injury occurs as result of high-energy or velocity accidents as well as contact sports and falls in the elderly. The key challenges associated with nerve repair are the lack of self-repair as well as neurotrophic factors and primary and secondary neuronal apoptosis, as well as factors that prevent the regeneration of axons locally. Neurons that survive the initial traumatic damage may be lost due to pathogenic activities like neuroinflammation and apoptosis. Implanted stem cells are capable of differentiating into neural cells that replace injured cells as well as offer local neurotrophic factors that aid neuroprotection, immunomodulation, axonal sprouting, axonal regeneration, and remyelination. At the microenvironment of SCI, stem cells are capable of producing growth factors like brain-derived neurotrophic factor and nerve growth factor which triggers neuronal survival as well as axonal regrowth. Although stem cells have proven to be of therapeutic value in SCI, the major disadvantage of some of the cell types is the risk for tumorigenicity due to the contamination of undifferentiated cells prior to transplantation. Local administration of stem cells via either direct cellular injection into the spinal cord parenchyma or intrathecal administration into the subarachnoid space is currently the best transplantation modality for stem cells during SCI.
Collapse
Affiliation(s)
- Seidu A. Richard
- Department of Medicine, Princefield University, P.O. Box MA128, Ho, Ghana
| | - Marian Sackey
- Department of Pharmacy, Ho Teaching Hospital, P.O. Box MA-374, Ho, Ghana
| |
Collapse
|
2
|
Russo C, Mannino G, Patanè M, Parrinello NL, Pellitteri R, Stanzani S, Giuffrida R, Lo Furno D, Russo A. Ghrelin peptide improves glial conditioned medium effects on neuronal differentiation of human adipose mesenchymal stem cells. Histochem Cell Biol 2021; 156:35-46. [PMID: 33728539 PMCID: PMC8277640 DOI: 10.1007/s00418-021-01980-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
The influences of ghrelin on neural differentiation of adipose-derived mesenchymal stem cells (ASCs) were investigated in this study. The expression of typical neuronal markers, such as protein gene product 9.5 (PGP9.5) and Microtubule Associated Protein 2 (MAP2), as well as glial Fibrillary Acid Protein (GFAP) as a glial marker was evaluated in ASCs in different conditions. In particular, 2 µM ghrelin was added to control ASCs and to ASCs undergoing neural differentiation. For this purpose, ASCs were cultured in Conditioned Media obtained from Olfactory Ensheathing cells (OEC-CM) or from Schwann cells (SC-CM). Data on marker expression were gathered after 1 and 7 days of culture by fluorescence immunocytochemistry and flow cytometry. Results show that only weak effects were induced by the addition of only ghrelin. Instead, dynamic ghrelin-induced modifications were detected on the increased marker expression elicited by glial conditioned media. In fact, the combination of ghrelin and conditioned media consistently induced a further increase of PGP9.5 and MAP2 expression, especially after 7 days of treatment. The combination of ghrelin with SC-CM produced the most evident effects. Weak or no modifications were found on conditioned medium-induced GFAP increases. Observations on the ghrelin receptor indicate that its expression in control ASCs, virtually unchanged by the addition of only ghrelin, was considerably increased by CM treatment. These increases were enhanced by combining ghrelin and CM treatment, especially at 7 days. Overall, it can be assumed that ghrelin favors a neuronal rather than a glial ASC differentiation.
Collapse
Affiliation(s)
- Cristina Russo
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | - Giuliana Mannino
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | - Martina Patanè
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | | | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, Italian National Research Council, Via P. Gaifami, 18, 95126 Catania, Italy
| | - Stefania Stanzani
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | - Rosario Giuffrida
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | - Debora Lo Furno
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| | - Antonella Russo
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 97, 95123 Catania, Italy
| |
Collapse
|
3
|
Lo Furno D, Mannino G, Pellitteri R, Zappalà A, Parenti R, Gili E, Vancheri C, Giuffrida R. Conditioned Media From Glial Cells Promote a Neural-Like Connexin Expression in Human Adipose-Derived Mesenchymal Stem Cells. Front Physiol 2018; 9:1742. [PMID: 30555356 PMCID: PMC6282092 DOI: 10.3389/fphys.2018.01742] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
The expression of neuronal and glial connexins (Cxs) has been evaluated in adipose-derived mesenchymal stem cells (ASCs) whose neural differentiation was promoted by a conditioned medium (CM) obtained from cultures of olfactory ensheathing cells (OECs) or Schwann cells (SCs). By immunocytochemistry and flow cytometer analysis it was found that Cx43 was already considerably expressed in naïve ASCs and further increased after 24 h and 7 days from CM exposition. Cx32 and Cx36 were significantly improved in conditioned cultures compared to control ASCs, whereas a decreased expression was noticed in the absence of CM treatments. Cx47 was virtually absent in any conditions. Altogether, high basal levels and induced increases of Cx43 expression suggest a potential attitude of ASCs toward an astrocyte differentiation, whereas the lack of Cx47 would indicate a poor propensity of ASCs to become oligodendrocytes. CM-evoked Cx32 and Cx36 increases showed that a neuronal- or a SC-like differentiation can be promoted by using this strategy. Results further confirm that environmental cues can favor an ASC neural differentiation, either as neuronal or glial elements. Of note, the use of glial products present in CM rather than the addition of chemical agents to achieve such differentiation would resemble "more physiological" conditions of differentiation. As a conclusion, the overexpression of typical neural Cxs would indicate the potential capability of neural-like ASCs to interact with neighboring neural cells and microenvironment.
Collapse
Affiliation(s)
- Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Rosalia Pellitteri
- Institute of Neurological Sciences, National Research Council, Catania, Italy
| | - Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Elisa Gili
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Sarker M, Izadifar M, Schreyer D, Chen X. Influence of ionic crosslinkers (Ca2+/Ba2+/Zn2+) on the mechanical and biological properties of 3D Bioplotted Hydrogel Scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1126-1154. [DOI: 10.1080/09205063.2018.1433420] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Md. Sarker
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Mohammad Izadifar
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - David Schreyer
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
5
|
Schaal SM, Kitay BM, Cho KS, Lo TP, Barakat DJ, Marcillo AE, Sanchez AR, Andrade CM, Pearse DD. Schwann Cell Transplantation Improves Reticulospinal Axon Growth and Forelimb Strength after Severe Cervical Spinal Cord Contusion. Cell Transplant 2017; 16:207-28. [PMID: 17503734 DOI: 10.3727/000000007783464768] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Schwann cell (SC) implantation alone has been shown to promote the growth of propriospinal and sensory axons, but not long-tract descending axons, after thoracic spinal cord injury (SCI). In the current study, we examined if an axotomy close to the cell body of origin (so as to enhance the intrinsic growth response) could permit supraspinal axons to grow onto SC grafts. Adult female Fischer rats received a severe (C5) cervical contusion (1.1 mm displacement, 3 KDyn). At 1 week postinjury, 2 million SCs ex vivo transduced with lentiviral vector encoding enhanced green fluorescent protein (EGFP) were implanted within media into the injury epicenter; injury-only animals served as controls. Animals were tested weekly using the BBB score for 7 weeks postimplantation and received at end point tests for upper body strength: self-supported forelimb hanging, forearm grip force, and the incline plane. Following behavioral assessment, animals were anterogradely traced bilaterally from the reticular formation using BDA-Texas Red. Stereological quantification revealed a twofold increase in the numbers of preserved NeuN+ neurons rostral and caudal to the injury/graft site in SC implanted animals, corroborating previous reports of their neuroprotective efficacy. Examination of labeled reticulospinal axon growth revealed that while rarely an axon was present within the lesion site of injury-only controls, numerous reticulospinal axons had penetrated the SC implant/lesion milieu. This has not been observed following implantation of SCs alone into the injured thoracic spinal cord. Significant behavioral improvements over injury-only controls in upper limb strength, including an enhanced grip strength (a 296% increase) and an increased self-supported forelimb hanging, accompanied SC-mediated neuroprotection and reticulospinal axon growth. The current study further supports the neuroprotective efficacy of SC implants after SCI and demonstrates that SCs alone are capable of supporting modest supraspinal axon growth when the site of axon injury is closer to the cell body of the axotomized neuron.
Collapse
Affiliation(s)
- S M Schaal
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Uzdensky A, Berezhnaya E, Khaitin A, Kovaleva V, Komandirov M, Neginskaya M, Rudkovskii M, Sharifulina S. Protection of the Crayfish Mechanoreceptor Neuron and Glial Cells from Photooxidative Injury by Modulators of Diverse Signal Transduction Pathways. Mol Neurobiol 2016; 52:811-25. [PMID: 26063591 DOI: 10.1007/s12035-015-9237-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oxidative stress is the reason of diverse neuropathological processes. Photodynamic therapy (PDT), an effective inducer of oxidative stress, is used for cancer treatment, including brain tumors. We studied the role of various signaling pathways in photodynamic injury and protection of single neurons and satellite glial cells in the isolated crayfish mechanoreceptor. It was photosensitized with alumophthalocyanine Photosens in the presence of inhibitors or activators of various signaling proteins. PDT eliminated neuronal activity and killed neurons and glial cells. Inhibitory analysis showed the involvement of protein kinases Akt, glycogen synthase kinase-3β (GSK-3β), mammalian target of rapamycin (mTOR), mitogen-activated protein kinase kinases 1 and 2 (MEK1/2), calmodulin, calmodulin-dependent kinase II (CaMKII), adenylate cyclase, and nuclear factor NF-κB in PDT-induced necrosis of neurons. Nitric oxide (NO) and glial cell-derived neurotrophic factor (GDNF) reduced neuronal necrosis. In glial cells, protein kinases Akt, calmodulin, and CaMKII; protein kinases C and G, adenylate cyclase, and p38; and nuclear transcription factor NF-κB also mediated PDT-induced necrosis. In contrast, NO and neurotrophic factors nerve growth factor (NGF) and GDNF demonstrated anti-necrotic activity. Phospholipase Cγ, protein kinase C, GSK-3β, mTOR, NF-κB, mitochondrial permeability transition pores, and NO synthase mediated PDT-induced apoptosis of glial cells, whereas protein kinase A, tyrosine phosphatases, and neurotrophic factors NGF, GDNF, and neurturin were involved in protecting glial cells from photoinduced apoptosis. Signaling pathways that control cell survival and death differed in neurons and glia. Inhibitors or activators of some signaling pathways may be used as potential protectors of neurons and glia from photooxidative stress and following death.
Collapse
Affiliation(s)
- Anatoly Uzdensky
- Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don, 344090, Russia,
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Bianco J, De Berdt P, Deumens R, des Rieux A. Taking a bite out of spinal cord injury: do dental stem cells have the teeth for it? Cell Mol Life Sci 2016; 73:1413-37. [PMID: 26768693 PMCID: PMC11108394 DOI: 10.1007/s00018-015-2126-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022]
Abstract
Dental stem cells are an emerging star on a stage that is already quite populated. Recently, there has been a lot of hype concerning these cells in dental therapies, especially in regenerative endodontics. It is fitting that most research is concentrated on dental regeneration, although other uses for these cells need to be explored in more detail. Being a true mesenchymal stem cell, their capacities could also prove beneficial in areas outside their natural environment. One such field is the central nervous system, and in particular, repairing the injured spinal cord. One of the most formidable challenges in regenerative medicine is to restore function to the injured spinal cord, and as yet, a cure for paralysis remains to be discovered. A variety of approaches have already been tested, with graft-based strategies utilising cells harbouring appropriate properties for neural regeneration showing encouraging results. Here we present a review focusing on properties of dental stem cells that endorse their use in regenerative medicine, with particular emphasis on repairing the damaged spinal cord.
Collapse
Affiliation(s)
- John Bianco
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium.
- Integrated Center for Cell Therapy and Regenerative Medicine, International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic.
| | - Pauline De Berdt
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium
| | - Ronald Deumens
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Anne des Rieux
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| |
Collapse
|
8
|
Sakai S, Suzuki M, Tashiro Y, Tanaka K, Takeda S, Aizawa K, Hirata M, Yogo K, Endo K. Vitamin D receptor signaling enhances locomotive ability in mice. J Bone Miner Res 2015; 30:128-36. [PMID: 25043694 DOI: 10.1002/jbmr.2317] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 06/06/2014] [Accepted: 07/14/2014] [Indexed: 01/29/2023]
Abstract
Bone fractures markedly reduce quality of life and life expectancy in elderly people. Although osteoporosis increases bone fragility, fractures frequently occur in patients with normal bone mineral density. Because most fractures occur on falling, preventing falls is another focus for reducing bone fractures. In this study, we investigated the role of vitamin D receptor (VDR) signaling in locomotive ability. In the rotarod test, physical exercise enhanced locomotive ability of wild-type (WT) mice by 1.6-fold, whereas exercise did not enhance locomotive ability of VDR knockout (KO) mice. Compared with WT mice, VDR KO mice had smaller peripheral nerve axonal diameter and disordered AChR morphology on the extensor digitorum longus muscle. Eldecalcitol (ED-71, ELD), an analog of 1,25(OH)2 D3 , administered to rotarod-trained C57BL/6 mice enhanced locomotor performance compared with vehicle-treated nontrained mice. The area of AChR cluster on the extensor digitorum longus was greater in ELD-treated mice than in vehicle-treated mice. ELD and 1,25(OH)2 D3 enhanced expression of IGF-1, myelin basic protein, and VDR in rat primary Schwann cells. VDR signaling regulates neuromuscular maintenance and enhances locomotive ability after physical exercise. Further investigation is required, but Schwann cells and the neuromuscular junction are targets of vitamin D3 signaling in locomotive ability.
Collapse
Affiliation(s)
- Sadaoki Sakai
- Product Research Department, Fuji-Gotemba Research Laboratories, Chugai Pharmaceutical Co., Ltd., Gotemba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Rajaram A, Chen XB, Schreyer DJ. Strategic Design and Recent Fabrication Techniques for Bioengineered Tissue Scaffolds to Improve Peripheral Nerve Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:454-67. [DOI: 10.1089/ten.teb.2012.0006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ajay Rajaram
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Xiong-Biao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
| | - David J. Schreyer
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Canada
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
10
|
Protection Effect of GDNF and Neurturin on Photosensitized Crayfish Neurons and Glial Cells. J Mol Neurosci 2012; 49:480-90. [DOI: 10.1007/s12031-012-9858-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
|
11
|
Windus LCE, Chehrehasa F, Lineburg KE, Claxton C, Mackay-Sim A, Key B, St John JA. Stimulation of olfactory ensheathing cell motility enhances olfactory axon growth. Cell Mol Life Sci 2011; 68:3233-47. [PMID: 21318262 PMCID: PMC11115065 DOI: 10.1007/s00018-011-0630-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/06/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
Axons of primary olfactory neurons are intimately associated with olfactory ensheathing cells (OECs) from the olfactory epithelium until the final targeting of axons within the olfactory bulb. However, little is understood about the nature and role of interactions between OECs and axons during development of the olfactory nerve pathway. We have used high resolution time-lapse microscopy to examine the growth and interactions of olfactory axons and OECs in vitro. Transgenic mice expressing fluorescent reporters in primary olfactory axons (OMP-ZsGreen) and ensheathing cells (S100ß-DsRed) enabled us to selectively analyse these cell types in explants of olfactory epithelium. We reveal here that rather than providing only a permissive substrate for axon growth, OECs play an active role in modulating the growth of pioneer olfactory axons. We show that the interactions between OECs and axons were dependent on lamellipodial waves on the shaft of OEC processes. The motility of OECs was mediated by GDNF, which stimulated cell migration and increased the apparent motility of the axons, whereas loss of OECs via laser ablation of the cells inhibited olfactory axon outgrowth. These results demonstrate that the migration of OECs strongly regulates the motility of axons and that stimulation of OEC motility enhances axon extension and growth cone activity.
Collapse
Affiliation(s)
- Louisa C. E. Windus
- National Centre for Adult Stem Cell Research, Eskitis Institute For Cell and Molecular Therapies, Griffith University, Nathan 4111, Brisbane, QLD Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD Australia
| | - Fatemeh Chehrehasa
- National Centre for Adult Stem Cell Research, Eskitis Institute For Cell and Molecular Therapies, Griffith University, Nathan 4111, Brisbane, QLD Australia
| | - Katie E. Lineburg
- National Centre for Adult Stem Cell Research, Eskitis Institute For Cell and Molecular Therapies, Griffith University, Nathan 4111, Brisbane, QLD Australia
| | - Christina Claxton
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD Australia
| | - Alan Mackay-Sim
- National Centre for Adult Stem Cell Research, Eskitis Institute For Cell and Molecular Therapies, Griffith University, Nathan 4111, Brisbane, QLD Australia
| | - Brian Key
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD Australia
| | - James A. St John
- National Centre for Adult Stem Cell Research, Eskitis Institute For Cell and Molecular Therapies, Griffith University, Nathan 4111, Brisbane, QLD Australia
| |
Collapse
|
12
|
Spinal Motor Neuronal Degeneration After Knee Joint Immobilization in the Guinea Pig. J Manipulative Physiol Ther 2010; 33:328-37. [DOI: 10.1016/j.jmpt.2010.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/25/2009] [Accepted: 09/25/2009] [Indexed: 11/23/2022]
|
13
|
Protection of crayfish glial cells but not neurons from photodynamic injury by nerve growth factor. J Mol Neurosci 2009; 39:308-19. [PMID: 19381880 DOI: 10.1007/s12031-009-9199-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 03/29/2009] [Indexed: 10/20/2022]
Abstract
Photodynamic treatment that causes intense oxidative stress and cell death is currently used in neurooncology. However, along with tumor cells, it may damage healthy neurons and glia. In order to study photodynamic effect on normal nerve and glial cells, we used crayfish stretch receptor, a simple system consisting of only two identified sensory neurons surrounded by glial cells. Photodynamic treatment induced firing abolition and necrosis of neurons as well as necrosis and apoptosis of glial cells. Nerve growth factor but not brain-derived neurotrophic factor or epidermal growth factor protected glial cells but not neurons from photoinduced necrosis and apoptosis. Inhibitors of tyrosine kinases or protein kinase JNK eliminated anti-apoptotic effect of nerve growth factor in photosensitized glial cells but not neurons. Therefore, these signaling proteins were involved in the anti-apoptotic activity of nerve growth factor. These data indicate the possible presence of receptors capable of recognizing murine nerve growth factor in crayfish glial cells. Thus, intercellular signaling mediated by nerve-growth-factor-like neurotrophin, receptor tyrosine kinase, and JNK may be involved in crayfish glia protection from apoptosis induced by photodynamic treatment.
Collapse
|
14
|
Li W, Sun H, Xu Z, Ding F, Gu X. Protein expression profile in the differentiation of rat bone marrow stromal cells into Schwann cell-like cells. ACTA ACUST UNITED AC 2009; 52:267-77. [DOI: 10.1007/s11427-009-0033-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Accepted: 12/11/2008] [Indexed: 01/09/2023]
|
15
|
Sharma HS. New perspectives for the treatment options in spinal cord injury. Expert Opin Pharmacother 2009; 9:2773-800. [PMID: 18937612 DOI: 10.1517/14656566.9.16.2773] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Spinal cord injury (SCI) is a serious clinical disorder that leads to lifetime disability for which no suitable therapeutic agents are available so far. Further research is needed to understand the basic mechanisms of spinal cord pathology that results in permanent disability and poses a heavy burden on our society. In the past, a lot of effort was placed on improving functional outcome with the help of various therapeutic agents, however less attention has been paid on the development and propagation of spinal cord pathology over time. Thus, it is still unclear whether improvement of functional outcome is related to spinal cord pathology or vice versa. Few drugs are able to influence functional outcome without having any improvement on cord pathology. Some drugs, however, can lessen cord pathology but fail to influence the functional outcome. The goal of future treatment options for SCI is therefore to find suitable new drugs or a combination of existing drugs and to use various cellular transplants, neurotrophic factors, myelin-inhibiting factors, tissue engineering and nano-drug delivery to improve both the functional and the pathological outcome in the inured patient. This review deals with the key aspects of the latest treatments for SCI and suggests some possible future therapeutic measures to enhance healthcare in clinical situations.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Uppsala University, University Hospital, Laboratory of Cerebrovascular Research, Department of Surgical Sciences, Anaesthesiology & Intensive Care Medicine, SE-75185 Uppsala, Sweden.
| |
Collapse
|
16
|
Pellitteri R, Spatuzza M, Russo A, Stanzani S. Olfactory ensheathing cells exert a trophic effect on the hypothalamic neurons in vitro. Neurosci Lett 2007; 417:24-9. [PMID: 17360117 DOI: 10.1016/j.neulet.2007.02.065] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 02/08/2007] [Accepted: 02/08/2007] [Indexed: 11/16/2022]
Abstract
Olfactory ensheathing cells (OECs) constitute an usual population of glial cells sharing properties with both Schwann cells (SC) of peripheral nervous system (PNS) and astrocytes of the central nervous system (CNS). They express a high level of growth factors which play a very important role as neuronal support. Recent evidence in literature suggests that OECs may facilitate axonal regeneration in the injured nervous system. In this study, we developed an in vitro model to evaluate the neurotrophic effect of OECs on the survival and axonal outgrowth of hypothalamic neurons. Co-cultures of OECs and hypothalamus neuronal cells of postnatal rats were successfully established and cells were immunocytochemically characterized. Furthermore, some neuronal cultures were added with NGF, bFGF and GDNF to compare with the co-cultures. Our results indicate that in co-cultures of hypothalamic neurons and OECs, the number of neurons was significantly increased compared to control cultures exhibiting a dense axonal outgrowth. Moreover, we show that NGF promoted a major neuronal survival than bFGF and GDNF, while bFGF and GDNF exerted an evidence axonal and dendritic outgrowth compared to NGF. In conclusion, these data suggest that OECs have the capacity to promote the survival and axonal outgrowth of hypothalamic neurons in vitro and that bFGF, NGF and GDNF differentially support hypothalamic neurons promoting and enhancing the neuronal survival and outgrowth. Therefore, the OECs are a source of growth factors and might be considered a better approach for functional recovery and growth factors might exert a neuroprotective effect in neurodegenerative disorders.
Collapse
Affiliation(s)
- Rosalia Pellitteri
- Institute of Neurological Sciences, National Research Council, Section of Catania, viale R. Margherita 6, 95123 Catania, Italy.
| | | | | | | |
Collapse
|
17
|
Baptiste DC, Fehlings MG. Update on the treatment of spinal cord injury. PROGRESS IN BRAIN RESEARCH 2007; 161:217-33. [PMID: 17618980 DOI: 10.1016/s0079-6123(06)61015-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Acute spinal cord injury (SCI) is a devastating neurological disorder that can affect any individual at a given instance. Current treatment options for SCI include the use of high dose methylprednisolone sodium succinate, a corticosteroid, surgical interventions to stabilize and decompress the spinal cord, intensive multisystem medical management, and rehabilitative care. While utility of these therapeutic options provides modest benefits, there is a critical need to identify novel approaches to treat or repair the injured spinal cord in hope to, at the very least, improve upon the patient's quality of life. Thankfully, several discoveries at the preclinical level are now transitioning into the clinical arena. These include the Surgical Treatment for Acute Spinal Cord Injury Study (STASCIS) Trial to evaluate the role and timing of surgical decompression for acute SCI, neuroprotection with the semisynthetic second generation tetracycline derivative, minocycline; aiding axonal conduction with the potassium channel blockers, neuroregenerative/neuroprotective approaches with the Rho antagonist, Cethrin; the use of anti-NOGO monoclonal antibodies to augment plasticity and regeneration; as well as cell-mediated repair with stem cells, bone marrow stromal cells, and olfactory ensheathing cells. This review overviews the pathobiology of SCI and current treatment choices before focusing the rest of the discussion on the variety of promising neuroprotective and cell-based approaches that have recently moved, or are very close, to clinical testing.
Collapse
Affiliation(s)
- Darryl C Baptiste
- Division of Cell and Molecular Biology, Toronto Western Research Institute and Krembil Neuroscience Centre, Toronto Western Hospital, University of Toronto, ON, Canada
| | | |
Collapse
|