1
|
Vay SU, Olschewski DN, Petereit H, Lange F, Nazarzadeh N, Gross E, Rabenstein M, Blaschke SJ, Fink GR, Schroeter M, Rueger MA. Osteopontin regulates proliferation, migration, and survival of astrocytes depending on their activation phenotype. J Neurosci Res 2021; 99:2822-2843. [PMID: 34510519 DOI: 10.1002/jnr.24954] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022]
Abstract
The glycoprotein osteopontin is highly upregulated in central nervous system (CNS) disorders such as ischemic stroke. Osteopontin regulates cell growth, cell adhesion, homeostasis, migration, and survival of various cell types. Accordingly, osteopontin is considered an essential regulator of regeneration and repair in the ischemic milieu. Astrocytes are the most abundant cells in the CNS and play significant roles in health and disease. Astrocytes are involved in homeostasis, promote neuroprotection, and regulate synaptic plasticity. Upon activation, astrocytes may adopt different phenotypes, termed A1 and A2. The direct effects of osteopontin on astrocytes, especially in distinct activation states, are yet unknown. The current study aimed to elucidate the impact of osteopontin on resting and active astrocytes. We established an inflammatory in vitro model of activated (A1) primary astrocytes derived from neonatal wistar rats by exposure to a distinct combination of proinflammatory cytokines. To model ischemic stroke in vitro, astrocytes were subjected to oxygen and glucose deprivation (OGD) in the presence or absence of osteopontin. Osteopontin modulated the activation phenotype by attenuating A1- and restoring A2-marker expression without compromising the active astrocytes' immunocompetence. Osteopontin promoted the proliferation of active and the migration of resting astrocytes. Following transient OGD, osteopontin mitigated the delayed ongoing death of primary astrocytes, promoting their survival. Data suggest that osteopontin differentially regulates essential functions of resting and active astrocytes and confirm a significant regulatory role of osteopontin in an in vitro ischemia model. Furthermore, the data suggest that osteopontin constitutes a promising target for experimental therapies modulating neuroregeneration and repair.
Collapse
Affiliation(s)
- Sabine Ulrike Vay
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Daniel Navin Olschewski
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Helena Petereit
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Lange
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nilufar Nazarzadeh
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elena Gross
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Monika Rabenstein
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stefan Johannes Blaschke
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Gereon Rudolf Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Michael Schroeter
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| | - Maria Adele Rueger
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, Juelich, Germany
| |
Collapse
|
2
|
Riew TR, Kim S, Jin X, Kim HL, Lee JH, Lee MY. Osteopontin and its spatiotemporal relationship with glial cells in the striatum of rats treated with mitochondrial toxin 3-nitropropionic acid: possible involvement in phagocytosis. J Neuroinflammation 2019; 16:99. [PMID: 31088570 PMCID: PMC6518780 DOI: 10.1186/s12974-019-1489-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
Background Osteopontin (OPN, SPP1) is upregulated in response to acute brain injury, and based on its immunoreactivity, two distinct forms have been identified: intracellular OPN within brain macrophages and small granular OPN, identified as OPN-coated degenerated neurites. This study investigates the spatiotemporal relationship between punctate OPN deposition and astroglial and microglial reactions elicited by 3-nitropropionic acid (3-NP). Methods Male Sprague-Dawley rats were intraperitoneally injected with mitochondrial toxin 3-NP and euthanized at 3, 7, 14, and 28 days. Quantitative and qualitative light and electron microscopic techniques were used to assess the relationship between OPN and glial cells. Statistical significance was determined by Student’s t test or a one-way analysis of variance followed by Tukey’s multiple comparisons test. Results Punctate OPN-immunoreactive profiles were synthesized and secreted by amoeboid-like brain macrophages in the lesion core, but not by reactive astrocytes and activated microglia with a stellate shape in the peri-lesional area. Punctate OPN accumulation was detected only in the lesion core away from reactive astrocytes in the peri-lesional area at day 3, but had direct contact with, and even overlapped with astroglial processes at day 7. The distance between the OPN-positive area and the astrocytic scar significantly decreased from days 3 to 7. By days 14 and 28 post-lesion, when the glial scar was fully formed, punctate OPN distribution mostly overlapped with the astrocytic scar. Three-dimensional reconstructions and quantitative image analysis revealed numerous granular OPN puncta inside the cytoplasm of reactive astrocytes and brain macrophages. Reactive astrocytes showed prominent expression of the lysosomal marker lysosomal-associated membrane protein 1, and ultrastructural analysis confirmed OPN-coated degenerating neurites inside astrocytes, suggesting the phagocytosis of OPN puncta by reactive astrocytes after injury. Conclusions Punctate OPN-immunoreactive profiles corresponded to OPN-coated degenerated neurites, which were closely associated with, or completely engulfed by, the reactive astrocytes forming the astroglial scar in 3-NP lesioned striatum, suggesting that OPN may cause astrocytes to migrate towards these degenerated neurites in the lesion core to establish physical contact with, and possibly, to phagocytose them. Our results provide novel insights essential to understanding the recovery and repair of the central nervous system tissue. Electronic supplementary material The online version of this article (10.1186/s12974-019-1489-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea
| | - Soojin Kim
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea
| | - Xuyan Jin
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul, 06591, Republic of Korea. .,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
3
|
Abstract
Osteopontin (OPN) is a secreted glycosylated phosphoprotein that influences cell survival, inflammation, migration, and homeostasis after injury. As the role of OPN in the retina remains unclear, this study issue was addressed by aiming to study how the absence of OPN in knock-out mice affects the retina and the influence of age on these effects. The study focused on retinal ganglion cells (RGCs) and glial cells (astrocytes, Müller cells, and resident microglia) in 3- and 20-month-old mice. The number of RGCs in the retina was quantified and the area occupied by astrocytes was measured. In addition, the morphology of Müller cells and microglia was examined in retinal sections. The deficiency in OPN reduces RGC density by 25.09% at 3 months of age and by 60.37% at 20 months of age. The astrocyte area was also reduced by 51.01% in 3-month-old mice and by 57.84% at 20 months of age, although Müller glia and microglia did not seem to be affected by the lack of OPN. This study demonstrates the influence of OPN on astrocytes and RGCs, whereby the absence of OPN in the retina diminishes the area occupied by astrocytes and produces a secondary reduction in the number of RGCs. Accordingly, OPN could be a target to develop therapies to combat neurodegenerative diseases and astrocytes may represent a key mediator of such effects.
Collapse
|
4
|
Osteopontin is induced by TGF-β2 and regulates metabolic cell activity in cultured human optic nerve head astrocytes. PLoS One 2014; 9:e92762. [PMID: 24718314 PMCID: PMC3981660 DOI: 10.1371/journal.pone.0092762] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 02/25/2014] [Indexed: 12/26/2022] Open
Abstract
The aqueous humor (AH) component transforming growth factor (TGF)-β2 is strongly correlated to primary open-angle glaucoma (POAG), and was shown to up-regulate glaucoma-associated extracellular matrix (ECM) components, members of the ECM degradation system and heat shock proteins (HSP) in primary ocular cells. Here we present osteopontin (OPN) as a new TGF-β2 responsive factor in cultured human optic nerve head (ONH) astrocytes. Activation was initially demonstrated by Oligo GEArray microarray and confirmed by semiquantitative (sq) RT-PCR, realtime RT-PCR and western blot. Expressions of most prevalent OPN receptors CD44 and integrin receptor subunits αV, α4, α 5, α6, α9, β1, β3 and β5 by ONH astrocytes were shown by sqRT-PCR and immunofluorescence labeling. TGF-β2 treatment did not affect their expression levels. OPN did not regulate gene expression of described TGF-β2 targets shown by sqRT-PCR. In MTS-assays, OPN had a time- and dose-dependent stimulating effect on the metabolic activity of ONH astrocytes, whereas TGF-β2 significantly reduced metabolism. OPN signaling via CD44 mediated a repressive outcome on metabolic activity, whereas signaling via integrin receptors resulted in a pro-metabolic effect. In summary, our findings characterize OPN as a TGF-β2 responsive factor that is not involved in TGF-β2 mediated ECM and HSP modulation, but affects the metabolic activity of astrocytes. A potential involvement in a protective response to TGF-β2 triggered damage is indicated, but requires further investigation.
Collapse
|
5
|
Almolda B, Villacampa N, Manders P, Hidalgo J, Campbell IL, González B, Castellano B. Effects of astrocyte-targeted production of interleukin-6 in the mouse on the host response to nerve injury. Glia 2014; 62:1142-61. [DOI: 10.1002/glia.22668] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Beatriz Almolda
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience; Autonomous University of Barcelona; Bellaterra 08193 Spain
| | - Nàdia Villacampa
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience; Autonomous University of Barcelona; Bellaterra 08193 Spain
| | - Peter Manders
- School of Molecular Bioscience; University of Sydney; Sydney NSW 2006 Australia
| | - Juan Hidalgo
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience; Autonomous University of Barcelona; Bellaterra 08193 Spain
| | - Iain L. Campbell
- School of Molecular Bioscience; University of Sydney; Sydney NSW 2006 Australia
| | - Berta González
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience; Autonomous University of Barcelona; Bellaterra 08193 Spain
| | - Bernardo Castellano
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience; Autonomous University of Barcelona; Bellaterra 08193 Spain
| |
Collapse
|
6
|
Moschos C, Porfiridis I, Psallidas I, Kollintza A, Stathopoulos GT, Papiris SA, Roussos C, Kalomenidis I. Osteopontin is upregulated in malignant and inflammatory pleural effusions. Respirology 2009; 14:716-22. [PMID: 19476604 DOI: 10.1111/j.1440-1843.2009.01536.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Osteopontin (OPN) is an important mediator of inflammation and cancer progression. In the present study, we asked whether pleural fluid (PF) and serum OPN concentrations differed between patients with pleural effusions of different aetiologies, and whether assessment of OPN levels was useful for diagnostic purposes. METHODS One hundred and nine consecutive patients with pleural effusions of different aetiologies were recruited prospectively during daily clinics. OPN levels were measured by ELISA. RESULTS PF OPN levels were 10-fold higher in exudates than in transudates and were significantly correlated with markers of pleural inflammation and vascular hyper-permeability, such as PF/serum LDH or protein ratios, PF protein and PF vascular endothelial growth factor levels. Patients with malignant pleural effusions had higher PF and lower serum OPN concentrations than those with benign disease. The diagnostic accuracies of PF and PF/serum OPN for malignancy were 71.5% (95% CI: 64-80) and 70.6% (95% CI: 62-80), respectively. CONCLUSIONS OPN levels were elevated in exudative pleural effusions, as compared with the levels in blood or transudative pleural effusions. While PF and PF/serum OPN were higher in patients with malignancies, the diagnostic accuracy of the tests was not sufficient to permit routine use in clinical practice.
Collapse
Affiliation(s)
- Charalampos Moschos
- Applied Biomedical Research and Training Center Marianthi Simou., Department of Critical Care & Pulmonary Services, General Hospital 'Evangelismos', School of Medicine, University of Athens, Athens
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kang WS, Choi JS, Shin YJ, Kim HY, Cha JH, Lee JY, Chun MH, Lee MY. Differential regulation of osteopontin receptors, CD44 and the αv and β3 integrin subunits, in the rat hippocampus following transient forebrain ischemia. Brain Res 2008; 1228:208-16. [DOI: 10.1016/j.brainres.2008.06.106] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/17/2008] [Accepted: 06/18/2008] [Indexed: 10/21/2022]
|
8
|
Jin JK, Na YJ, Song JH, Joo HG, Kim S, Kim JI, Choi EK, Carp RI, Kim YS, Shin T. Galectin-3 expression is correlated with abnormal prion protein accumulation in murine scrapie. Neurosci Lett 2007; 420:138-43. [PMID: 17531384 DOI: 10.1016/j.neulet.2007.04.069] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 04/21/2007] [Accepted: 04/23/2007] [Indexed: 11/23/2022]
Abstract
To investigate the involvement of galectin-3 in the process of neurodegeneration in prion diseases, the expression and cellular localization of galectin-3 in the brain were studied in scrapie, a mouse model of prion disease. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses showed that the expression of galectin-3 protein and mRNA was induced in scrapie-affected brains, particularly at the time when the abnormal prion protein PrP(Sc) began to accumulate in the brains. Immunohistochemically, immunostaining for galectin-3 was found mainly in B4-isolectin-positive cells (presumably activated microglia/macrophages), but not in astrocytes. Galectin-3 immunoreactivity was localized mainly in areas of PrP(Sc) accumulation and neuronal death in scrapie-infected brains. These findings suggest that the expression of galectin-3 by activated microglia/macrophages in prion disease correlates with abnormal prion protein accumulation.
Collapse
Affiliation(s)
- Jae-Kwang Jin
- Ilsong Institute of Life Science, Hallym University Medical Center, Anyang, Kyonggi-do 431-060, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Choi JS, Kim HY, Cha JH, Choi JY, Lee MY. Transient microglial and prolonged astroglial upregulation of osteopontin following transient forebrain ischemia in rats. Brain Res 2007; 1151:195-202. [PMID: 17395166 DOI: 10.1016/j.brainres.2007.03.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 02/28/2007] [Accepted: 03/02/2007] [Indexed: 11/30/2022]
Abstract
Osteopontin (OPN) is an adhesive glycoprotein linked to a variety of pathophysiological processes, with neuroprotective properties in ischemic injury. We examined the postischemic expression and localization of OPN in the rat brain after transient forebrain ischemia. The semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed that OPN expression in the hippocampal CA1 region was biphasic, peaking at day 3 after reperfusion and again between days 14 and 28. The two phases of OPN induction occurred in a time- and cell-dependent manner in the ischemic hippocampus. OPN mRNA expression in activated microglia was first induced 1 day after reperfusion, reached a peak at 3 days, and returned to basal levels by 7 days. In contrast, OPN expression in reactive astrocytes was first induced by 10 days after reperfusion in the hippocampal CA1. Astroglial OPN expression further increased, reaching a peak at day 14 and was maintained up to day 28, the latest time point we examined. OPN immunoreactivity in the ischemic hippocampus matched the mRNA induction patterns. OPN protein was first localized in the astroglial cytoplasm and later in the extracellular matrix of the hippocampal CA1. The temporal and cellular patterns of OPN induction in the ischemic hippocampus suggest a multifunctional capacity in the pathogenesis of ischemic injury, with the increased OPN production and secretion by reactive astrocytes being involved in subsequent tissue repair and reorganization.
Collapse
Affiliation(s)
- Jeong-Sun Choi
- Department of Anatomy, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul, 137-701, South Korea
| | | | | | | | | |
Collapse
|