1
|
Pandey S, Miller CA. Targeting the cytoskeleton as a therapeutic approach to substance use disorders. Pharmacol Res 2024; 202:107143. [PMID: 38499081 PMCID: PMC11034636 DOI: 10.1016/j.phrs.2024.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Substance use disorders (SUD) are chronic relapsing disorders governed by continually shifting cycles of positive drug reward experiences and drug withdrawal-induced negative experiences. A large body of research points to plasticity within systems regulating emotional, motivational, and cognitive processes as drivers of continued compulsive pursuit and consumption of substances despite negative consequences. This plasticity is observed at all levels of analysis from molecules to networks, providing multiple avenues for intervention in SUD. The cytoskeleton and its regulatory proteins within neurons and glia are fundamental to the structural and functional integrity of brain processes and are potentially the major drivers of the morphological and behavioral plasticity associated with substance use. In this review, we discuss preclinical studies that provide support for targeting the brain cytoskeleton as a therapeutic approach to SUD. We focus on the interplay between actin cytoskeleton dynamics and exposure to cocaine, methamphetamine, alcohol, opioids, and nicotine and highlight preclinical studies pointing to a wide range of potential therapeutic targets, such as nonmuscle myosin II, Rac1, cofilin, prosapip 1, and drebrin. These studies broaden our understanding of substance-induced plasticity driving behaviors associated with SUD and provide new research directions for the development of SUD therapeutics.
Collapse
Affiliation(s)
- Surya Pandey
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States; Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Courtney A Miller
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States; Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States.
| |
Collapse
|
2
|
Yamazaki Y, Sumikawa K. Nicotine-induced neuroplasticity counteracts the effect of schizophrenia-linked neuregulin 1 signaling on NMDAR function in the rat hippocampus. Neuropharmacology 2016; 113:386-395. [PMID: 27784625 DOI: 10.1016/j.neuropharm.2016.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/10/2016] [Accepted: 10/21/2016] [Indexed: 12/13/2022]
Abstract
A high rate of heavy tobacco smoking among people with schizophrenia has been suggested to reflect self-medication and amelioration of cognitive dysfunction, a core feature of schizophrenia. NMDAR hypofunction is hypothesized to be a mechanism of cognitive dysfunction, and excessive schizophrenia-linked neuregulin 1 (NRG1) signaling through its receptor ErbB4 can suppress NMDAR function by preventing Src-mediated enhancement of NMDAR responses. Here we investigated whether chronic nicotine exposure in rats by subcutaneous injection of nicotine (0.5-1 mg/kg, twice daily for 10-15 days) counteracts the suppressive effect of NRG1β on NMDAR-mediated responses recorded from CA1 pyramidal cells in acute hippocampal slices. We found that NRG1β, which prevents the enhancement of NMDAR responses by the Src-family-kinase-activating peptide pYEEI in naive rats, failed to block the effect of pYEEI in nicotine-exposed rats. In naive rats, NRG1β acts only on GluN2B-NMDARs by blocking their Src-mediated upregulation. Chronic nicotine exposure causes enhanced GluN2B-NMDAR responses via Src upregulation and recruits Fyn for the enhancement of GluN2A-NMDAR responses. NRG1β has no effect on both enhanced basal GluN2B-NMDAR responses and Fyn-mediated enhancement of GluN2A-NMDAR responses. Src-mediated enhancement of GluN2B-NMDAR responses and Fyn-mediated enhancement of GluN2A-NMDAR responses initiate long-term potentiation (LTP) of AMPAR synaptic responses in naive and nicotine-exposed CA1 pyramidal cells, respectively. These results suggest that NRG1β suppresses LTP by blocking Src-mediated enhancement of GluN2B-NMDAR responses, but has no effect on LTP in nicotine-exposed rats. These effects of chronic nicotine exposure may counteract the negative effect of increased NRG1-ErbB4 signaling on the cellular mechanisms of learning and memory in individuals with schizophrenia, and therefore may motivate heavy smoking.
Collapse
Affiliation(s)
- Yoshihiko Yamazaki
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA; Department of Neurophysiology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Katumi Sumikawa
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA.
| |
Collapse
|
3
|
Activation of α7 nicotinic acetylcholine receptors protects potentiated synapses from depotentiation during theta pattern stimulation in the hippocampal CA1 region of rats. Neuropharmacology 2016; 105:378-387. [PMID: 26867505 DOI: 10.1016/j.neuropharm.2016.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/24/2016] [Accepted: 02/05/2016] [Indexed: 11/21/2022]
Abstract
Long-term potentiation (LTP) shows memory-like consolidation and thus becomes increasingly resistant to disruption by low-frequency stimulation (LFS). However, it is known that nicotine application during LFS uniquely depotentiates consolidated LTP. Here, we investigated how nicotine contributes to the disruption of stabilized LTP in the hippocampal CA1 region. We found that nicotine-induced depotentiation is not due to masking LTP by inducing long-term depression and requires the activation of GluN2A-containing NMDARs. We further examined whether nicotine-induced depotentiation involves the reversal of LTP mechanisms. LTP causes phosphorylation of Ser-831 on GluA1 subunits of AMPARs that increases the single-channel conductance of AMPARs. This phosphorylation remained unchanged after depotentiation. LTP involves the insertion of new AMPARs into the synapse and the internalization of AMPARs is associated with dephosphorylation of Ser-845 on GluA1 and caspase-3 activity. Nicotine-induced depotentiation occurred without dephosphorylation of the Ser-845 and in the presence of a caspase-3 inhibitor. LTP is also accompanied by increased filamentous actin (F-actin), which controls spine size. Nicotine-induced depotentiation was prevented by jasplakinolide, which stabilizes F-actin, suggesting that nicotine depotentiates consolidated LTP by destabilizing F-actin. α7 nicotinic acetylcholine receptor (nAChR) antagonists mimicked the effect of nicotine and selective removal of hippocampal cholinergic input caused depotentiation in the absence of nicotine, suggesting that nicotine depotentiates consolidated LTP by inducing α7 nAChR desensitization. Our results demonstrate a new role for nicotinic cholinergic systems in protecting potentiated synapses from depotentiation by preventing GluN2A-NMDAR-mediated signaling for actin destabilization.
Collapse
|
4
|
Kutlu MG, Gould TJ. Nicotine modulation of fear memories and anxiety: Implications for learning and anxiety disorders. Biochem Pharmacol 2015; 97:498-511. [PMID: 26231942 DOI: 10.1016/j.bcp.2015.07.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 07/24/2015] [Indexed: 12/14/2022]
Abstract
Anxiety disorders are a group of crippling mental diseases affecting millions of Americans with a 30% lifetime prevalence and costs associated with healthcare of $42.3 billion. While anxiety disorders show high levels of co-morbidity with smoking (45.3% vs. 22.5% in healthy individuals), they are also more common among the smoking population (22% vs. 11.1% in the non-smoking population). Moreover, there is clear evidence that smoking modulates symptom severity in patients with anxiety disorders. In order to better understand this relationship, several animal paradigms are used to model several key symptoms of anxiety disorders; these include fear conditioning and measures of anxiety. Studies clearly demonstrate that nicotine mediates acquisition and extinction of fear as well as anxiety through the modulation of specific subtypes of nicotinic acetylcholine receptors (nAChRs) in brain regions involved in emotion processing such as the hippocampus. However, the direction of nicotine's effects on these behaviors is determined by several factors that include the length of administration, hippocampus-dependency of the fear learning task, and source of anxiety (novelty-driven vs. social anxiety). Overall, the studies reviewed here suggest that nicotine alters behaviors related to fear and anxiety and that nicotine contributes to the development, maintenance, and reoccurrence of anxiety disorders.
Collapse
Affiliation(s)
| | - Thomas J Gould
- Temple University, Weiss Hall, Philadelphia, PA 19122, USA.
| |
Collapse
|
5
|
Neuroactive effects of cotinine on the hippocampus: behavioral and biochemical parameters. Neuropharmacology 2013; 71:292-8. [PMID: 23602986 DOI: 10.1016/j.neuropharm.2013.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 03/15/2013] [Accepted: 03/19/2013] [Indexed: 11/24/2022]
Abstract
The present work evaluated the effects of nicotine (NIC), cotinine (COT), mecamylamine (MEC), methyllycaconitine (MLA) and dihydro-beta-eritroidine (DHβE) on memory extinction and the following biochemical parameters of the hippocampus: lipid peroxidation (LPO), antioxidant capacity (AC) and the phosphorylation of Extracellular-Signal-Regulated Kinase (ERK 1/2). Young male rats that were implanted bilaterally with cannulae were submitted to memory extinction tests sessions, and their hippocampi were dissected for biochemical assays. The extinction of fear memory was significantly improved by both nicotine and its metabolite. Cotinine significantly increased LPO, while nicotine significantly decreased it. Antioxidant capacity was increased by all treatments. Our results showed that cotinine, unlike nicotine, may increase oxidative stress in the hippocampus, but this increase depends upon the dose used and happens without causing corresponding impairments in cognitive function. Cotinine also increased the phosphorylation of ERK 1/2 in a similar fashion as nicotine. Considering these results, it is plausible to wonder to what extent nicotine-attributed effects are really due to the actions of this alkaloid and whether they could be due instead to cotinine or to cotinine-nicotine interactions within the brain.
Collapse
|
6
|
Olmos C, Sandoval R, Rozas C, Navarro S, Wyneken U, Zeise M, Morales B, Pancetti F. Effect of short-term exposure to dichlorvos on synaptic plasticity of rat hippocampal slices: Involvement of acylpeptide hydrolase and α7 nicotinic receptors. Toxicol Appl Pharmacol 2009; 238:37-46. [DOI: 10.1016/j.taap.2009.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 04/02/2009] [Accepted: 04/10/2009] [Indexed: 11/29/2022]
|
7
|
Yamazaki Y, Jia Y, Wong JK, Sumikawa K. Chronic nicotine-induced switch in Src-family kinase signaling for long-term potentiation induction in hippocampal CA1 pyramidal cells. Eur J Neurosci 2007; 24:3271-84. [PMID: 17156388 DOI: 10.1111/j.1460-9568.2006.05213.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here, we show that chronic nicotine exposure induces changes in Src signaling for the modulation of N-methyl-D-aspartate receptor (NMDAR) function and LTP induction in CA1 pyramidal cells. Activation of muscarinic receptors normally potentiates NMDAR responses in pyramidal cells via a Gq/protein kinase C (PKC)/proline-rich tyrosine kinase 2/Src signaling cascade. However, muscarinic, PKC and Src stimulation had no effect on NMDAR responses after chronic nicotine treatment. The lack of effect was apparently due to enhanced tyrosine phosphorylation, and therefore further stimulation of the signaling cascade caused no effect on NMDAR responses. Interestingly, another Src-family kinase potentiated NMDAR responses after, but not before, chronic nicotine treatment. In control pyramidal cells, Src inhibitor peptides prevented tetanus-induced long-term potentiation (LTP). Conversely, in chronic nicotine-exposed cells, the inhibitor was ineffective in blocking tetanus-induced LTP. Furthermore, in control pyramidal cells, applying exogenous Src and administration of an endogenous Src-family kinase activator increased alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor (AMPAR)-mediated responses. This increase was blocked by Src inhibitor peptides and occluded tetanus-induced LTP, as reported previously. In contrast, in chronic nicotine-treated pyramidal cells, applying exogenous Src had no effect on AMPAR-mediated responses and a tetanus-induced LTP. Interestingly, however, administration of an endogenous Src-family kinase activator enhanced AMPAR-mediated responses, which occluded tetanus-induced LTP. This enhancement was not prevented by co-application of Src inhibitor peptides. Thus, it appears that chronic nicotine exposure recruits another member of the Src-family for the regulation of NMDAR function and LTP induction. The nicotine-induced distinct signaling cascades may be involved in long-lasting memories of nicotine misuse.
Collapse
Affiliation(s)
- Yoshihiko Yamazaki
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA
| | | | | | | |
Collapse
|
8
|
Yamazaki Y, Fujii S, Jia Y, Sumikawa K. Nicotine withdrawal suppresses nicotinic modulation of long-term potentiation induction in the hippocampal CA1 region. Eur J Neurosci 2007; 24:2903-16. [PMID: 17156213 DOI: 10.1111/j.1460-9568.2006.05160.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously reported that acute and chronic nicotine exposure lower the threshold for long-term potentiation (LTP) induction in the rat hippocampal CA1 region, and acute application of nicotine in the chronic-nicotine-treated hippocampus further reduces the threshold. However, it is unknown how withdrawal from chronic nicotine exposure affects the induction of LTP. Here, we show that, following nicotine withdrawal, the threshold for LTP induction fluctuates before returning to the basal level and acute nicotine is no longer effective in lowering the threshold at 4 days after withdrawal. Chronic nicotine-induced enhancement of N-methyl-d-aspartate receptor responses slowly diminishes and returns to the control level by 8 days of withdrawal. In 4-day-withdrawn hippocampi, there is functional up-regulation of postsynaptic alpha7 nicotinic acetylcholine receptors (nAChRs) on interneurons in the stratum radiatum, whereas the release of gamma-aminobutyric acid from their terminals is reduced. In both control and chronic nicotine-exposed hippocampi, acute nicotine depresses monosynaptic inhibitory postsynaptic currents recorded in pyramidal cells but has almost no effect at 4 days of withdrawal. The lack of effect is due, at least in part, to the loss of a presynaptic nicotine effect. These withdrawal-induced changes are accompanied by decreases in normal nicotine-induced enhancement of N-methyl-d-aspartate receptor responses, which may be responsible for the lack of acute nicotine-mediated facilitation of LTP induction in 4-day-withdrawn hippocampi. These withdrawal-induced changes may contribute to the cellular basis of unpleasant withdrawal symptoms and, thus, nicotine dependence.
Collapse
Affiliation(s)
- Yoshihiko Yamazaki
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA
| | | | | | | |
Collapse
|
9
|
Singhal SK, Zhang L, Morales M, Oz M. Antipsychotic clozapine inhibits the function of alpha7-nicotinic acetylcholine receptors. Neuropharmacology 2006; 52:387-94. [PMID: 17161853 DOI: 10.1016/j.neuropharm.2006.08.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Revised: 07/11/2006] [Accepted: 08/04/2006] [Indexed: 10/23/2022]
Abstract
The effects of the antipsychotic clozapine on the function of the cloned alpha(7) subunit of the nicotinic acetylcholine (nACh) receptor expressed in Xenopus oocytes was investigated by using the two-electrode voltage-clamp technique. Clozapine reversibly inhibited nicotine (10 microM)-induced currents in a concentration-dependent manner (300 nM to 90 microM), with an IC(50) value of 3.2+/-0.4 microM. The effect of clozapine was not dependent on the membrane potential. Clozapine did not affect the activity of endogenous Ca(2+)-dependent Cl(-) channels since the inhibition by clozapine was unaltered by the intracellularly injected Ca(2+) chelator BAPTA and perfusion with Ca(2+)-free bathing solution containing 2mM Ba(2+). Clozapine decreased the maximal nicotine-induced responses without significantly affecting its potency, indicating that it acts as a noncompetitive antagonist on alpha(7)-nACh receptors. In hippocampal slices, the whole-cell recordings from CA1 pyramidal neurons indicated that the increases in the frequency and amplitudes of the GABA-mediated spontaneous inhibitory postsynaptic currents induced by bath application of 2 mM choline, a specific agonist for alpha(7)-nACh receptors, were abolished after 10 min application of 5 microM clozapine. In conclusion, these results demonstrate that clozapine inhibits the function of alpha(7)-nACh receptors expressed in Xenopus oocytes and in hippocampal neurons.
Collapse
Affiliation(s)
- Sachin K Singhal
- Laboratory of Molecular & Cellular Neurobiology, National Institute on Alcohol Abuse & Alcoholism, NIH/DHHS, 12501 Washington Avenue, Bethesda, MD 20892-8205, USA
| | | | | | | |
Collapse
|