1
|
Schreurs BG, O'Dell DE, Wang D. The Role of Cerebellar Intrinsic Neuronal Excitability, Synaptic Plasticity, and Perineuronal Nets in Eyeblink Conditioning. BIOLOGY 2024; 13:200. [PMID: 38534469 DOI: 10.3390/biology13030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Evidence is strong that, in addition to fine motor control, there is an important role for the cerebellum in cognition and emotion. The deep nuclei of the mammalian cerebellum also contain the highest density of perineural nets-mesh-like structures that surround neurons-in the brain, and it appears there may be a connection between these nets and cognitive processes, particularly learning and memory. Here, we review how the cerebellum is involved in eyeblink conditioning-a particularly well-understood form of learning and memory-and focus on the role of perineuronal nets in intrinsic membrane excitability and synaptic plasticity that underlie eyeblink conditioning. We explore the development and role of perineuronal nets and the in vivo and in vitro evidence that manipulations of the perineuronal net in the deep cerebellar nuclei affect eyeblink conditioning. Together, these findings provide evidence of an important role for perineuronal net in learning and memory.
Collapse
Affiliation(s)
- Bernard G Schreurs
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| | - Deidre E O'Dell
- Department of Biology, Earth and Environmental Sciences, Pennsylvania Western (PennWest) University, California, PA 15419, USA
| | - Desheng Wang
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
2
|
Bolaños-Burgos IC, Bernal-Correa AM, Mahecha GAB, Ribeiro ÂM, Kushmerick C. Thiamine Deficiency Increases Intrinsic Excitability of Mouse Cerebellar Purkinje Cells. THE CEREBELLUM 2020; 20:186-202. [PMID: 33098550 DOI: 10.1007/s12311-020-01202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
Thiamine deficiency is associated with cerebellar dysfunction; however, the consequences of thiamine deficiency on the electrophysiological properties of cerebellar Purkinje cells are poorly understood. Here, we evaluated these parameters in brain slices containing cerebellar vermis. Adult mice were maintained for 12-13 days on a thiamine-free diet coupled with daily injections of pyrithiamine, an inhibitor of thiamine phosphorylation. Morphological analysis revealed a 20% reduction in Purkinje cell and nuclear volume in thiamine-deficient animals compared to feeding-matched controls, with no reduction in cell count. Under whole-cell current clamp, thiamine-deficient Purkinje cells required significantly less current injection to fire an action potential. This reduction in rheobase was not due to a change in voltage threshold. Rather, thiamine-deficient neurons presented significantly higher input resistance specifically in the voltage range just below threshold, which increases their sensitivity to current at these critical membrane potentials. In addition, thiamine deficiency caused a significant decrease in the amplitude of the action potential afterhyperpolarization, broadened the action potential, and decreased the current threshold for depolarization block. When thiamine-deficient animals were allowed to recover for 1 week on a normal diet, rheobase, threshold, action potential half-width, and depolarization block threshold were no longer different from controls. We conclude that thiamine deficiency causes significant but reversible changes to the electrophysiology properties of Purkinje cells prior to pathological morphological alterations or cell loss. Thus, the data obtained in the present study indicate that increased excitability of Purkinje cells may represent a leading indicator of cerebellar dysfunction caused by lack of thiamine.
Collapse
Affiliation(s)
| | - Ana María Bernal-Correa
- Graduate Program in Physiology and Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ângela Maria Ribeiro
- Graduate Program in Neuroscience, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Christopher Kushmerick
- Graduate Program in Neuroscience, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. .,Graduate Program in Physiology and Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. .,Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
3
|
Kusunoki M, Hayashi M, Shoji T, Uba T, Tanaka H, Sumi C, Matsuo Y, Hirota K. Propofol inhibits stromatoxin-1-sensitive voltage-dependent K + channels in pancreatic β-cells and enhances insulin secretion. PeerJ 2019; 7:e8157. [PMID: 31824770 PMCID: PMC6894434 DOI: 10.7717/peerj.8157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/04/2019] [Indexed: 12/31/2022] Open
Abstract
Background Proper glycemic control is an important goal of critical care medicine, including perioperative patient care that can influence patients’ prognosis. Insulin secretion from pancreatic β-cells is generally assumed to play a critical role in glycemic control in response to an elevated blood glucose concentration. Many animal and human studies have demonstrated that perioperative drugs, including volatile anesthetics, have an impact on glucose-stimulated insulin secretion (GSIS). However, the effects of the intravenous anesthetic propofol on glucose metabolism and insulin sensitivity are largely unknown at present. Methods The effect of propofol on insulin secretion under low glucose or high glucose was examined in mouse MIN6 cells, rat INS-1 cells, and mouse pancreatic β-cells/islets. Cellular oxygen or energy metabolism was measured by Extracellular Flux Analyzer. Expression of glucose transporter 2 (GLUT2), potassium channels, and insulin mRNA was assessed by qRT-PCR. Protein expression of voltage-dependent potassium channels (Kv2) was also assessed by immunoblot. Propofol’s effects on potassium channels including stromatoxin-1-sensitive Kv channels and cellular oxygen and energy metabolisms were also examined. Results We showed that propofol, at clinically relevant doses, facilitates insulin secretion under low glucose conditions and GSIS in MIN6, INS-1 cells, and pancreatic β-cells/islets. Propofol did not affect intracellular ATP or ADP concentrations and cellular oxygen or energy metabolism. The mRNA expression of GLUT2 and channels including the voltage-dependent calcium channels Cav1.2, Kir6.2, and SUR1 subunit of KATP, and Kv2 were not affected by glucose or propofol. Finally, we demonstrated that propofol specifically blocks Kv currents in β-cells, resulting in insulin secretion in the presence of glucose. Conclusions Our data support the hypothesis that glucose induces membrane depolarization at the distal site, leading to KATP channel closure, and that the closure of Kv channels by propofol depolarization in β-cells enhances Ca2+ entry, leading to insulin secretion. Because its activity is dependent on GSIS, propofol and its derivatives are potential compounds that enhance and initiate β-cell electrical activity.
Collapse
Affiliation(s)
- Munenori Kusunoki
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan.,Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Mikio Hayashi
- Department of Cell Physiology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Tomohiro Shoji
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan.,Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Takeo Uba
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan.,Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Hiromasa Tanaka
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Chisato Sumi
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan.,Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
4
|
Newly Discovered Action of HpTx3 from Venom of Heteropoda venatoria on Na v1.7 and Its Pharmacological Implications in Analgesia. Toxins (Basel) 2019; 11:toxins11120680. [PMID: 31757020 PMCID: PMC6950750 DOI: 10.3390/toxins11120680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
It has been reported that Heteropodatoxin3 (HpTx3), a peptidic neurotoxin purified from the venom of the spider species Heteropoda venatoria, could inhibit Kv4.2 channels. Our present study newly found that HpTx3 also has potent and selective inhibitory action on Nav1.7, with an IC50 of 135.61 ± 12.98 nM. Without effect on the current–voltage (I-V) relationship of Nav1.7, HpTx3 made minor alternation in the voltage-dependence of activation and steady-state inactivation of Nav1.7 (4.15 mV and 7.29 mV, respectively) by interacting with the extracellular S3–S4 loop (S3b–S4 sequence) in domain II and the domain IV of the Nav channel subtype, showing the characteristics of both pore blocker and gate modifier toxin. During the interaction of HpTx3 with the S3b–S4 sequence of Nav1.7, the amino acid residue D in the sequence played a key role. When administered intraperitoneally or intramuscularly, HpTx3 displayed potent analgesic activity in a dose-dependent manner in different mouse pain models induced by formalin, acetic acid, complete Freund’s adjuvant, hot plate, or spared nerve injury, demonstrating that acute, inflammatory, and neuropathic pains were all effectively inhibited by the toxin. In most cases HpTx3 at doses of ≥ 1mg/kg could produce the analgesic effect comparable to that of 1 mg/kg morphine. These results suggest that HpTx3 not only can be used as a molecular probe to investigate ion channel function and pain mechanism, but also has potential in the development of the drugs that treat the Nav1.7 channel-related pain.
Collapse
|
5
|
Hoxha E, Balbo I, Miniaci MC, Tempia F. Purkinje Cell Signaling Deficits in Animal Models of Ataxia. Front Synaptic Neurosci 2018; 10:6. [PMID: 29760657 PMCID: PMC5937225 DOI: 10.3389/fnsyn.2018.00006] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022] Open
Abstract
Purkinje cell (PC) dysfunction or degeneration is the most frequent finding in animal models with ataxic symptoms. Mutations affecting intrinsic membrane properties can lead to ataxia by altering the firing rate of PCs or their firing pattern. However, the relationship between specific firing alterations and motor symptoms is not yet clear, and in some cases PC dysfunction precedes the onset of ataxic signs. Moreover, a great variety of ionic and synaptic mechanisms can affect PC signaling, resulting in different features of motor dysfunction. Mutations affecting Na+ channels (NaV1.1, NaV1.6, NaVβ4, Fgf14 or Rer1) reduce the firing rate of PCs, mainly via an impairment of the Na+ resurgent current. Mutations that reduce Kv3 currents limit the firing rate frequency range. Mutations of Kv1 channels act mainly on inhibitory interneurons, generating excessive GABAergic signaling onto PCs, resulting in episodic ataxia. Kv4.3 mutations are responsible for a complex syndrome with several neurologic dysfunctions including ataxia. Mutations of either Cav or BK channels have similar consequences, consisting in a disruption of the firing pattern of PCs, with loss of precision, leading to ataxia. Another category of pathogenic mechanisms of ataxia regards alterations of synaptic signals arriving at the PC. At the parallel fiber (PF)-PC synapse, mutations of glutamate delta-2 (GluD2) or its ligand Crbl1 are responsible for the loss of synaptic contacts, abolishment of long-term depression (LTD) and motor deficits. At the same synapse, a correct function of metabotropic glutamate receptor 1 (mGlu1) receptors is necessary to avoid ataxia. Failure of climbing fiber (CF) maturation and establishment of PC mono-innervation occurs in a great number of mutant mice, including mGlu1 and its transduction pathway, GluD2, semaphorins and their receptors. All these models have in common the alteration of PC output signals, due to a variety of mechanisms affecting incoming synaptic signals or the way they are processed by the repertoire of ionic channels responsible for intrinsic membrane properties. Although the PC is a final common pathway of ataxia, the link between specific firing alterations and neurologic symptoms has not yet been systematically studied and the alterations of the cerebellar contribution to motor signals are still unknown.
Collapse
Affiliation(s)
- Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy
| | - Ilaria Balbo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy
| | - Maria Concetta Miniaci
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Turin, Italy.,Department of Neuroscience, University of Torino, Turin, Italy.,National Institute of Neuroscience (INN), Turin, Italy
| |
Collapse
|
6
|
Duarri A, Lin MCA, Fokkens MR, Meijer M, Smeets CJLM, Nibbeling EAR, Boddeke E, Sinke RJ, Kampinga HH, Papazian DM, Verbeek DS. Spinocerebellar ataxia type 19/22 mutations alter heterocomplex Kv4.3 channel function and gating in a dominant manner. Cell Mol Life Sci 2015; 72:3387-99. [PMID: 25854634 PMCID: PMC4531139 DOI: 10.1007/s00018-015-1894-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 03/05/2015] [Accepted: 03/24/2015] [Indexed: 12/14/2022]
Abstract
The dominantly inherited cerebellar ataxias are a heterogeneous group of neurodegenerative disorders caused by Purkinje cell loss in the cerebellum. Recently, we identified loss-of-function mutations in the KCND3 gene as the cause of spinocerebellar ataxia type 19/22 (SCA19/22), revealing a previously unknown role for the voltage-gated potassium channel, Kv4.3, in Purkinje cell survival. However, how mutant Kv4.3 affects wild-type Kv4.3 channel functioning remains unknown. We provide evidence that SCA19/22-mutant Kv4.3 exerts a dominant negative effect on the trafficking and surface expression of wild-type Kv4.3 in the absence of its regulatory subunit, KChIP2. Notably, this dominant negative effect can be rescued by the presence of KChIP2. We also found that all SCA19/22-mutant subunits either suppress wild-type Kv4.3 current amplitude or alter channel gating in a dominant manner. Our findings suggest that altered Kv4.3 channel localization and/or functioning resulting from SCA19/22 mutations may lead to Purkinje cell loss, neurodegeneration and ataxia.
Collapse
Affiliation(s)
- Anna Duarri
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30 001, 9700 RB, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Electrophysiological properties of rostral ventrolateral medulla presympathetic neurons modulated by the respiratory network in rats. J Neurosci 2014; 33:19223-37. [PMID: 24305818 DOI: 10.1523/jneurosci.3041-13.2013] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The respiratory pattern generator modulates the sympathetic outflow, the strength of which is enhanced by challenges produced by hypoxia. This coupling is due to the respiratory-modulated presympathetic neurons in the rostral ventrolateral medulla (RVLM), but the underlining electrophysiological mechanisms remain unclear. For a better understanding of the neural substrates responsible for generation of this respiratory-sympathetic coupling, we combined immunofluorescence, single cell qRT-pCR, and electrophysiological recordings of the RVLM presympathetic neurons in in situ preparations from normal rats and rats submitted to a metabolic challenge produced by chronic intermittent hypoxia (CIH). Our results show that the spinally projected cathecholaminergic C1 and non-C1 respiratory-modulated RVLM presympathetic neurons constitute a heterogeneous neuronal population regarding the intrinsic electrophysiological properties, respiratory synaptic inputs, and expression of ionic currents, albeit all neurons presented persistent sodium current-dependent intrinsic pacemaker properties after synaptic blockade. A specific subpopulation of non-C1 respiratory-modulated RVLM presympathetic neurons presented enhanced excitatory synaptic inputs from the respiratory network after CIH. This phenomenon may contribute to the increased sympathetic activity observed in CIH rats. We conclude that the different respiratory-modulated RVLM presympathetic neurons contribute to the central generation of respiratory-sympathetic coupling as part of a complex neuronal network, which in response to the challenges produced by CIH contribute to respiratory-related increase in the sympathetic activity.
Collapse
|
8
|
Shelton VJ, Shelton AG, Azain MJ, Hargrave-Barnes KM. Incorporation of conjugated linoleic acid into brain lipids is not necessary for conjugated linoleic acid-induced reductions in feed intake or body fat in mice. Nutr Res 2012. [PMID: 23176793 DOI: 10.1016/j.nutres.2012.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dietary conjugated linoleic acid (CLA) causes reduced feed intake (FI) and body fat (BF). It is unknown, though, if CLA incorporation into tissues, alterations in serum hormones, and/or appetite-regulating neuropeptides are involved. We hypothesized that CLA incorporation into brain lipids would be correlated with changes in appetite-regulating neuropeptide expression and reductions in FI and BF. Male mice (n = 150; 9 weeks old, ICR) received the control diet ad libitum (CON), 2% CLA diet ad libitum (CLA), or control diet pair-fed to the intake of CLA-fed mice for 1, 2, 3, 5, or 7 days. Both FI and body weight were measured daily, and a BF index was calculated. Liver, adipose, and brain fatty acids; serum insulin, leptin, and peptide YY; and arcuate nucleus neuropeptide Y, agouti-related protein, and α-melanocyte-stimulating hormone protein were determined. Mice fed CLA ate less (P < .05) than did the CON on days 1, 2, 3, and 7 but were leaner (P < .05) only on day 7. Mice that received the control diet pair-fed to the intake of CLA-fed mice did not differ in BF from the CON. By days 1 and 2, CLA isomers were incorporated into the liver and adipose but not in the brain. Insulin was increased in CLA-fed mice on days 5 and 7, and leptin was decreased on day 7. Peptide YY and the neuropeptides did not differ. Tissue CLA was not correlated with FI, body weight, or BF but was positively correlated with insulin and negatively correlated with leptin. The reduction in FI is not sufficient to cause the reduction in BF, and tissue CLA accumulation does not appear to be required.
Collapse
Affiliation(s)
- Valerie J Shelton
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
9
|
Kim CH, Oh SH, Lee JH, Chang SO, Kim J, Kim SJ. Lobule-specific membrane excitability of cerebellar Purkinje cells. J Physiol 2011; 590:273-88. [PMID: 22083600 DOI: 10.1113/jphysiol.2011.221846] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cerebellar Purkinje cells (PCs) are the sole output of the cerebellar cortex and function as key to a variety of learning-related behaviours by integrating multimodal afferent inputs. Intrinsic membrane excitability of neurons determines the input-output relationship, and therefore governs the functions of neural circuits. Cerebellar vermis consists of ten lobules (lobules I-X), and each lobule receives different sensory information. However, lobule-specific differences of electrophysiological properties of PC are incompletely understood. To address this question, we performed a systematic comparison of membrane properties of PCs from different lobules (lobules III-V vs. X). Two types of firing patterns (tonic firing and complex bursting) were identified in response to depolarizing current injections in lobule III-V PCs, whereas four distinct firing patterns (tonic firing, complex bursting, initial bursting and gap firing) were observed in lobule X. A-type K(+) current and early inactivation of fast Na(+) conductance with activation of 4-aminopyridine-sensitive conductances were shown to be responsible for the formation of gap firing and initial bursting patterns, respectively, which were observed only in lobule X. In response to current injection, PCs in lobule X spiked with wider dynamic range. These differences in firing pattern and membrane properties probably contribute to signal processing of afferent inputs in lobule-specific fashion, and particularly diversity of discharge patterns in lobule X, as a part of the vestibulocerebellum, might be involved in strict coordination of a precise temporal response to a wide range of head movements.
Collapse
Affiliation(s)
- Chang-Hee Kim
- Department of Physiology, Seoul National University College of Medicine, 28 Yeongon-dong, Chongro-gu, Seoul 110-744, Korea
| | | | | | | | | | | |
Collapse
|
10
|
Aminopyridines correct early dysfunction and delay neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci 2011; 31:11795-807. [PMID: 21849540 DOI: 10.1523/jneurosci.0905-11.2011] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The contribution of neuronal dysfunction to neurodegeneration is studied in a mouse model of spinocerebellar ataxia type 1 (SCA1) displaying impaired motor performance ahead of loss or atrophy of cerebellar Purkinje cells. Presymptomatic SCA1 mice show a reduction in the firing rate of Purkinje cells (both in vivo and in slices) associated with a reduction in the efficiency of the main glutamatergic synapse onto Purkinje cells and with increased A-type potassium current. The A-type potassium channel Kv4.3 appears to be internalized in response to glutamatergic stimulation in Purkinje cells and accumulates in presymptomatic SCA1 mice. SCA1 mice are treated with aminopyridines, acting as potassium channel blockers to test whether the treatment could improve neuronal dysfunction, motor behavior, and neurodegeneration. In acutely treated young SCA1 mice, aminopyridines normalize the firing rate of Purkinje cells and the motor behavior of the animals. In chronically treated old SCA1 mice, 3,4-diaminopyridine improves the firing rate of Purkinje cells, the motor behavior of the animals, and partially protects against cell atrophy. Chronic treatment with 3,4-diaminopyridine is associated with increased cerebellar levels of BDNF, suggesting that partial protection against atrophy of Purkinje cells is possibly provided by an increased production of growth factors secondary to the reincrease in electrical activity. Our data suggest that aminopyridines might have symptomatic and/or neuroprotective beneficial effects in SCA1, that reduction in the firing rate of Purkinje cells can cause cerebellar ataxia, and that treatment of early neuronal dysfunction is relevant in neurodegenerative disorders such as SCA1.
Collapse
|
11
|
Masurkar AV, Chen WR. Potassium currents of olfactory bulb juxtaglomerular cells: characterization, simulation, and implications for plateau potential firing. Neuroscience 2011; 192:247-62. [PMID: 21704678 PMCID: PMC3170655 DOI: 10.1016/j.neuroscience.2011.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/06/2011] [Accepted: 06/03/2011] [Indexed: 12/23/2022]
Abstract
Odor identity is encoded by the activity of olfactory bulb glomeruli, which receive primary sensory input and transfer it to projection neurons. Juxtaglomerular cells (JGCs) may influence glomerular processing via firing of long lasting plateau potentials. Though inward currents have been investigated, little is known regarding potassium current contribution to JGC plateau potentials. We pursued study of these currents, with the overarching goal of creating components for a computational model of JGC plateau potential firing. In conditions minimizing calcium-activated potassium current (I(K(Ca))), we used whole cell voltage clamp and in vitro slice preparations to characterize three potassium currents in rat JGCs. The prominent component I(kt1) displayed rapid kinetics (τ(10%-90% rise), 0.6-2 ms; τ(inactivation), 5-10 ms) and was blocked by high concentration 4-aminopyridine (4-AP) (5 mM) and tetramethylammonium (TEA) (40 mM). It had half maximal activation at -10 mV (V(½)max) and little inactivation at rest. I(kt2), with slower kinetics (τ(10%-90% rise), 11-15 ms; τ(inactivation), 100-300 ms), was blocked by low concentration 4-AP (0.5 mM) and TEA (5 mM). The V(½)max was 0 mV and inactivation was also minimal at rest. Sustained current I(kt3) showed sensitivity to low concentration 4-AP and TEA, and had V(½)max of +10 mV. Further experiments, in conditions of physiologic calcium buffering, suggested that I(K(Ca)) contributed to I(kt3) with minimal effect on plateau potential evolution. We transformed these characterizations into Hodgkin-Huxley models that robustly mimicked experimental data. Further simulation demonstrated that I(kt1) would be most efficiently activated by plateau potential waveforms, predicting a critical role in shaping JGC firing. These studies demonstrated that JGCs possess a unique potassium current profile, with delayed rectifier (I(kt3)), atypical A-current (I(kt1)), and D-current (I(kt2)) in accordance with known expression patterns in olfactory bulb (OB) glomeruli. Our simulations also provide an initial framework for more integrative models of JGC plateau potential firing.
Collapse
Affiliation(s)
- A V Masurkar
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
12
|
Masurkar AV, Chen WR. Calcium currents of olfactory bulb juxtaglomerular cells: profile and multiple conductance plateau potential simulation. Neuroscience 2011; 192:231-46. [PMID: 21704681 PMCID: PMC3166426 DOI: 10.1016/j.neuroscience.2011.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/06/2011] [Accepted: 06/03/2011] [Indexed: 11/25/2022]
Abstract
The olfactory glomerulus is the locus of information transfer between olfactory sensory neurons and output neurons of the olfactory bulb. Juxtaglomerular cells (JGCs) may influence intraglomerular processing by firing plateau potentials that support multiple spikes. It is unclear what inward currents mediate this firing pattern. In previous work, we characterized potassium currents of JGCs. We focus here on the inward currents using whole cell current clamp and voltage recording in a rat in vitro slice preparation, as well as computer simulation. We first showed that sodium current was not required to mediate plateau potentials. Voltage clamp characterization of calcium current (I(Ca)) determined that I(Ca) consisted of a slow activating, rapidly inactivating (τ(10%-90% rise) 6-8 ms, τ(inactivation) 38-77 ms) component I(cat1), similar to T-type currents, and a sustained (τ(inactivation)>>500 ms) component I(cat2), likely composed of L-type and P/Q-type currents. We used computer simulation to test their roles in plateau potential firing. We robustly modeled I(cat1) and I(cat2) to Hodgkin-Huxley schemes (m(3)h and m(2), respectively) and simulated a JGC plateau potential with six conductances: calcium currents as above, potassium currents from our prior study (A-type I(kt1), D-type I(kt2), delayed rectifier I(kt3)), and a fast sodium current (I(Na)). We demonstrated that I(cat1) was required for mediating the plateau potential, unlike I(Na) and I(cat2), and its τ(inactivation) determined plateau duration. We also found that I(kt1) dictated plateau potential shape more than I(kt2) and I(kt3). The influence of these two transient and opposing conductances suggests a unique mechanism of plateau potential physiology.
Collapse
Affiliation(s)
- A V Masurkar
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
13
|
Garrido-Sanabria ER, Perez-Cordova MG, Colom LV. Differential expression of voltage-gated K+ currents in medial septum/diagonal band complex neurons exhibiting distinct firing phenotypes. Neurosci Res 2011; 70:361-9. [PMID: 21624401 PMCID: PMC3150140 DOI: 10.1016/j.neures.2011.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 04/22/2011] [Accepted: 05/09/2011] [Indexed: 01/28/2023]
Abstract
The medial septum/diagonal band complex (MSDB) controls hippocampal excitability, rhythms and plastic processes. Medial septal neuronal populations display heterogeneous firing patterns. In addition, some of these populations degenerate during age-related disorders (e.g. cholinergic neurons). Thus, it is particularly important to examine the intrinsic properties of theses neurons in order to create new agents that effectively modulate hippocampal excitability and enhance memory processes. Here, we have examined the properties of voltage-gated, K(+) currents in electrophysiologically-identified neurons. These neurons were taken from young rat brain slices containing the MS/DB complex. Whole-cell, patch recordings of outward currents were obtained from slow firing, fast-spiking, regular-firing and burst-firing neurons. Slow firing neurons showed depolarization-activated K(+) current peaks and densities larger than in other neuronal subtypes. Slow firing total current exhibited an inactivating A-type current component that activates at subthreshold depolarization and was reliably blocked by high concentrations of 4-AP. In addition, slow firing neurons expressed a low-threshold delayed rectifier K(+) current component with slow inactivation and intermediate sensitivity to tetraethylammonium. Fast-spiking neurons exhibited the smaller I(K) and I(A) current densities. Burst and regular firing neurons displayed an intermediate firing phenotype with I(K) and I(A) current densities that were larger than the ones observed in fast-spiking neurons but smaller than the ones observed in slow-firing neurons. In addition, the prevalence of each current differed among electrophysiological groups with slow firing and regular firing neurons expressing mostly I(A) and fast spiking and bursting neurons exhibiting mostly delayer rectifier K(+) currents with only minimal contributions of the I(A). The pharmacological or genetic modulations of these currents constitute an important target for the treatment of age-related disorders.
Collapse
Affiliation(s)
- Emilio R. Garrido-Sanabria
- Department of Biological Sciences, The Center for Biomedical Studies, The University of Texas at Brownsville, 80 Fort Brown, Brownsville, Texas 78520
| | - Miriam G. Perez-Cordova
- Department of Biological Sciences, The Center for Biomedical Studies, The University of Texas at Brownsville, 80 Fort Brown, Brownsville, Texas 78520
| | - Luis V. Colom
- Department of Biological Sciences, The Center for Biomedical Studies, The University of Texas at Brownsville, 80 Fort Brown, Brownsville, Texas 78520
| |
Collapse
|
14
|
Shiflett MW, Balleine BW. Contributions of ERK signaling in the striatum to instrumental learning and performance. Behav Brain Res 2011; 218:240-7. [PMID: 21147168 PMCID: PMC3022085 DOI: 10.1016/j.bbr.2010.12.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 12/07/2010] [Indexed: 02/07/2023]
Abstract
The striatum is critical for learning and decision making; however, the molecular mechanisms that govern striatum function are not fully understood. The extracellular signal regulated kinase (ERK) cascade is an important signaling pathway that underlies synaptic plasticity, cellular excitability, learning and arousal. This review focuses on the role of ERK signaling in striatum function. ERK is activated in the striatum by coordinated dopamine and glutamate receptor signaling, where it underlies corticostriatal synaptic plasticity and influences striatal cell excitability. ERK activation in the dorsal striatum is necessary for action-outcome learning and performance of goal-directed actions. In the ventral striatum, ERK is necessary for the motivating effects of reward-associated stimuli on instrumental performance. Dysregulation of ERK signaling in the striatum by repeated drug exposure contributes to the development of addictive behavior. These results highlight the importance of ERK signaling in the striatum as a critical substrate for learning and as a regulator of ongoing behavior. Furthermore, they suggest that ERK may be a suitable target for therapeutics to treat disorders of learning and decision making that arise from compromised striatum function.
Collapse
Affiliation(s)
- Michael W Shiflett
- Department of Psychology, Rutgers University, 301 Smith Hall, 101 Warren St., Newark, NJ 07102, USA.
| | | |
Collapse
|
15
|
Haghdoost-Yazdi H, Rajaei F, Janahmadi M. Cerebellar Purkinje cells fire paroxysmal depolarization shift (PDS)-like events in response to epileptogenic drugs. Neurol Res 2011; 33:50-5. [PMID: 21208532 DOI: 10.1179/016164110x12816242542454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Cerebellar Purkinje cells (PCs) fire burst of Na(+) spikes riding on a Ca(2+) spike which basically involves the same ionic channels and currents establishing the paroxysmal depolarization shift (PDS) discharges. METHODS Intracellular recordings were taken from somata of PCs to explore effects of the epileptogenic drugs of pentylenetetrazol (PTZ), bicuculline methiodide (BCC) and 4-aminopyridine (4-AP) on the firing behavior of these cells. RESULTS PCs showed spontaneous PDS-like events in presence of these drugs. Generally, PTZ and BCC-induced PDSs were similar in shape and properties but were remarkably different from 4-AP-induced PDSs. Blockade of glutamate transmission inhibited generation of PDSs by PTZ and BCC but it did not affect discharge of PDSs induced by 4-AP. Careful analysis of PDS discharges revealed that they have remarkable differences with normal and 4-AP-induced spontaneous activity. DISCUSSION Data presented here indicate that PDS discharges in PCs are induced either by the imbalance between excitatory and inhibitory synaptic transmission or by the suppression of 4-AP-sensitive currents.
Collapse
Affiliation(s)
- H Haghdoost-Yazdi
- Department of Physiology and Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
16
|
Arroyo A, Kim BS, Biehl A, Yeh J, Bett GCL. Expression of kv4.3 voltage-gated potassium channels in rat gonadotrophin-releasing hormone (GnRH) neurons during the estrous cycle. Reprod Sci 2010; 18:136-44. [PMID: 20861393 DOI: 10.1177/1933719110382306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Regular and timely electrical activity of gonadotrophin-releasing hormone (GnRH) neurons accompanies the pulsatile release of GnRH that plays a central role in regulating fertility. Although transient outward A-type currents (I(A)) have been electrophysiologically identified in GnRH neurons, the molecular identity of the channels that underlie these currents are unknown. Several families of voltage-gated potassium channels can underlie I(A). However, the biophysical properties of I(A) described in previous electrophysiological studies are strongly characteristic of members of the Kv4 family of voltage-gated channels. We, therefore, sought to determine the presence of Kv4 channels in GnRH neurons. We used reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis to determine whether Kv4 messenger RNA (mRNA) and protein are present in the rat medial preoptic area (MPOA) and median eminence (ME). We used double-label immunohistochemistry to determine whether Kv4 colocalized with GnRH cell bodies in the MPOA and GnRH axons in the ME. Kv4.3 channels co-localized with GnRH in the MPOA but not in the ME. Neither Kv4.2 nor Kv4.1 co-localized with GnRH in either the MPOA or the ME. The electrical activity of GnRH neurons changes dramatically during the estrous cycle. We, therefore, studied the change in Kv4.3 expression in GnRH neurons during the estrous cycle. In the estrus phase, 58.05% of GnRH neurons expressed Kv4.3 compared to 74.48% in diestrus-proestrus rats (P < .05). Our data suggest that Kv4.3 is the major molecular component of I(A) in GnRH neurons, and furthermore that the expression of Kv4.3 changes significantly during the rat estrous cycle.
Collapse
Affiliation(s)
- Armando Arroyo
- Department of Gynecology-Obstetrics, State University of New York, University at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| | | | | | | | | |
Collapse
|
17
|
Goudarzi I, Kaffashian M, Shabani M, Haghdoost-Yazdi H, Behzadi G, Janahmadi M. In vivo 4-aminopyridine treatment alters the neurotoxin 3-acetylpyridine-induced plastic changes in intrinsic electrophysiological properties of rat cerebellar Purkinje neurones. Eur J Pharmacol 2010; 642:56-65. [DOI: 10.1016/j.ejphar.2010.05.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/29/2010] [Accepted: 05/25/2010] [Indexed: 12/30/2022]
|
18
|
Wang D, Schreurs BG. Dietary cholesterol modulates the excitability of rabbit hippocampal CA1 pyramidal neurons. Neurosci Lett 2010; 479:327-31. [PMID: 20639007 PMCID: PMC3000631 DOI: 10.1016/j.neulet.2010.05.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/05/2010] [Accepted: 05/30/2010] [Indexed: 11/29/2022]
Abstract
Previous work has shown high dietary cholesterol can affect learning and memory including rabbit eyeblink conditioning and this effect may be due to increased membrane cholesterol and enhanced hippocampal amyloid beta production. This study investigated whether dietary cholesterol modulates rabbit hippocampal CA1 neuron membrane properties known to be involved in rabbit eyeblink conditioning. Whole-cell current clamp recordings in hippocampal neurons from rabbits fed 2 percent cholesterol or normal chow for 8 weeks revealed changes including decreased after-hyperpolarization amplitudes (AHPs) - an index of membrane excitability shown to be important for rabbit eyeblink conditioning. This index was reversed by adding copper to drinking water - a dietary manipulation that can retard rabbit eyeblink conditioning. Evidence of cholesterol effects on membrane excitability was provided by application of methyl-beta-cyclodextrin, a compound that reduces membrane cholesterol, which increased the excitability of hippocampal CA1 neurons.
Collapse
Affiliation(s)
- Desheng Wang
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States.
| | | |
Collapse
|
19
|
Roles of A-type potassium currents in tuning spike frequency and integrating synaptic transmission in noradrenergic neurons of the A7 catecholamine cell group in rats. Neuroscience 2010; 168:633-45. [PMID: 20381592 DOI: 10.1016/j.neuroscience.2010.03.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 03/23/2010] [Accepted: 03/30/2010] [Indexed: 11/24/2022]
Abstract
We investigated voltage-dependent K(+) currents (I(K)) in noradrenergic (NAergic) A7 neurons. The I(K) evoked consisted of A-type I(K) (I(A)), which had the characteristics of a low threshold for activation (approximately -50 mV), fast activation/inactivation, and rapid recovery from inactivation. Since the I(A) were blocked by heteropodatoxin-2 (Hptx-2), a specific Kv4 channel blocker, and the NAergic A7 neurons were shown to be reactive with antibodies against Kv4.1/Kv4.3 channel proteins, we conclude that the I(A) evoked in NAergic neurons are mediated by Kv4.1/Kv4.3 channels. I(A) were also evoked using voltage commands of a single action potential (AP), a subthreshold voltage change between two consecutive APs, or excitatory postsynaptic potential (EPSP) activity recorded in current-clamp mode (CCM). Blockade of the I(A) by 4-AP, a broad spectrum I(A) blocker, or by Hptx-2 increased the half-width and spontaneous firing of APs and reduced the amount of synaptic drive needed to elicit APs in CCM, showing that the I(A) play important roles in regulating the shape and firing frequency of APs and in synaptic integration in NAergic A7 neurons. Since these neurons are the principal projection neurons to the dorsal horn of the spinal cord, these results also suggest roles for Kv4.1/4.3 channels in descending NAergic pain regulation.
Collapse
|
20
|
Harron SA, Clarke CM, Jones CL, Babin-Muise D, Cowley EA. Volume regulation in the human airway epithelial cell line Calu-3. Can J Physiol Pharmacol 2009; 87:337-46. [PMID: 19448731 DOI: 10.1139/y09-009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cells regulate their volume in response to changes in the osmolarity of both their extracellular and their intracellular environments. We investigated the ability of the human airway epithelial cell line Calu-3 to respond to changes in extracellular osmolarity. Although switching Calu-3 cells from an isosmotic to a hyperosmotic environment resulted in cell shrinkage, there was no compensatory mechanism for the cells to return to their original volume. In contrast, switching to a hyposmotic environment resulted in an initial cell swelling response, followed by a regulatory volume decrease (RVD). Pharmacologic studies demonstrate that the voltage-activated K+ channels Kv4.1 and (or) Kv4.3 play a crucial role in mediating this RVD response, and we demonstrated expression of these channel types at the mRNA and protein levels. Furthermore, inhibition of the large- and intermediate-conductance Ca2+-activated K+ channels KCa1.1 (maxi-K) and KCa3.1 (hIK) also implicated these channels as playing a role in volume recovery in Calu-3 cells. This report describes the nature of volume regulation in the widely used model cell line Calu-3.
Collapse
Affiliation(s)
- Scott A Harron
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, NS B3H 1X5, Canada
| | | | | | | | | |
Collapse
|
21
|
DeSimone CV, Lu Y, Bondarenko VE, Morales MJ. S3b amino acid substitutions and ancillary subunits alter the affinity of Heteropoda venatoria toxin 2 for Kv4.3. Mol Pharmacol 2009; 76:125-33. [PMID: 19357248 PMCID: PMC2701457 DOI: 10.1124/mol.109.055657] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 04/08/2009] [Indexed: 01/12/2023] Open
Abstract
Heteropoda venatoria toxin 2 (HpTx2) is an inhibitor cystine knot (ICK)-gating modifier toxin that selectively inhibits Kv4 channels. To characterize the molecular determinants of interaction, we performed alanine scanning of the Kv4.3 S3b region. HpTx2-Kv4.3 interaction had an apparent K(d) value of 2.3 microM. Two alanine mutants in Kv4.3 increased K(d) values to 6.4 microM for V276A and 25 microM for L275A. Simultaneous mutation of both amino acids to alanine nearly eliminated toxin interaction. Unlike Hanatoxin and other well characterized ICK toxins, HpTx2 binding does not require a charged amino acid for interaction. To determine whether the identity of the S3b binding site amino acids altered HpTx2 specificity, we constructed Kv4.3 [LV275IF]. This mutation decreased the K(d) value to 0.54 microM, suggesting that the hydrophobic character of the putative binding site is the most important property for interaction with HpTx2. One mutant, N280A, caused stronger interaction of HpTx2 with Kv4.3; the K(d) value for Kv4.3 [N280A] was 0.26 microM. To understand Kv4.3-based transient outward currents in native tissues, we tested the affinity of HpTx2 for Kv4.3 coexpressed with KChIP2b. The toxin's K(d) value for Kv4.3 + KChIP2b was 0.95 microM. KChIP2b stabilizes the closed state of Kv4.3, suggesting that the increased toxin affinity is due to increased stabilization of the closed state. These data show that HpTx2 binding to Kv4.3 has aspects in common with other ICK gating modifier toxins but that the interventions that increase toxin affinity suggest flexibility toward channel binding that belies its unusual specificity for Kv4 channels.
Collapse
Affiliation(s)
- Christopher V DeSimone
- Department of Physiology and Biophysics, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
22
|
Santini E, Quirk GJ, Porter JT. Fear conditioning and extinction differentially modify the intrinsic excitability of infralimbic neurons. J Neurosci 2008; 28:4028-36. [PMID: 18400902 PMCID: PMC3844823 DOI: 10.1523/jneurosci.2623-07.2008] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 02/21/2008] [Accepted: 02/22/2008] [Indexed: 11/21/2022] Open
Abstract
Extinction of conditioned fear is an active learning process involving inhibition of fear expression. It has been proposed that fear extinction potentiates neurons in the infralimbic (IL) prefrontal cortex, but the cellular mechanisms underlying this potentiation remain unknown. It is also not known whether this potentiation occurs locally in IL neurons as opposed to IL afferents. To determine whether extinction enhances the intrinsic excitability of IL pyramidal neurons in layers II/III and V, we performed whole-cell patch-clamp recordings in slices from naive, conditioned, or conditioned-extinguished rats. We observed that conditioning depressed IL excitability compared with slices from naive animals, as evidenced by a decreased number of spikes evoked by injected current and an increase in the slow afterhyperpolarizing potential (sAHP). Extinction reversed these conditioning-induced effects. Furthermore, IL neurons from extinguished rats showed increased burst spiking compared with naive rats, which was correlated with extinction recall. These changes were specific to IL prefrontal cortex and were not observed in prelimbic prefrontal cortex. Together, these findings suggest that IL intrinsic excitability is reduced to allow for expression of conditioning memory and enhanced for expression of extinction memory through the modulation of Ca(2+)-gated K(+) channels underlying the sAHP. Inappropriate modulation of these intrinsic mechanisms may underlie anxiety disorders, characterized by exaggerated fear and deficient extinction.
Collapse
Affiliation(s)
- Edwin Santini
- Department of Pharmacology and Physiology, Ponce School of Medicine, Ponce, Puerto Rico.
| | | | | |
Collapse
|
23
|
Curti S, Gómez L, Budelli R, Pereda AE. Subthreshold sodium current underlies essential functional specializations at primary auditory afferents. J Neurophysiol 2008; 99:1683-99. [PMID: 18234982 DOI: 10.1152/jn.01173.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Primary auditory afferents are generally perceived as passive, timing-preserving lines of communication. Contrasting this view, identifiable auditory afferents to the goldfish Mauthner cell undergo potentiation of their mixed--electrical and chemical--synapses in response to high-frequency bursts of activity. This property likely represents a mechanism of input sensitization because they provide the Mauthner cell with essential information for the initiation of an escape response. Consistent with this synaptic specialization, we show here that these afferents exhibit an intrinsic ability to respond with bursts of 200-600 Hz and this property critically relies on the activation of a persistent sodium current, which is counterbalanced by the delayed activation of an A-type potassium current. Furthermore, the interaction between these conductances with the membrane passive properties supports the presence of electrical resonance, whose frequency preference is consistent with both the effective range of hearing in goldfish and the firing frequencies required for synaptic facilitation, an obligatory requisite for the induction of activity-dependent changes. Thus our data show that the presence of a persistent sodium current is functionally essential and allows these afferents to translate behaviorally relevant auditory signals into patterns of activity that match the requirements of their fast and highly modifiable synapses. The functional specializations of these neurons suggest that auditory afferents might be capable of more sophisticated contributions to auditory processing than has been generally recognized.
Collapse
Affiliation(s)
- Sebastián Curti
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
24
|
Nerbonne JM, Gerber BR, Norris A, Burkhalter A. Electrical remodelling maintains firing properties in cortical pyramidal neurons lacking KCND2-encoded A-type K+ currents. J Physiol 2008; 586:1565-79. [PMID: 18187474 DOI: 10.1113/jphysiol.2007.146597] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Considerable experimental evidence has accumulated demonstrating a role for voltage-gated K(+) (Kv) channel pore-forming (alpha) subunits of the Kv4 subfamily in the generation of fast transient outward K(+), I(A), channels. Immunohistochemical data suggest that I(A) channels in hippocampal and cortical pyramidal neurons reflect the expression of homomeric Kv4.2 channels. The experiments here were designed to define directly the role of Kv4.2 in the generation of I(A) in cortical pyramidal neurons and to determine the functional consequences of the targeted deletion of Kv4.2 on the resting and active membrane properties of these cells. Whole-cell voltage-clamp recordings, obtained from visual cortical pyramidal neurons isolated from mice in which the KCND2 (Kv4.2) locus was disrupted (Kv4.2-/- mice), revealed that I(A) is indeed eliminated. In addition, the densities of other Kv current components, specifically I(K) and I(ss), are increased significantly (P < 0.001) in most ( approximately 80%) Kv4.2-/- cells. The deletion of KCND2 (Kv4.2) and the elimination of I(A) is also accompanied by the loss of the Kv4 channel accessory protein KChIP3, suggesting that in the absence of Kv4.2, the KChIP3 protein is targeted for degradation. The expression levels of several Kv alpha subunits (Kv4.3, Kv1.4, Kv2.1, Kv2.2), however, are not measurably altered in Kv4.2-/- cortices. Although I(A) is eliminated in Kv4.2-/- pyramidal neurons, the mean +/- s.e.m. current threshold for action potential generation and the waveforms of action potentials are indistinguishable from those recorded from wild-type cells. Repetitive firing is also maintained in Kv4.2-/- cortical pyramidal neurons, suggesting that the increased densities of I(K) and I(ss) compensate for the in vivo loss of I(A).
Collapse
Affiliation(s)
- Jeanne M Nerbonne
- Department of Molecular Biology and Pharmacology, Box 8103, Washington University Medical School, 660 South Euclid Avenue, St Louis, MO 63110-1093, USA.
| | | | | | | |
Collapse
|
25
|
Abstract
Despite the fact that paraventricular nucleus (PVN) neurones innervating the rostral ventrolateral medulla (RVLM) play important roles in the control of sympathetic function both in physiological and pathological conditions, the precise mechanisms controlling their activity are still incompletely understood. In the present study, we evaluated whether the transient outward potassium current I(A) is expressed in PVN-RVLM neurones, characterized its biophysical and pharmacological properties, and determined its role in shaping action potentials and firing discharge in these neurones. Patch-clamp recordings obtained from retrogradely labelled, PVN-RVLM neurones indicate that a 4-AP sensitive, TEA insensitive current, with biophysical properties consistent with I(A), is present in these neurones. Pharmacological blockade of I(A) depolarized resting V(m) and prolonged Na(+) action potential duration, by increasing its width and by slowing down its decay time course. Interestingly, blockade of I(A) either increased or decreased the firing activity of PVN-RVLM neurones, supporting the presence of subsets of PVN-RVLM neurones differentially modulated by I(A). In all cases, the effects of I(A) on firing activity were prevented by a broad spectrum Ca(2+) channel blocker. Immunohistochemical studies suggest that I(A) in PVN-RVLM neurons is mediated by Kv1.4 and/or Kv4.3 channel subunits. Overall, our results demonstrate the presence of I(A) in PVN-RVLM neurones, which actively modulates their action potential waveform and firing activity. These studies support I(A) as an important intrinsic mechanism controlling neuronal excitability in this central presympathetic neuronal population.
Collapse
Affiliation(s)
- Patrick M Sonner
- Department of Psychiatry, University of Cincinnati, Genome Research Institute, 2170 E. Galbraith Rd, Cincinnati, OH 45237, USA
| | | |
Collapse
|