1
|
Schepetkin IA, Chernysheva GA, Aliev OI, Kirpotina LN, Smol’yakova VI, Osipenko AN, Plotnikov MB, Kovrizhina AR, Khlebnikov AI, Plotnikov EV, Quinn MT. Neuroprotective Effects of the Lithium Salt of a Novel JNK Inhibitor in an Animal Model of Cerebral Ischemia–Reperfusion. Biomedicines 2022; 10:biomedicines10092119. [PMID: 36140222 PMCID: PMC9495587 DOI: 10.3390/biomedicines10092119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/31/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs) regulate many physiological processes, including inflammatory responses, morphogenesis, cell proliferation, differentiation, survival, and cell death. Therefore, JNKs represent attractive targets for therapeutic intervention. In an effort to develop improved JNK inhibitors, we synthesized the lithium salt of 11H-indeno[1,2-b]quinoxaline-11-one oxime (IQ-1L) and evaluated its affinity for JNK and biological activity in vitro and in vivo. According to density functional theory (DFT) modeling, the Li+ ion stabilizes the six-membered ring with the 11H-indeno[1,2-b]quinoxaline-11-one (IQ-1) oximate better than Na+. Molecular docking showed that the Z isomer of the IQ-1 oximate should bind JNK1 and JNK3 better than (E)-IQ-1. Indeed, experimental analysis showed that IQ-1L exhibited higher JNK1-3 binding affinity in comparison with IQ-1S. IQ-1L also was a more effective inhibitor of lipopolysaccharide (LPS)-induced nuclear factor-κB/activating protein 1 (NF-κB/AP-1) transcriptional activity in THP-1Blue monocytes and was a potent inhibitor of proinflammatory cytokine production by MonoMac-6 monocytic cells. In addition, IQ-1L inhibited LPS-induced c-Jun phosphorylation in MonoMac-6 cells, directly confirming JNK inhibition. In a rat model of focal cerebral ischemia (FCI), intraperitoneal injections of 12 mg/kg IQ-1L led to significant neuroprotective effects, decreasing total neurological deficit scores by 28, 29, and 32% at 4, 24, and 48 h after FCI, respectively, and reducing infarct size by 52% at 48 h after FCI. The therapeutic efficacy of 12 mg/kg IQ-1L was comparable to that observed with 25 mg/kg of IQ-1S, indicating that complexation with Li+ improved efficacy of this compound. We conclude that IQ-1L is more effective than IQ-1S in treating cerebral ischemia injury and thus represents a promising anti-inflammatory compound.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Galina A. Chernysheva
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, 634028 Tomsk, Russia
| | - Oleg I. Aliev
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, 634028 Tomsk, Russia
| | - Liliya N. Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Vera I. Smol’yakova
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, 634028 Tomsk, Russia
| | - Anton N. Osipenko
- Department of Pharmacology, Siberian State Medical University, 2 Moskovskiy tract, 634050 Tomsk, Russia
| | - Mark B. Plotnikov
- Department of Pharmacology, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, 634028 Tomsk, Russia
- Radiophysical Faculty, National Research Tomsk State University, 634050 Tomsk, Russia
| | | | | | - Evgenii V. Plotnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Correspondence: ; Tel.: +1-406-994-4707; Fax: +1-406-994-4303
| |
Collapse
|
2
|
Almeida OP, Singulani MP, Ford AH, Hackett ML, Etherton-Beer C, Flicker L, Hankey GJ, De Paula VJR, Penteado CT, Forlenza OV. Lithium and Stroke Recovery: A Systematic Review and Meta-Analysis of Stroke Models in Rodents and Human Data. Stroke 2022; 53:2935-2944. [PMID: 35968702 DOI: 10.1161/strokeaha.122.039203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Lithium has neuroprotective effects in animal models of stroke, but benefits in humans remain uncertain. This article aims to systematically review the available evidence of the neuroprotective and regenerative effects of lithium in animal models of stroke, as well as in observational and trial stroke studies in humans. METHODS This systematic review and meta-analysis was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched Medline, Embase, and PsycINFO for preclinical and clinical studies published between January 2000 and September 2021. A random-effects meta-analysis was conducted from observational studies. RESULTS From 1625 retrieved studies, 42 were included in the systematic review. Of those, we identified 36 rodent models of stroke using preinsult or postinsult treatment with lithium, and 6 studies were conducted in human samples, of which 4 could be meta-analyzed. The review of animal models was stratified according to the type of stroke and outcomes. Human data were subdivided into observational and intervention studies. Treatment of rodents with lithium was associated with smaller stroke volumes, decreased apoptosis, and improved poststroke function. In humans, exposure to lithium was associated with a lower risk of stroke among adults with bipolar disorder in 2 of 4 studies. Two small trials showed equivocal clinical benefits of lithium poststroke. CONCLUSIONS Animal models of stroke show consistent biological and functional evidence of benefits associated with lithium treatment, whereas human evidence remains sparse and inconclusive. The potential role of lithium in poststroke recovery is yet to be adequately tested in humans.
Collapse
Affiliation(s)
- Osvaldo P Almeida
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Monique P Singulani
- Laboratory of Neuroscience LIM27, Department and Institute of Psychiatry HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Brazil (M.P.S., V.J.R.D.P., C.T.P., O.V.F.)
| | - Andrew H Ford
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Maree L Hackett
- The George Institute for Global Health, the University of New South Wales, Sydney, Australia (M.L.H.)
| | - Christopher Etherton-Beer
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Leon Flicker
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Graeme J Hankey
- Medical School, University of Western Australia, Perth, Australia (O.P.A., A.H.F., C.E.B., L.F., G.J.H.)
| | - Vanessa J R De Paula
- Laboratory of Neuroscience LIM27, Department and Institute of Psychiatry HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Brazil (M.P.S., V.J.R.D.P., C.T.P., O.V.F.)
| | - Camila T Penteado
- Laboratory of Neuroscience LIM27, Department and Institute of Psychiatry HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Brazil (M.P.S., V.J.R.D.P., C.T.P., O.V.F.)
| | - Orestes V Forlenza
- Laboratory of Neuroscience LIM27, Department and Institute of Psychiatry HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, Brazil (M.P.S., V.J.R.D.P., C.T.P., O.V.F.)
| |
Collapse
|
3
|
Xu GB, Guan PP, Wang P. Prostaglandin A1 Decreases the Phosphorylation of Tau by Activating Protein Phosphatase 2A via a Michael Addition Mechanism at Cysteine 377. Mol Neurobiol 2020; 58:1114-1127. [PMID: 33095414 DOI: 10.1007/s12035-020-02174-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022]
Abstract
Prostaglandin (PG) A1 is a metabolic product of cyclooxygenase 2 (COX-2) that is potentially involved in regulating the development and progression of Alzheimer's disease (AD). PGA1 is a cyclopentenone (cy) PG characterized by the presence of a chemically reactive α,β-unsaturated carbonyl. PGA1 is potentially involved in the regulation of multiple biological processes via Michael addition; however, the specific roles of PGA1 in AD remain unclear. TauP301S transgenic (Tg) mice were used as in vivo AD models, and neuroblastoma (N) 2a cells were used as an in vitro neuronal model. The PGA1-binding proteins were identified by HPLC-MS-MS after intracerebroventricular injection (i.c.v) of PGA1. Western blotting was used to determine tau phosphorylation in PGA1-treated Tg mice in the absence or in the presence of okadaic acid (OA), an inhibitor of protein phosphatase (PP) 2A. A combination of pull-down assay, immunoprecipitation, western blotting, and HPLC-MS-MS was used to determine that the PP2A scaffold subunit A alpha (PPP2R1A) is activated by the direct binding of PGA1 to cysteine 377. The effect of inhibiting tau hyperphosphorylation was tested in the Morris maze to determine the inhibitory effects of PGA1 on cognitive decline in tauP301S Tg mice. Incubation with N2a cells, pull-down assay, and mass spectrometry (MS) analysis revealed and indicated that PGA1 binds to more than 1000 proteins; some of these proteins are associated with AD and especially with tauopathies. Moreover, short-term administration of PGA1 in tauP301S Tg mice significantly decreased tau phosphorylation at Thr181, Ser202, and Ser404 in a dose-dependent manner. This effect was caused by the activation of PPP2R1A in tauP301S Tg mice. Importantly, PGA1 can form a Michael adduct with cysteine 377 of PPP2R1A, which is critical for the enzymatic activity of PP2A. Long-term treatment of tauP301S Tg mice with PGA1 activated PP2A and significantly reduced tau phosphorylation resulting in improvements in cognitive decline in tauP301S Tg mice. Our data provided new insight into the mechanisms of the ameliorating effects of PGA1 on cognitive decline in tauP301S Tg mice by activating PP2A via a mechanism involving the formation of a Michael adduct with cysteine 377 of PPP2R1A.
Collapse
Affiliation(s)
- Guo-Biao Xu
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China.,Liaoning Cheng Da Biotechnology Co., Ltd, Shenyang, 110179, People's Republic of China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China.
| |
Collapse
|
4
|
Xu GB, Yang LQ, Guan PP, Wang ZY, Wang P. Prostaglandin A1 Inhibits the Cognitive Decline of APP/PS1 Transgenic Mice via PPARγ/ABCA1-dependent Cholesterol Efflux Mechanisms. Neurotherapeutics 2019; 16:505-522. [PMID: 30627958 PMCID: PMC6554490 DOI: 10.1007/s13311-018-00704-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Prostaglandins (PGs) are early and key contributors to chronic neurodegenerative diseases. As one important member of classical PGs, PGA1 has been reported to exert potential neuroprotective effects. However, the mechanisms remain unknown. To this end, we are prompted to investigate whether PGA1 is a useful neurological treatment for Alzheimer's disease (AD) or not. Using high-throughput sequencing, we found that PGA1 potentially regulates cholesterol metabolism and lipid transport. Interestingly, we further found that short-term administration of PGA1 decreased the levels of the monomeric and oligomeric β-amyloid protein (oAβ) in a cholesterol-dependent manner. In detail, PGA1 activated the peroxisome proliferator-activated receptor-gamma (PPARγ) and ATP-binding cassette subfamily A member 1 (ABCA1) signalling pathways, promoting the efflux of cholesterol and decreasing the intracellular cholesterol levels. Through PPARγ/ABCA1/cholesterol-dependent pathway, PGA1 decreased the expression of presenilin enhancer protein 2 (PEN-2), which is responsible for the production of Aβ. More importantly, long-term administration of PGA1 remarkably decreased the formation of Aβ monomers, oligomers, and fibrils. The actions of PGA1 on the production and deposition of Aβ ultimately improved the cognitive decline of the amyloid precursor protein/presenilin1 (APP/PS1) transgenic mice.
Collapse
Affiliation(s)
- Guo-Biao Xu
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China
| | - Liu-Qing Yang
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China.
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11. Wenhua Road, Shenyang, 110819, People's Republic of China.
| |
Collapse
|
5
|
Jha NK, Jha SK, Kar R, Nand P, Swati K, Goswami VK. Nuclear factor-kappa β as a therapeutic target for Alzheimer's disease. J Neurochem 2019; 150:113-137. [PMID: 30802950 DOI: 10.1111/jnc.14687] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/16/2019] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a typical progressive, chronic neurodegenerative disorder with worldwide prevalence. Its clinical manifestation involves the presence of extracellular plaques and intracellular neurofibrillary tangles (NFTs). NFTs occur in brain tissues as a result of both Aβ agglomeration and Tau phosphorylation. Although there is no known cure for AD, research into possible cures and treatment options continues using cell-cultures and model animals/organisms. The nuclear factor-kappa β (NF-κβ) plays an active role in the progression of AD. Impairment to this signaling module triggers undesirable phenotypic changes such as neuroinflammation, activation of microglia, oxidative stress related complications, and apoptotic cell death. These imbalances further lead to homeostatic abnormalities in the brain or in initial stages of AD essentially pushing normal neurons toward the degeneration process. Interestingly, the role of NF-κβ signaling associated receptor-interacting protein kinase is currently observed in apoptotic and necrotic cell death, and has been reported in brains. Conversely, the NF-κβ signaling pathway has also been reported to be involved in normal brain functioning. This pathway plays a crucial role in maintaining synaptic plasticity and balancing between learning and memory. Since any impairment in the pathways associated with NF-κβ signaling causes altered neuronal dynamics, neurotherapeutics using compounds including, antioxidants, bioflavonoids, and non-steroidal anti-inflammatory drugs against such abnormalities offer possibilities to rectify aberrant excitatory neuronal activity in AD. In this review, we have provided an extensive overview of the crucial role of NF-κβ signaling in normal brain homeostasis. We have also thoroughly outlined several established pathomechanisms associated with NF-κβ pathways in AD, along with their respective therapeutic approaches.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, Noida Institute of Engineering & Technology (NIET), Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Rohan Kar
- Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Kumari Swati
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Vineet Kumar Goswami
- Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
6
|
Sharma A, Kaur G. Tinospora cordifolia as a potential neuroregenerative candidate against glutamate induced excitotoxicity: an in vitro perspective. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:268. [PMID: 30285727 PMCID: PMC6167833 DOI: 10.1186/s12906-018-2330-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/20/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glutamate, the major excitatory neurotransmitter of CNS acts as a neurotoxin at higher concentrations. Prolonged activation of glutamate receptors results in progressive neuronal damage by aggravating calcium influx, inducing mitochondrial damage and oxidative stress. Excitotoxic cell death is associated with the pathogenesis of various neurodegenerative disorders such as trauma, brain injury and neurodegenerative diseases. The current study was designed to investigate the neuroprotective and neuroregenerative potential of Tinospora cordifolia against glutamate-induced excitotoxicity using primary cerebellar neuronal cultures as a model system. METHODS Monosodium salt of glutamate was used to induce neurotoxic injury in primary cerebellar neurons. Four extracts including Hexane extract, Chloroform extract, Ethyl acetate, and Butanol extract were obtained from fractionation of previously reported aqueous ethanolic extract of T. cordifolia and tested for neuroprotective activity. Out of the four fractions, Butanol extract of T. cordifolia (B-TCE) exhibited neuroprotective potential by preventing degeneration of neurons induced by glutamate. Expression of different neuronal, apoptotic, inflammatory, cell cycle regulatory and plasticity markers was studied by immunostaining and Western blotting. Neurite outgrowth and migration were also studied using primary explant cultures, wound scratch and gelatin zymogram assay. RESULTS At molecular level, B-TCE pretreatment of glutamate-treated cultures normalized the stress-induced downregulation in the expression of neuronal markers (MAP-2, GAP-43, NF200) and anti-apoptotic marker (Bcl-xL). Further, cells exposed to glutamate showed enhanced expression of inflammatory (NF-κB, AP-1) and senescence markers (HSP70, Mortalin) as well as the extent of mitochondrial damage. However, B-TCE pretreatment prevented this increase and inhibited glutamate-induced onset of inflammation, stress and mitochondrial membrane damage. Furthermore, B-TCE was observed to promote regeneration, migration and plasticity of cerebellar neurons, which was otherwise significantly inhibited by glutamate treatment. CONCLUSION These results suggest that B-TCE may have neuroprotective and neuroregenerative potential against catastrophic consequences of glutamate-mediated excitotoxicity and could be a potential therapeutic candidate for neurodegenerative diseases.
Collapse
Affiliation(s)
- Anuradha Sharma
- Department of Biotechnology, Medical Biotechnology lab, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Gurcharan Kaur
- Department of Biotechnology, Medical Biotechnology lab, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| |
Collapse
|
7
|
Pandya M, Liu H, Dangaria SJ, Zhu W, Li LL, Pan S, Abufarwa M, Davis RG, Guggenheim S, Keiderling T, Luan X, Diekwisch TGH. Integrative Temporo-Spatial, Mineralogic, Spectroscopic, and Proteomic Analysis of Postnatal Enamel Development in Teeth with Limited Growth. Front Physiol 2017; 8:793. [PMID: 29114228 PMCID: PMC5660681 DOI: 10.3389/fphys.2017.00793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022] Open
Abstract
Tooth amelogenesis is a complex process beginning with enamel organ cell differentiation and enamel matrix secretion, transitioning through changes in ameloblast polarity, cytoskeletal, and matrix organization, that affects crucial biomineralization events such as mineral nucleation, enamel crystal growth, and enamel prism organization. Here we have harvested the enamel organ including the pliable enamel matrix of postnatal first mandibular mouse molars during the first 8 days of tooth enamel development to conduct a step-wise cross-sectional analysis of the changes in the mineral and protein phase. Mineral phase diffraction pattern analysis using single-crystal, powder sample X-ray diffraction analysis indicated conversion of calcium phosphate precursors to partially fluoride substituted hydroxyapatite from postnatal day 4 (4 dpn) onwards. Attenuated total reflectance spectra (ATR) revealed a substantial elevation in phosphate and carbonate incorporation as well as structural reconfiguration between postnatal days 6 and 8. Nanoscale liquid chromatography coupled with tandem mass spectrometry (nanoLC-MS/MS) demonstrated highest protein counts for ECM/cell surface proteins, stress/heat shock proteins, and alkaline phosphatase on postnatal day 2, high counts for ameloblast cytoskeletal proteins such as tubulin β5, tropomyosin, β-actin, and vimentin on postnatal day 4, and elevated levels of cofilin-1, calmodulin, and peptidyl-prolyl cis-trans isomerase on day 6. Western blot analysis of hydrophobic enamel proteins illustrated continuously increasing amelogenin levels from 1 dpn until 8 dpn, while enamelin peaked on days 1 and 2 dpn, and ameloblastin on days 1-5 dpn. In summary, these data document the substantial changes in the enamel matrix protein and mineral phase that take place during postnatal mouse molar amelogenesis from a systems biological perspective, including (i) relatively high levels of matrix protein expression during the early secretory stage on postnatal day 2, (ii) conversion of calcium phosphates to apatite, peak protein folding and stress protein counts, and increased cytoskeletal protein levels such as actin and tubulin on day 4, as well as (iii) secondary structure changes, isomerase activity, highest amelogenin levels, and peak phosphate/carbonate incorporation between postnatal days 6 and 8. Together, this study provides a baseline for a comprehensive understanding of the mineralogic and proteomic events that contribute to the complexity of mammalian tooth enamel development.
Collapse
Affiliation(s)
- Mirali Pandya
- Texas A&M Center for Craniofacial Research and Diagnosis, Dallas, TX, United States
| | - Hui Liu
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, IL, United States
| | - Smit J Dangaria
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, IL, United States
| | - Weiying Zhu
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Leo L Li
- Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Shuang Pan
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, IL, United States
| | - Moufida Abufarwa
- Texas A&M Center for Craniofacial Research and Diagnosis, Dallas, TX, United States
| | - Roderick G Davis
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
| | - Stephen Guggenheim
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Xianghong Luan
- Brodie Laboratory for Craniofacial Genetics, University of Illinois at Chicago, Chicago, IL, United States
| | - Thomas G H Diekwisch
- Texas A&M Center for Craniofacial Research and Diagnosis, Dallas, TX, United States
| |
Collapse
|
8
|
Neuroprotection by Combined Administration with Maslinic Acid, a Natural Product from Olea europaea, and MK-801 in the Cerebral Ischemia Model. Molecules 2016; 21:molecules21081093. [PMID: 27548129 PMCID: PMC6274070 DOI: 10.3390/molecules21081093] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023] Open
Abstract
Glutamate-mediated excitotoxicity is a major cause of ischemic brain damage. MK-801 confers neuroprotection by attenuating the activation of the N-methyl-d-aspartate (NMDA) receptor, but it failed in clinical use due to the short therapeutic window. Here we aim to investigate the effects of maslinic acid, a natural product from Olea europaea, on the therapeutic time window and dose range for the neuroprotection of MK-801. Rats were administered with maslinic acid intracerebroventricularly and cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) followed by reperfusion. MK-801 was administered at 1 h, 2 h, 3 h and 4 h after ischemia, respectively. The cerebral infarct volume was determined by 2,3,5-Triphenyltetrazolium chloride (TTC) staining, neuronal damage was assessed by Haematoxylin Eosin (H&E) staining, and the expression of glial glutamate transporters and glial fibrillary acidic protein (GFAP) was evaluated by immunohistochemistry and Western blot post-ischemia. Results showed that the presence of maslinic acid extended the therapeutic time window for MK-801 from 1 h to 3 h. Co-treatment of maslinic acid and MK-801 at a subthreshold dosage obviously induced neuroprotection after ischemia. The combination of these two compounds improved the outcome in ischemic rats. Moreover, maslinic acid treatment promoted the expression of GLT-1 and GFAP post-ischemia. These data suggest that the synergistic effect of maslinic acid on neurological protection might be associated with the improvement of glial function, especially with the increased expression of GLT-1. The combination therapy of maslinic acid and MK-801 may prove to be a potential strategy for treating acute ischemic stroke.
Collapse
|
9
|
Olausson P, Gerdle B, Ghafouri N, Sjöström D, Blixt E, Ghafouri B. Protein alterations in women with chronic widespread pain--An explorative proteomic study of the trapezius muscle. Sci Rep 2015; 5:11894. [PMID: 26150212 PMCID: PMC4493691 DOI: 10.1038/srep11894] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 06/09/2015] [Indexed: 12/18/2022] Open
Abstract
Chronic widespread pain (CWP) has a high prevalence in the population and is associated with prominent negative individual and societal consequences. There is no clear consensus concerning the etiology behind CWP although alterations in the central processing of nociception maintained by peripheral nociceptive input has been suggested. Here, we use proteomics to study protein changes in trapezius muscle from 18 female patients diagnosed with CWP compared to 19 healthy female subjects. The 2-dimensional gel electrophoresis (2-DE) in combination with multivariate statistical analyses revealed 17 proteins to be differently expressed between the two groups. Proteins were identified by mass spectrometry. Many of the proteins are important enzymes in metabolic pathways like the glycolysis and gluconeogenesis. Other proteins are associated with muscle damage, muscle recovery, stress and inflammation. The altered expressed levels of these proteins suggest abnormalities and metabolic changes in the myalgic trapezius muscle in CWP. Taken together, this study gives further support that peripheral factors may be of importance in maintaining CWP.
Collapse
Affiliation(s)
- Patrik Olausson
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Björn Gerdle
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Nazdar Ghafouri
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Dick Sjöström
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Emelie Blixt
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| | - Bijar Ghafouri
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University and Pain and Rehabilitation Center, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland
| |
Collapse
|
10
|
Macrophage migration inhibitory factor (MIF) knockout preserves cardiac homeostasis through alleviating Akt-mediated myocardial autophagy suppression in high-fat diet-induced obesity. Int J Obes (Lond) 2014; 39:387-96. [PMID: 25248618 PMCID: PMC4355049 DOI: 10.1038/ijo.2014.174] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/05/2014] [Accepted: 09/17/2014] [Indexed: 12/20/2022]
Abstract
Background Macrophage migration inhibitory factor (MIF) plays a role in the development of obesity and diabetes. However, whether MIF plays a role in fat diet-induced obesity and associated cardiac anomalies still remains unknown. The aim of this study was to examine the impact of MIF knockout on high fat diet-induced obesity, obesity-associated cardiac anomalies and the underlying mechanisms involved with a focus on Akt-mediated autophagy. Methods Adult male wild-type (WT) and MIF knockout (MIF−/−) mice were placed on 45% high fat diet for 5 months. Oxygen consumption, CO2 production, respiratory exchange ratio (RER), locomotor activity, and heat generation were measured using energy calorimeter. Echocardiographic, cardiomyocyte mechanical and intracellular Ca2+ properties were assessed. Apoptosis was examined using TUNEL staining and western blot analysis. Akt signaling pathway and autophagy markers were evaluated. Cardiomyocytes isolated from WT and MIF−/− mice were treated with recombinant mouse MIF (rmMIF). Results High fat diet feeding elicited increased body weight gain, insulin resistance, and caloric disturbance in WT and MIF−/− mice. High fat diet induced unfavorable geometric, contractile and histological changes in the heart, the effects of which were alleviated by MIF knockout. In addition, fat diet-induced cardiac anomalies were associated with Akt activation and autophagy suppression, which were nullified by MIF deficiency. In cardiomyocytes from WT mice, autophagy was inhibited by exogenous rmMIF through Akt activation. In addition, MIF knockout rescued palmitic acid-induced suppression of cardiomyocyte autophagy, the effect of which was nullified by rmMIF. Conclusions These results indicate that MIF knockout preserved obesity-associated cardiac anomalies without affecting fat diet-induced obesity, probably through restoring myocardial autophagy in an Akt-dependent manner. Our findings provide new insights for the role of MIF in obesity and associated cardiac anomalies.
Collapse
|
11
|
Modi JP, Gharibani PM, Ma Z, Tao R, Menzie J, Prentice H, Wu JY. Protective mechanism of sulindac in an animal model of ischemic stroke. Brain Res 2014; 1576:91-9. [DOI: 10.1016/j.brainres.2014.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/16/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023]
|
12
|
Villo L, Metsala A, Tamp S, Parve J, Vallikivi I, Järving I, Samel N, Lille Ü, Pehk T, Parve O. Thermomyces lanuginosusLipase with Closed Lid Catalyzes Elimination of Acetic Acid from 11-Acetyl-Prostaglandin E2. ChemCatChem 2014. [DOI: 10.1002/cctc.201400019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Rusai K, Herzog R, Kuster L, Kratochwill K, Aufricht C. GSK-3β inhibition protects mesothelial cells during experimental peritoneal dialysis through upregulation of the heat shock response. Cell Stress Chaperones 2013; 18:569-79. [PMID: 23494401 PMCID: PMC3745257 DOI: 10.1007/s12192-013-0410-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 02/04/2023] Open
Abstract
Non-physiological components of peritoneal dialysis fluids (PDF) lead to the injury of peritoneal mesothelial cells resulting in the failure of peritoneal dialysis (PD) potentially via inadequate induction of the protective heat shock response (HSR). Glycogen synthase kinase-3β (GSK-3β) is a negative regulator of cell survival partly by suppression of the HSR and is influenced by stress stimuli also present in conventional PDF. The effects of PDF on GSK-3β activation and the impact of GSK-3β inhibition with lithium (LiCl) were investigated on cell survival with special regard to HSR, in particular to heat shock transcription factor 1 (HSF-1) activation and Hsp72 production in an in vitro model of PD using MeT-5A and primary mesothelial cells. Incubation of cells with the PDF Dianeal® (glucose-based, low pH, high glucose degradation products (GDP)) and Extraneal® (icodextrin-based, low pH, low GDP) caused activation of GSK-3β compared to the other tested PDF, i.e. Balance®, Physioneal® (normal pH, glucose-based, low GDP) and Nutrineal® (moderately acidic, amino acid-based). Inhibition of GSK-3β with LiCl in Dianeal® and Extraneal®-treated cells dose-dependently decreased cell damage and death rate and was paralleled by higher HSF-1 activation and Hsp72 expression. GSK-3β is activated by low pH GDP containing PDF with and without glucose as osmotic agent, indicating that GSK-3β is involved in mesothelial cell signalling in response to experimental PD. Inhibition of GSK-3β with LiCl ameliorated cell injury and improved HSR upon PDF exposure. Thus, GSK-3β inhibitors likely have therapeutic potential as cytoprotective additive for decreasing PDF toxicity.
Collapse
Affiliation(s)
- K. Rusai
- />Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - R. Herzog
- />Zytoprotec GmbH, 1010 Vienna, Austria
| | - L. Kuster
- />Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - K. Kratochwill
- />Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- />Zytoprotec GmbH, 1010 Vienna, Austria
| | - C. Aufricht
- />Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
14
|
Mikkelsen UR, Paulsen G, Schjerling P, Helmark IC, Langberg H, Kjær M, Heinemeier KM. The heat shock protein response following eccentric exercise in human skeletal muscle is unaffected by local NSAID infusion. Eur J Appl Physiol 2013; 113:1883-93. [PMID: 23467900 DOI: 10.1007/s00421-013-2606-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/03/2013] [Indexed: 12/20/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely consumed in relation to pain and injuries in skeletal muscle, but may adversely affect muscle adaptation probably via inhibition of prostaglandin synthesis. Induction of heat shock proteins (HSP) represents an important adaptive response in muscle subjected to stress, and in several cell types including cardiac myocytes prostaglandins are important in induction of the HSP response. This study aimed to determine the influence of NSAIDs on the HSP response to eccentric exercise in human skeletal muscle. Healthy males performed 200 maximal eccentric contractions with each leg with intramuscular infusion of the NSAID indomethacin or placebo. Biopsies were obtained from m. vastus lateralis before and after (5, 28 hrs and 8 days) the exercise bout from both legs (NSAID vs unblocked leg) and analysed for expression of the HSPs HSP70, HSP27 and αB-crystallin (mRNA and protein). NSAID did not affect the mRNA expression of any of the HSPs. Compared to pre values, the mRNA expression of all HSPs was increased; αB-crystallin, 3.6- and 5.4-fold; HSP70, 26- and 3.4-fold; and HSP27: 4.8- and 6.5-fold at 5 and 28 hrs post-exercise, respectively (all p < 0.008). Immunohistochemical stainings for αB-crystallin and HSP70 revealed increased staining in some samples but with no differences between legs. Changes in force-generating capacity correlated with both αB-crystallin and HSP70 mRNA and immunohistochemisty data. Increased expression of HSPs was observed on mRNA and protein level following eccentric exercise; however, this response was unaffected by local intramuscular infusion of NSAIDs.
Collapse
Affiliation(s)
- U R Mikkelsen
- Institute of Sports Medicine, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
15
|
Xia Y, Rao J, Yao A, Zhang F, Li G, Wang X, Lu L. Lithium exacerbates hepatic ischemia/reperfusion injury by inhibiting GSK-3β/NF-κB-mediated protective signaling in mice. Eur J Pharmacol 2012; 697:117-25. [PMID: 23051669 DOI: 10.1016/j.ejphar.2012.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/05/2012] [Accepted: 09/17/2012] [Indexed: 11/16/2022]
Abstract
Lithium (an inhibitor of GSK-3β activity) has beneficial effects on ischemia/reperfusion (I/R) injury in the central nervous system, heart and kidney. However, the role of lithium in hepatic I/R injury is unknown. The aim of this study was to assess the effects of lithium on hepatic I/R injury in a mouse model of partial hepatic I/R. Previous studies showed that lithium chloride (LiCl) can phosphorylate residue Ser9, inhibit GSK-3β activity, and improve I/R injury in other organs. In the present study, mice were pretreated with either vehicle or LiCl, which had similar effects on GSK-3β activity. Surprisingly, treatment with LiCl significantly exacerbated hepatic I/R injury, which was determined by serological and histological analyses. Acute and chronic LiCl treatment caused serious damage in hepatic I/R injury, including increased apoptosis and oxidative stress. To gain insight into the mechanism involved in this damage, the activity of nuclear factor-κB (NF-κB) (GSK-3β can regulate the transcriptional complex of NF-κB) was analyzed, which revealed that LiCl treatment significantly down-regulated the activity of NF-κB. The NF-κB-mediated protective genes were then further evaluated, including anti-apoptotic genes (RAF2, cIAP 2, Bfl-1 and cFLIP) and the antioxidant gene MnSOD. The expression of these protective genes was obviously suppressed compared with the vehicle group. Taken together, these findings show that lithium exacerbates hepatic I/R injury by suppressing the expression of GSK-3β/NF-κB-mediated protective genes.
Collapse
Affiliation(s)
- Yongxiang Xia
- Liver Transplantation Center, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Kataria H, Wadhwa R, Kaul SC, Kaur G. Water extract from the leaves of Withania somnifera protect RA differentiated C6 and IMR-32 cells against glutamate-induced excitotoxicity. PLoS One 2012; 7:e37080. [PMID: 22606332 PMCID: PMC3351387 DOI: 10.1371/journal.pone.0037080] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 04/13/2012] [Indexed: 01/09/2023] Open
Abstract
Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha), also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6) and human neuroblastoma (IMR-32) cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX) was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule) and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty.
Collapse
Affiliation(s)
- Hardeep Kataria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Renu Wadhwa
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- * E-mail: (GK) (RW); (RW) (GK)
| | - Sunil C. Kaul
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- * E-mail: (GK) (RW); (RW) (GK)
| |
Collapse
|
17
|
Sheng R, Liu XQ, Zhang LS, Gao B, Han R, Wu YQ, Zhang XY, Qin ZH. Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. Autophagy 2012; 8:310-25. [PMID: 22361585 DOI: 10.4161/auto.18673] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent studies have suggested that autophagy plays a prosurvival role in ischemic preconditioning (IPC). This study was taken to assess the linkage between autophagy and endoplasmic reticulum (ER) stress during the process of IPC. The effects of IPC on ER stress and neuronal injury were determined by exposure of primary cultured murine cortical neurons to 30 min of OGD 24 h prior to a subsequent lethal OGD. The effects of IPC on ER stress and ischemic brain damage were evaluated in rats by a brief ischemic insult followed by permanent focal ischemia (PFI) 24 h later using the suture occlusion technique. The results showed that both IPC and lethal OGD increased the LC3-II expression and decreased p62 protein levels, but the extent of autophagy activation was varied. IPC treatment ameliorated OGD-induced cell damage in cultured cortical neurons, whereas 3-MA (5-20 mM) and bafilomycin A 1 (75-150 nM) suppressed the neuroprotection induced by IPC. 3-MA, at the dose blocking autophagy, significantly inhibited IPC-induced HSP70, HSP60 and GRP78 upregulation; meanwhile, it also aggregated the ER stress and increased activated caspase-12, caspase-3 and CHOP protein levels both in vitro and in vivo models. The ER stress inhibitor Sal (75 pmol) recovered IPC-induced neuroprotection in the presence of 3-MA. Rapamycin 50-200 nM in vitro and 35 pmol in vivo 24 h before the onset of lethal ischemia reduced ER stress and ischemia-induced neuronal damage. These results demonstrated that pre-activation of autophagy by ischemic preconditioning can boost endogenous defense mechanisms to upregulate molecular chaperones, and hence reduce excessive ER stress during fatal ischemia.
Collapse
Affiliation(s)
- Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Medicine, Suzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Protocol for a double-blind randomised placebo-controlled trial of lithium carbonate in patients with amyotrophic lateral sclerosis (LiCALS) [Eudract number: 2008-006891-31]. BMC Neurol 2011; 11:111. [PMID: 21936930 PMCID: PMC3189869 DOI: 10.1186/1471-2377-11-111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/21/2011] [Indexed: 12/12/2022] Open
Abstract
Background Amyotrophic lateral sclerosis is a rapidly progressive neurodegenerative disorder characterised by loss of motor neurons leading to severe weakness and death from respiratory failure within 3-5 years. Riluzole prolongs survival in ALS. A published report has suggested a dramatic effect of lithium carbonate on survival. 44 patients were studied, with 16 randomly selected to take LiCO3 and riluzole and 28 allocated to take riluzole alone. In the group treated with lithium, no patients had died (i.e., 100% survival) at the end of the study (15 months from entry), compared to 71% surviving in the riluzole-only group. Although the trial can be criticised on several grounds, there is a substantial rationale from other laboratory studies that lithium is worth investigating therapeutically in amyotrophic lateral sclerosis. Methods/Design LiCALS is a multi-centre double-blind randomised parallel group controlled trial of the efficacy, safety, and tolerability of lithium carbonate (LiCO3) at doses to achieve stable 'therapeutic' plasma levels (0.4-0.8 mmol/L), plus standard treatment, versus matched placebo plus standard treatment, in patients with amyotrophic lateral sclerosis. The study will be based in the UK, in partnership with the MND Association and DeNDRoN (the Dementias and Neurodegnerative Diseases Clinical Research Network). 220 patients will be recruited. All patients will be on the standard treatment for ALS of riluzole 100 mg daily. The primary outcome measure will be death from any cause at 18 months defined from the date of randomisation. Secondary outcome measures will be changes in three functional rating scales, the ALS Functional Rating Scale-Revised, The EuroQOL (EQ-5D), and the Hospital Anxiety and Depression Scale. Eligible patients will have El Escorial Possible, Laboratory-supported Probable, Probable or Definite amyotrophic lateral sclerosis with disease duration between 6 months and 36 months (inclusive), vital capacity ≥ 60% of predicted within 1 month prior to randomisation and age at least18 years. Discussion Patient recruitment began in June 2009 and the last patient is expected to complete the trial protocol in November 2011. Trial registration Current controlled trials ISRCTN83178718
Collapse
|
19
|
Wix-Ramos R, Eblen-Zajjur A. Time course of acute neuroprotective effects of lithium carbonate evaluated by brain impedanciometry in the global ischemia model. Can J Physiol Pharmacol 2011; 89:753-8. [PMID: 21919827 DOI: 10.1139/y11-073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is well known that chronic treatment with lithium gives cytoprotection from ischemia and neurodegeneration. Despite the clinical relevance, the potential effects of acute lithium treatment just before and during early stages of ischemia are not well known. Brain impedance was measured in an experimental global ischemia model, to determine these potential effects and their time course,as measured in minutes. Thiobarbital anesthetized (60 mg·kg(-1), intraperitoneal injection) male Sprague-Dawley rats were infused intravenously (i.v.) with isovolumetric amounts of ringer (n = 10 rats) or lithium (Li(2)CO(3); 10; 30; 100 mg·kg(-1); n = 6 rats per dose tested). Cortico-subcortical impedance was recorded before (20 min) and after (20 min) the infusion, and during global cerebral ischemia (20 min) induced by cardiopulmonary arrest due to the administration of D-tubocurarine. Lithium did not change tissue impedance in normoxid animals. In the ringer-infused group, global cerebral ischemia first (9 min) shows a fast voltage decay rate (-7.08%·min(-1)), followed by a slow one (-0.94%·min(-1)) for the last 11 min of the recording. Lithium, at any dose tested, induced a strong reduction in voltage decay for both fast (-3.7%·min(-1)) and slow (-5.2%·min(-1)) phases, although the reduction was more intense in the first phase (>58%, Mann-Whitney Z = 2.02; P < 0.043). The reduction was more effective at 10 mg (Li₂CO₃)·kg(-1) than at 30 or 100 mg·kg(-1). The time course of brain edema was defined by curve fitting for ringer- (time constant λ = 512.9 s) or lithium-infused animals (λ = 302.0 s). These results suggest that acute lithium infusion 20 min prior to global ischemia, strongly reduces cerebral impedance by reducing the decay rate and the duration of the fast decay phase, and increasing time constant decay during ischemia.
Collapse
Affiliation(s)
- R Wix-Ramos
- Laboratorio de Neurofisiología, Departamento de Ciencias Fisiológicas, Facultad de Ciencias de la Salud, Universidad de Carabobo, P.O. Box 3798, El Trigal, Valencia, Venezuela
| | | |
Collapse
|
20
|
Neuroprotective and neurotrophic effects of long term lithium treatment in mouse brain. Biometals 2011; 24:747-57. [PMID: 21373826 DOI: 10.1007/s10534-011-9433-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 02/22/2011] [Indexed: 01/08/2023]
Abstract
Since the worldwide approval of lithium therapy in 1970, lithium has been used for its anti-manic, antidepressant, and anti-suicidal effects. The last decade has witnessed the following discoveries about its neuroprotective and neurotrophic properties, yet the therapeutic mechanisms at the cellular level remain not-fully defined. We have undertaken the present study to determine if chronic lithium treatment, at therapeutically relevant concentrations, exerts neurotrophic/neuroprotective effects in the mouse brain in vivo. For this purpose, 10 months aged mice were fed for 3 months on food pellets contained 1 g (L1 group) or 2 g (L2 group) lithium carbonate/kg, resulting in serum concentrations of 0.4 and 0.8 mM, respectively. The evaluation of lipid peroxidation level and the activities of catalase, superoxide-dismutase and glutathione-peroxidase showed that chronic Li administration, at therapeutic doses doesn't induce oxidative stress in brain tissue. No changes in the expression levels of molecular chaperones, namely, the HSP70, and HSP90 heat shock proteins and the GRP94 glucose-regulated protein were detected. Moreover, this treatment has caused (1) an increase in the relative brain weight (2) a delay in the age induced cerebral glucose impairment (3) an enhancement of the neurogenesis in hippocampus and enthorinal cortex highlighted by silver impregnation. Under these experimental conditions, no modifications were observed in expression levels of GSK3 and of its downstream target β-catenin proteins. These results suggested that chronic Li administration, at therapeutic doses, has a neuroprotective/neurotrophic properties and its therapeutic mechanism doesn't implicate GSK3 inactivation.
Collapse
|
21
|
Sheng R, Zhang LS, Han R, Gao B, Liu XQ, Qin ZH. Combined prostaglandin E1 and lithium exert potent neuroprotection in a rat model of cerebral ischemia. Acta Pharmacol Sin 2011; 32:303-10. [PMID: 21258357 DOI: 10.1038/aps.2010.211] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM To examine the effects of a mixed formulation composed of prostaglandin E1 and lithium (PGE1+Li mixture) on brain damage after cerebral ischemia. The effects of the mixture on protein expression of heat shock proteins (HSPs), p53, and Bcl-2 were also determined. METHODS Brain ischemia was induced with a permanent middle cerebral artery occlusion (pMCAO) in rats. Rats were treated with a single intravenous administration of PGE1, lithium or a PGE1+Li mixture immediately after the ischemic insult. The infarct volume and motor behavior deficits were analyzed 24 h after the ischemic insult. The protein levels of HSP70, glucose-regulated protein 78 (GRP78), HSP60, Bcl-2, and p53 in the striatum of the ipsilateral hemisphere were examined using immunoblotting. RESULTS The mixture (PGE1 22.6 nmol/kg+Li 0.5 mmol/kg) reduced infarct volume and neurological deficits induced by focal cerebral ischemia. Moreover, the mixture had a greater neuroprotective effect against cerebral ischemia compared with PGE1 or lithium alone. The mixture was effective even if it was administered 3 h after ischemia. PGE1+Li also significantly upregulated cytoprotective HSP70, GRP78, HSP60, and Bcl-2 protein levels, while decreasing p53 expression. CONCLUSION These results demonstrated a PGE1+Li mixture with a therapeutic window of up to 3 h for clinical treatment of cerebral ischemia. The PGE1+Li mixture potentially exerts a protective effect after stroke through the induction of HSPs and Bcl-2 proteins.
Collapse
|
22
|
Chiu CT, Chuang DM. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol Ther 2010; 128:281-304. [PMID: 20705090 PMCID: PMC3167234 DOI: 10.1016/j.pharmthera.2010.07.006] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/08/2010] [Indexed: 12/11/2022]
Abstract
Lithium has been used clinically to treat bipolar disorder for over half a century, and remains a fundamental pharmacological therapy for patients with this illness. Although lithium's therapeutic mechanisms are not fully understood, substantial in vitro and in vivo evidence suggests that it has neuroprotective/neurotrophic properties against various insults, and considerable clinical potential for the treatment of several neurodegenerative conditions. Evidence from pharmacological and gene manipulation studies support the notion that glycogen synthase kinase-3 inhibition and induction of brain-derived neurotrophic factor-mediated signaling are lithium's main mechanisms of action, leading to enhanced cell survival pathways and alteration of a wide variety of downstream effectors. By inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, lithium also contributes to calcium homeostasis and suppresses calcium-dependent activation of pro-apoptotic signaling pathways. In addition, lithium decreases inositol 1,4,5-trisphosphate by inhibiting phosphoinositol phosphatases, a process recently identified as a novel mechanism for inducing autophagy. Through these mechanisms, therapeutic doses of lithium have been demonstrated to defend neuronal cells against diverse forms of death insults and to improve behavioral as well as cognitive deficits in various animal models of neurodegenerative diseases, including stroke, amyotrophic lateral sclerosis, fragile X syndrome, as well as Huntington's, Alzheimer's, and Parkinson's diseases, among others. Several clinical trials are also underway to assess the therapeutic effects of lithium for treating these disorders. This article reviews the most recent findings regarding the potential targets involved in lithium's neuroprotective effects, and the implication of these findings for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Chi-Tso Chiu
- Molecular Neurobiology Section, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, 10 Center Drive MSC 1363, Bethesda, MD 20892-1363, USA
| | | |
Collapse
|
23
|
Xu X, Chua KW, Chua CC, Liu CF, Hamdy RC, Chua BHL. Synergistic protective effects of humanin and necrostatin-1 on hypoxia and ischemia/reperfusion injury. Brain Res 2010; 1355:189-94. [PMID: 20682300 DOI: 10.1016/j.brainres.2010.07.080] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 01/04/2023]
Abstract
Since several different pathways are involved in cerebral ischemia/reperfusion injury, combination therapy rather than monotherapy may be required for efficient neuroprotection. In this study, we examined the protective effects of an apoptosis inhibitor Gly(14)-humanin (HNG) and a necroptosis inhibitor necrostatin-1 (Nec-1) on hypoxia/ischemia/reperfusion injury. Cultured mouse primary cortical neurons were incubated with Nec-1, HNG or both in a hypoxia chamber for 60 min. Cell viability was determined by MTS assay at 24h after oxygen-glucose deprivation (OGD) treatment. Mice underwent middle cerebral artery occlusion for 75 min followed by 24h reperfusion. Mice were administered HNG and/or Nec-1 (i.c.v.) at 4h after reperfusion. Neurological deficits were evaluated and the cerebral infarct volume was determined by TTC staining. Nec-1 or HNG alone had protective effects on OGD-induced cell death. Combined treatment with Nec-1 and HNG resulted in more neuroprotection than Nec-1 or HNG alone. Treatment with HNG or Nec-1 reduced cerebral infarct volume from 59.3 ± 2.6% to 47.0 ± 2.3% and 47.1 ± 1.5%, respectively. Combined treatment with HNG and Nec-1 improved neurological scores and decreased infarct volume to 38.6 ± 1.5%. In summary, we demonstrated that the combination treatment of HNG and Nec-1 conferred synergistic neuroprotection on hypoxia/ischemia/reperfusion injury in vitro and in vivo. These findings provide a novel therapeutic strategy for the treatment of stroke by combining anti-apoptosis and anti-necroptosis therapy.
Collapse
Affiliation(s)
- Xingshun Xu
- Institute of Neuroscience, Soochow University, 199 Ren-Ai Road, Suzhou City, Jiangsu Province, 215123, PR China
| | | | | | | | | | | |
Collapse
|
24
|
Shah NG, Tulapurkar ME, Singh IS, Shelhamer JH, Cowan MJ, Hasday JD. Prostaglandin E2 potentiates heat shock-induced heat shock protein 72 expression in A549 cells. Prostaglandins Other Lipid Mediat 2010; 93:1-7. [PMID: 20382255 DOI: 10.1016/j.prostaglandins.2010.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 03/23/2010] [Accepted: 03/31/2010] [Indexed: 12/11/2022]
Abstract
The heat shock (HS) response is an important cytoprotective response comprising the expression of heat shock proteins (HSPs) and orchestrated by the heat/stress-induced transcription factor, heat shock factor-1 (HSF-1). Previous studies suggest that the activation threshold and magnitude of the HS response may be modified by treatment with arachidonic acid (AA). We analyzed the effect of exogenous AA and its metabolites, PGE(2), LTD(4), and 15-HETE on HSF-1-dependent gene expression in A549 human respiratory epithelial-like cells. When added at 1microM, PGE(2) much more than LTD(4), but not 15-HETE increased activity of a synthetic HSF-1-dependent reporter after HS exposure (42 degrees C for 2h), but had no effect in the absence of HS. Exposing A549 cells to HS stimulated the release of PGE(2) and treatment with the cyclooxygenase inhibitor, ibuprofen, reduced HS-induced HSF-1-dependent transcription. PGE(2) increased HS-induced HSP72 mRNA and protein expression but EMSA and Western blot analysis failed to show an effect on HSF-1 DNA binding activity or post-translational modification. In summary, we showed that HS stimulates the generation of PGE(2), which augments the generation of HSPs. The clinical consequences of this pathway have yet to be determined.
Collapse
Affiliation(s)
- Nirav G Shah
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
25
|
Hunsberger J, Austin DR, Henter ID, Chen G. The neurotrophic and neuroprotective effects of psychotropic agents. DIALOGUES IN CLINICAL NEUROSCIENCE 2009. [PMID: 19877500 PMCID: PMC2804881 DOI: 10.31887/dcns.2009.11.3/jhunsberger] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Accumulating evidence suggests that psychotropic agents such as mood stabilizers, antidepressants, and antipsychotics realize their neurotrophic/neuroprotective effects by activating the mitogen activated protein kinaselextracellular signal-related kinase, PI3-kinase, and winglesslglycogen synthase kinase (GSK) 3 signaling pathways. These agents also upregulate the expression of trophic/protective molecules such as brain-derived neurotrophic factor, nerve growth factor, B-cell lymphoma 2, serine-threonine kinase, and Bcl-2 associated athanogene 1, and inactivate proapoptotic molecules such as GSK-3, They also promote neurogenesis and are protective in models of neurodegenerative diseases and ischemia. Most if not all, of this evidence was collected from animal studies that used clinically relevant treatment regimens. Furthermore, human imaging studies have found that these agents increase the volume and density of brain tissue, as well as levels of N-acetyl aspartate and glutamate in selected brain regions. Taken together, these data suggest that the neurotrophic/neuroprotective effects of these agents have broad therapeutic potential in the treatment, not only of mood disorders and schizophrenia, but also neurodegenerative diseases and ischemia.
Collapse
Affiliation(s)
- Joshua Hunsberger
- Laboratory of Molecular Pathophysiology and Experimental Therapeutics, Mood and Anxiety Disorders Program, NIMH, NIH, Bethesda, MD, 20892, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Brain ischemia is one of the most common causes of death and the leading cause of adult disability in the world. Brain ischemic preconditioning (BIP) refers to a transient, sublethal ischemia which results in tolerance to later, otherwise lethal, cerebral ischemia. Many attempts have been made to understand the molecular and cellular mechanisms underlying the neuroprotection offered by ischemic preconditioning. Many studies have shown that neuroprotective mechanisms may involve a series of molecular regulatory pathways including activation of the N-methyl-D-aspartate (NMDA) and adenosine receptors; activation of intracellular signaling pathways such as mitogen activated protein kinases (MAPK) and other protein kinases; upregulation of Bcl-2 and heat shock proteins (HSPs); and activation of the ubiquitin-proteasome pathway and the autophagic-lysosomal pathway. A better understanding of the processes that lead to cell death after stroke as well as of the endogenous neuroprotective mechanisms by which BIP protects against brain ischemic insults could help to develop new therapeutic strategies for this devastating neurological disease. The purpose of the present review is to summarize the neuroprotective mechanisms of BIP and to discuss the possibility of mimicking ischemic preconditioning as a new strategy for preventive treatment of ischemia.
Collapse
|
27
|
Mastroiacovo F, Busceti CL, Biagioni F, Moyanova SG, Meisler MH, Battaglia G, Caricasole A, Bruno V, Nicoletti F. Induction of the Wnt antagonist, Dickkopf-1, contributes to the development of neuronal death in models of brain focal ischemia. J Cereb Blood Flow Metab 2009; 29:264-76. [PMID: 18827832 DOI: 10.1038/jcbfm.2008.111] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inhibition of the canonical Wnt pathway has been implicated in the pathophysiology of neuronal death. Here, we report that the secreted Wnt antagonist, Dickkopf-1 (Dkk-1) is rapidly induced in neurons after induction of focal brain ischemia. In rats undergoing transient focal ischemia in response to brain infusion of endothelin-1, Dkk-1 was induced in neurons of the ischemic core and the penumbra region. Induction of Dkk-1 was associated with a reduced expression of beta-catenin (a downstream signaling molecule of the canonical Wnt pathway), and was not observed in neurons expressing the protective protein, heat shock protein-70. Treatment with lithium ions, which, inter alia, rescue the canonical Wnt pathway, was highly protective against ischemic damage. Dkk-1 was also induced in cortical neurons of mice undergoing permanent middle cerebral artery (MCA) occlusion. This model allowed us to compare wild-type mice with doubleridge mice, which are characterized by a reduced expression of Dkk-1. Doubleridge mice showed an attenuated reduction of beta-catenin and a reduced infarct volume in response to MCA occlusion, providing a direct demonstration that Dkk-1 contributes to the pathophysiology of ischemic neuronal damage. These data rise the interesting possibility that Dkk-1 antagonists or drugs that rescue the Wnt pathway might be neuroprotective in stroke.
Collapse
|
28
|
Han R, Gao B, Sheng R, Zhang LS, Zhang HL, Gu ZL, Qin ZH. Synergistic effects of prostaglandin E1 and lithium in a rat model of cerebral ischemia. Acta Pharmacol Sin 2008; 29:1141-9. [PMID: 18817617 DOI: 10.1111/j.1745-7254.2008.00873.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Heat shock proteins (HSPs) are important regulators of cellular survival and exert neuroprotective effects against cerebral ischemia. Both prostaglandin E1 (PGE1) and lithium have been reported to protect neurons against ischemic injury. The present study was undertaken to examine if lithium could potentiate the neuroprotection of PGE1 against cerebral ischemia, and if the synergetic effects take place at the level of HSPs. METHODS Brain ischemia was induced by a permanent middle cerebral artery occlusion (pMCAO) in rats. Rats were pretreated with subcutaneous injection of lithium for 2 d and a single intravenous administration of PGE1 immediately after ischemic insult. Cerebrocortical blood flow of each group was closely monitored prior to onset of ischemia, 5 min, 15 min, 30 min and 60 min after surgical operation. Body temperature was measured before, 5 min, 2 h and 24 h after the onset of pMCAO. The infarct volume, brain edema and motor behavior deficits were analyzed 24 h after ischemic insult. Cytoprotective HSP70 and heme oxygenase-1 (HO-1) in the striatum of the ipsilateral hemisphere were detected by immunoblotting. Brain sections from the striatum of the ipsilateral hemisphere were double-labeled with the anti-HSP70 antibody and 4,6-diamidino-2-phenylindole (DAPI). RESULTS Treatment with PGE1 (8 and 16 microg/kg, iv) or lithium (0.5 mEq/kg, sc) alone reduced infarct volume, neurological deficits and brain edema induced by focal cerebral ischemia in rats. Moreover, a greater neuroprotection was observed when PGE1 and lithium were given together. Co-administration of PGE1 and lithium significantly upregulated cytoprotective HSP70 and HO-1 protein levels. CONCLUSION Lithium and PGE1 may exert synergistic effects in treatment of cerebral ischemia and thus may have potential clinical value for the treatment of stroke.
Collapse
Affiliation(s)
- Rong Han
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Soochow University School of Medicine, Suzhou 215123, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Figueiredo C, Pais TF, Gomes JR, Chatterjee S. Neuron-microglia crosstalk up-regulates neuronal FGF-2 expression which mediates neuroprotection against excitotoxicity via JNK1/2. J Neurochem 2008; 107:73-85. [PMID: 18643872 DOI: 10.1111/j.1471-4159.2008.05577.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glial cells and neurons are in constant reciprocal signalling both under physiological and neuropathological conditions. Microglial activation is often associated with neuronal death during inflammation of the CNS, although microglial cells are also known to exert a neuroprotective role. In this work, we investigated the interplay between cerebellar granule neurons (CGN) and microglia in the perspective of CGN survival to an excitotoxic stimulus, quinolinic acid (QA), a catabolite of the tryptophan degradation pathway. We observed that CGN succumb to QA challenge via extracellular signal regulated kinase 1 and 2 (ERK) activation. Our data with transgenic mice expressing the natural inhibitor of calpains, calpastatin, indicate that together with cathepsins they mediate QA-induced toxicity acting downstream of the mitogen-activated protein kinase kinase-ERK pathway. Microglial cells are not only resistant to QA but can rescue neurons from QA-mediated toxicity when they are mixed in culture with neurons or by using mixed culture-conditioned medium (MCCM). This effect is mediated via fibroblast growth factor-2 (FGF-2) present in MCCM. FGF-2 is transcriptionally up-regulated in neurons and secreted in the MCCM as a result of neuron-microglia crosstalk. The neuroprotection is associated with the retention of cathepsins in the lysosomes and with transactivation of inducible heat-shock protein 70 downstream of FGF-2. Furthermore, FGF-2 upon release by neurons activates c-jun N-terminal kinase 1 and 2 pathway which also contributes to neuronal survival. We suggest that FGF-2 plays a pivotal role in neuroprotection against QA as an outcome of neuron-microglia interaction.
Collapse
Affiliation(s)
- Catarina Figueiredo
- Centro Biologia Desenvolvimento, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | | |
Collapse
|
30
|
Yucel K, Taylor VH, McKinnon MC, Macdonald K, Alda M, Young LT, MacQueen GM. Bilateral hippocampal volume increase in patients with bipolar disorder and short-term lithium treatment. Neuropsychopharmacology 2008; 33:361-7. [PMID: 17406649 DOI: 10.1038/sj.npp.1301405] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most previous magnetic resonance imaging (MRI) studies of patients with bipolar disorder (BD) report similar hippocampus (HC) volumes across patients and controls, but because patients studied were heterogeneous with respect to course of illness variables and medication status, the conclusions of these studies remain equivocal. Lithium (Li) is the reference-standard drug for BD and its role as an important agent in neuroprotection and neurogenesis has been documented in human and in animal studies. We compared the volume of the HC, hippocampal head (Hh), and body/tail (Hbt) in three groups with no history of medication use before entry into this study: (a) a group of patients treated with Li for 1-8 weeks and then scanned; (b) a group comprised of patients who were unmedicated at the time of scan; and (c) a group of patients treated with either valproic acid or lamotrigine. Healthy age- and sex-matched comparison subjects were also scanned. HC volumes did not differ between the unmedicated and healthy comparison groups. There was a bilateral increase in volumes of HC and Hh in the Li-treated group compared to the unmedicated group, an effect that was apparent even over a brief treatment period. Our study provides further confirmation that Li can exert structural effects on the HC, which are detectable in vivo. The study emphasizes the need to control for even brief exposure to medication in volumetric studies of the HC.
Collapse
Affiliation(s)
- Kaan Yucel
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Bian Q, Shi T, Chuang DM, Qian Y. Lithium reduces ischemia-induced hippocampal CA1 damage and behavioral deficits in gerbils. Brain Res 2007; 1184:270-6. [DOI: 10.1016/j.brainres.2007.09.054] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/12/2007] [Accepted: 09/15/2007] [Indexed: 10/22/2022]
|
32
|
Qin ZH, Tao LY, Chen X. Dual roles of NF-kappaB in cell survival and implications of NF-kappaB inhibitors in neuroprotective therapy. Acta Pharmacol Sin 2007; 28:1859-72. [PMID: 18031598 DOI: 10.1111/j.1745-7254.2007.00741.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
NF-kappaB is a well-characterized transcription factor with multiple physiological and pathological functions. NF-kappaB plays important roles in the development and maturation of lymphoids, regulation of immune and inflammatory response, and cell death and survival. The influence of NF-kappaB on cell survival could be protective or destructive, depending on types, developmental stages of cells, and pathological conditions. The complexity of NF-kappaB in cell death and survival derives from its multiple roles in regulating the expression of a broad array of genes involved in promoting cell death and survival. The activation of NF-kappaB has been found in many neurological disorders, but its actual roles in pathogenesis are still being debated. Many compounds with neuroprotective actions are strongly associated with the inhibition of NF-kappaB, leading to speculation that blocking the pathological activation of NF-kappaB could offer neuroprotective effects in certain neurodegenerative conditions. This paper reviews the recent developments in understanding the dual roles of NF-kappaB in cell death and survival and explores its possible usefulness in treating neurological diseases. This paper will summarize the genes regulated by NF-kappaB that are involved in cell death and survival to elucidate why NF-kappaB promotes cell survival in some conditions while facilitating cell death in other conditions. This paper will also focus on the effects of various NF-kappaB inhibitors on neuroprotection in certain pathological conditions to speculate if NF-kappaB is a potential target for neuroprotective therapy.
Collapse
Affiliation(s)
- Zheng-hong Qin
- Department of Pharmacology, Soochow University School of Medicine, Suzhou 215123, China.
| | | | | |
Collapse
|
33
|
Xu XH, Hua YN, Zhang HL, Wu JC, Miao YZ, Han R, Gu ZL, Qin ZH. Greater stress protein expression enhanced by combined prostaglandin A1 and lithium in a rat model of focal ischemia. Acta Pharmacol Sin 2007; 28:1097-104. [PMID: 17640469 DOI: 10.1111/j.1745-7254.2007.00624.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To investigate the effects of lithium (Li) and prostaglandin A1 (PGA1) on the expression of heat shock factor 1 (HSF-1), heat shock proteins (HSP), and apoptosis protease activating factor-1 (Apaf-1) induced by permanent focal ischemia in rats. METHODS The rats were pretreated with a subcutaneous (sc) injection of Li for 2 d or a single intracerebral ventricle (icv) administration of PGA1 for 15 min before ischemic insult, or a combination of Li (sc, 1 mEq/kg, 2 d) and PGA1 (icv, 15 min prior to ischemic insult). Brain ischemia was induced by the permanent middle cerebral artery occlusion (pMCAO). Twenty-four hours after the occlusion, the expression of HSF-1, HSP, and Apaf-1 in the ischemic striatum were examined with Western blot analysis. RESULTS The expression of HSF-1, heme oxygenase-1 (HO-1), HSP90alpha, and Apaf-1 were significantly increased, but the expression of HSP90beta was significantly decreased 24 h after the pMCAO. PGA1 and Li and their combination significantly enhanced the ischemia-induced elevation in the levels of HSF-1, HO-1, and HSP90alpha, and recovered HSP90beta expression, but decreased Apaf-1 levels in the ischemic striatum. CONCLUSION The present study demonstrates that PGA1 and Li have synergistic effects on the enhancement of the expression of HSP, suggesting that the synergistic effects of PGA1 and Li in the rat model of permanent focal cerebral ischemia may be mediated by the enhancement expression of HSP expression and the downregulation of Apaf-1. Our studies suggest that combined PGA1 and Li may have potential clinical value for the treatment of stroke.
Collapse
Affiliation(s)
- Xi-hui Xu
- Laboratory of Aging and Nervous Disease, Soochow University School of Medicine, Suzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kurosawa S, Hashimoto E, Ukai W, Toki S, Saito S, Saito T. Olanzapine potentiates neuronal survival and neural stem cell differentiation: regulation of endoplasmic reticulum stress response proteins. J Neural Transm (Vienna) 2007; 114:1121-8. [PMID: 17557129 DOI: 10.1007/s00702-007-0747-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 04/12/2007] [Indexed: 10/23/2022]
Abstract
Recent clinical neuroimaging studies have suggested that morphological brain changes occur and progress in the course of schizophrenia. Although the neurogenetic and neurotrophic effects of antipsychotics are considered to contribute to the prevention of reduction in brain volume, the cellular molecular mechanisms of action of antipsychotics have not yet been elucidated. We examined the effects of antipsychotics on the endoplasmic reticulum (ER) stress-induced damages of neurons and neural stem cells (NSCs) using cultured cells. In the neuronal cultures, the atypical antipsychotic olanzapine protected neurons from thapsigargin (1 microM)-induced injury. It was observed that a low concentration of thapsigargin (10 nM) that did not affect the neuronal survival could reduce neuronal differentiation of cultured NSCs, suggesting a role of ER stress in the differentiation function of NSCs. Treatment with olanzapine increased the neuronal differentiation suppressed by the exposure to thapsigargin (10 nM). The thapsigargin-induced ER chaperones, GRP78, which indicate the ER stress condition of the cell, were decreased by the treatment with the atypical antipsychotics olanzapine and quetiapine but not by the typical antipsychotic haloperidol. These results indicate that the amelioration of ER-stress might be involved in the cellular mechanisms of atypical antipsychotics to produce neuroprotective and neurogenetic actions in neurons and NSCs, suggesting potential roles of these drugs for treatment of schizophrenia.
Collapse
Affiliation(s)
- S Kurosawa
- Department of Neuropsychiatry, Sapporo Medical University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Truettner JS, Hu B, Alonso OF, Bramlett HM, Kokame K, Dietrich WD. Subcellular Stress Response after Traumatic Brain Injury. J Neurotrauma 2007; 24:599-612. [PMID: 17439344 DOI: 10.1089/neu.2006.0186] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Traumatic brain injury (TBI) initiates a complex genetic response that may include the expression of organelle specific stress genes. We investigated the effects of brain trauma on the expression of a number of stress genes by in situ hybridization and Western blot analysis including the endoplasmic reticulum (ER) stress gene grp78, ER protein processing enzymes calnexin and protein disulphide isomerase (PDI), the mitochondrial stress gene hsp60, and the cytoplasmic stress gene hsp70. Male Sprague-Dawley rats were subjected either to sham-surgery or moderate (1.8-2.2 atm) parasagittal fluid-percussion (F-P) brain injury followed by 30 min of either normoxic or hypoxic (30-40 mm Hg) gas levels. Expression of grp78 was increased in the ipsilateral cerebral cortex and dentate gyrus beginning 4 h after trauma plus hypoxia. Similarly, mRNA encoding the mitochondrial hsp60 was induced in the ipsilateral outer cortical layers at 4-24 h after TBI plus hypoxia. Calnexin and PDI mRNAs were not significantly altered following TBI with or without secondary hypoxia. In contrast, mRNA of the cytoplasmic hsp70 was strongly induced at 4 h after brain injury in multiple brain regions within the injured hemisphere, and this expression was greatly enhanced by secondary hypoxia. Because subcellular stress gene expression may reflect where unfolded or damaged proteins are abundant, these findings suggest that abnormal proteins are localized mainly in the cytoplasm, and to a lesser degree in the ER lumen and mitochondria after brain trauma. Thus, distinct parts of the cellular machinery respond to traumatic and metabolic stresses in specific ways.
Collapse
Affiliation(s)
- Jessie S Truettner
- Department of Neurological Surgery, Neurotrauma Research Center, University of Miami Miller School of Medicine, Miami, Florida 33101, USA
| | | | | | | | | | | |
Collapse
|