1
|
Chen X, Zhu X. Lactate: Beyond a mere fuel in the epileptic brain. Neuropharmacology 2025; 266:110273. [PMID: 39719259 DOI: 10.1016/j.neuropharm.2024.110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/08/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Epilepsy, a prevalent neurological disorder characterized by spontaneous recurrent seizures, significantly impacts physiological and cognitive functions. Emerging evidence suggests a crucial role for metabolic factors, particularly lactate, in epilepsy. We discuss the applicability of the astrocyte-neuron lactate shuttle (ANLS) model during acute seizure events and examine lactate's metabolic adaptation in epilepsy progression. Additionally, the roles of lactate metabolism in microglia and oligodendrocytes are considered, aiming to supplement our understanding of neuro-glial metabolic interactions as extensions of the ANLS model. Additionally, lactate modulates neuronal excitability via its interaction with hydroxycarboxylic acid receptor 1 (HCAR1), alongside additional mechanisms involving acid-sensing ion channels (ASICs) and ATP-sensitive potassium (KATP) channels, which contribute as secondary modulatory pathways. In conclusion, we propose that lactate functions as more than a mere fuel source in the epileptic brain, offering potential insights into new therapeutic targets for seizure control.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China; Clinical Medicine, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
2
|
Wang Y, Zhao J, Zhao L. L-Lactate Administration Improved Synaptic Plasticity and Cognition in Early 3xTg-AD Mice. Int J Mol Sci 2025; 26:1486. [PMID: 40003952 PMCID: PMC11855780 DOI: 10.3390/ijms26041486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Synaptic plasticity impairment and behavioral deficits constitute classical pathological hallmarks in early-stage Alzheimer's disease (AD). Emerging evidence suggests these synaptic dysfunctions may stem from metabolic dysregulation, particularly impaired aerobic glycolysis. As a key product of astrocyte-mediated aerobic glycolysis, lactate serves dual roles as both an energy substrate and a signaling molecule, playing a critical regulatory role in synaptic plasticity and long-term memory formation. This study investigated whether exogenous L-lactate supplementation could ameliorate synaptic dysfunction and cognitive deficits in early-stage AD models. Our findings reveal significant reductions in hippocampal lactate levels in experimental AD mice. Systemic administration of L-lactate (200 mg/kg) effectively restored physiological lactate concentrations in both hippocampal tissue and cerebrospinal fluid (CSF). Chronic L-lactate treatment significantly improved spatial learning and memory performance in behavioral assessments. Electrophysiological recordings demonstrated that either acute bath application of L-lactate (2 mM) to hippocampal slices or chronic intraperitoneal administration enhanced high-frequency stimulation (HFS)-induced long-term potentiation (LTP) magnitude in 3xTg-AD mice. Ultrastructural analysis revealed that L-lactate treatment enhanced synaptic density and improved morphological features of hippocampal synapses. At the molecular level, L-lactate administration upregulated synaptic marker synaptophysin (SYP) expression while downregulating activity-regulated cytoskeletal-associated protein (ARC) levels in AD mice. These multimodal findings demonstrate that exogenous L-lactate supplementation effectively restores synaptic plasticity and cognitive function in early-stage 3xTg-AD mice through concurrent improvements at behavioral, structural, and molecular levels.
Collapse
Affiliation(s)
- Yaxin Wang
- School of Physical Education, Shanxi University, Taiyuan 030006, China; (Y.W.); (J.Z.)
| | - Jinfeng Zhao
- School of Physical Education, Shanxi University, Taiyuan 030006, China; (Y.W.); (J.Z.)
| | - Li Zhao
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
3
|
Aveseh M, Koushkie-Jahromi M, Nemati J, Esmaeili-Mahani S, Hosseini NS. Lactate entrance into the brain facilities adipose tissue lipolysis during exercise via circulating calcitonin gene-related peptide. Arch Physiol Biochem 2024; 130:790-799. [PMID: 37982717 DOI: 10.1080/13813455.2023.2283684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
OBJECTIVES We assessed the relationships between CGRP, lactate and fat regulation. METHODS We evaluated the effect of intracerebroventricular (i.c.v.) injection of lactate and acute exercise on brain CGRP expression, and its concentration in serum/cerebrospinal fluid (SCF) in rats. RESULTS Injection of lactate up-regulated CGRP expression in the cortex and CSF and activated p38-mitogen-activated protein kinases (p38-MAPK) pathway. Co-injection of lactate and sb203580, deterred lactate-induced up-regulation of CGRP in the brain and CSF. Exercise increased the CGRP expression in the brain and CSF and up-regulated fat metabolism. Inhibition of lactate entrance into the brain using alpha-cyano-4-hydroxycinnamate (4-CIN) diminished exercise-induced CGRP up-regulation in the brain and CSF. Reducing the circulating blood lactate by pre-treatment of the animals with dichloroacetate (DCA) had no effect on exercise-induced increase in CGRP expression or fat metabolism during exercise. CONCLUSIONS Lactate probably acts as one of a signalling molecule in the brain to regulate fat metabolism during exercise.
Collapse
Affiliation(s)
- Malihe Aveseh
- Sport Sciences Department, Shiraz University, Shiraz, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Javad Nemati
- Sport Sciences Department, Shiraz University, Shiraz, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Najmeh Sadat Hosseini
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
4
|
Karger G, Willker JE, Harders AR, Watermann P, Dringen R. ATP Restoration by ATP-Deprived Cultured Primary Astrocytes. Neurochem Res 2024; 50:13. [PMID: 39549173 PMCID: PMC11569012 DOI: 10.1007/s11064-024-04276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 11/18/2024]
Abstract
A high cellular concentration of adenosine triphosphate (ATP) is essential to fuel many important functions of brain astrocytes. Although cellular ATP depletion has frequently been reported for astrocytes, little is known on the metabolic pathways that contribute to ATP restoration by ATP-depleted astrocytes. Incubation of cultured primary rat astrocytes in glucose-free buffer for 60 min with the mitochondrial uncoupler BAM15 lowered the cellular ATP content by around 70%, the total amount of adenosine phosphates by around 50% and the adenylate energy charge (AEC) from 0.9 to 0.6. Testing for ATP restoration after removal of the uncoupler revealed that the presence of glucose as exclusive substrate allowed the cells to restore within 6 h around 80% of the initial ATP content, while coapplication of adenosine plus glucose enabled the cells to fully restore their initial ATP content within 60 min. A rapid but incomplete and transient ATP restoration was found for astrocytes that had been exposed to adenosine alone. This restoration was completely prevented by application of the pyruvate uptake inhibitor UK5099, the respiratory chain inhibitor antimycin A or by the continuous presence of BAM15. However, the presence of these compounds strongly accelerated the release of lactate from the cells, suggesting that the ribose moiety of adenosine can serve as substrate to fuel some ATP restoration via mitochondrial metabolism. Finally, the adenosine-accelerated ATP restoration in glucose-fed astrocytes was inhibited by the presence of the adenosine kinase inhibitor ABT-702. These data demonstrate that astrocytes require for a rapid and complete ATP restoration the presence of both glucose as substrate and adenosine as AMP precursor.
Collapse
Affiliation(s)
- Gabriele Karger
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Johanna Elisabeth Willker
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Antonia Regina Harders
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Patrick Watermann
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.
| |
Collapse
|
5
|
Zachos KA, Choi J, Godin O, Chernega T, Kwak HA, Jung JH, Aouizerate B, Aubin V, Bellivier F, Belzeaux-R R, Courtet P, Dubertret C, Etain B, Haffen E, Lefrere A A, Llorca PM, Olié E, Polosan M, Samalin L, Schwan R, Roux P, Barau C, Richard JR, Tamouza R, Leboyer M, Andreazza AC. Mitochondrial Biomarkers and Metabolic Syndrome in Bipolar Disorder. Psychiatry Res 2024; 339:116063. [PMID: 39003800 DOI: 10.1016/j.psychres.2024.116063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024]
Abstract
The object of this study is test whether mitochondrial blood-based biomarkers are associated with markers of metabolic syndrome in bipolar disorder, hypothesizing higher lactate but unchanged cell-free circulating mitochondrial DNA levels in bipolar disorder patients with metabolic syndrome. In a cohort study, primary testing from the FondaMental Advanced Centers of Expertise for bipolar disorder (FACE-BD) was conducted, including 837 stable bipolar disorder patients. The I-GIVE validation cohort consists of 237 participants: stable and acute bipolar patients, non-psychiatric controls, and acute schizophrenia patients. Multivariable regression analyses show significant lactate association with triglycerides, fasting glucose and systolic and diastolic blood pressure. Significantly higher levels of lactate were associated with presence of metabolic syndrome after adjusting for potential confounding factors. Mitochondrial-targeted metabolomics identified distinct metabolite profiles in patients with lactate presence and metabolic syndrome, differing from those without lactate changes but with metabolic syndrome. Circulating cell-free mitochondrial DNA was not associated with metabolic syndrome. This thorough analysis mitochondrial biomarkers indicate the associations with lactate and metabolic syndrome, while showing the mitochondrial metabolites can further stratify metabolic profiles in patients with BD. This study is relevant to improve the identification and stratification of bipolar patients with metabolic syndrome and provide potential personalized-therapeutic opportunities.
Collapse
Affiliation(s)
- Kassandra A Zachos
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Jaehyoung Choi
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada
| | - Ophelia Godin
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), ECNP Immuno-NeuroPsychiatry Network; Fondation FondaMental, Créteil, France
| | - Timofei Chernega
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Haejin Angela Kwak
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jae H Jung
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bruno Aouizerate
- Fondation FondaMental, Créteil, France; Centre Hospitalier Charles Perrens, Pôle de Psychiatrie Générale et Universitaire, Laboratoire NutriNeuro (UMR INRAE 1286), Université de Bordeaux, Bordeaux, France
| | - Valérie Aubin
- Fondation FondaMental, Créteil, France; Pôle de Psychiatrie, Centre Hospitalier Princesse Grace, Monaco
| | - Frank Bellivier
- Fondation FondaMental, Créteil, France; Université Paris Cité, INSERM UMR-S1144, AP-HPm GH Saint-Louis-Bariboisière-Fernand Widal, Pôle Neurosciences, Paris Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France; AP-HP, Groupe Hospitalo-Universitaire AP-HP Nord, DMU Neurosciences, Hôpital Fernand Widal, Département de Psychiatrie et de Médecine Addictologique, Paris, France
| | - Raoul Belzeaux-R
- Fondation FondaMental, Créteil, France; Univ. Montpellier & Department of Psychiatry, CHU de Montpellier, France
| | - Philippe Courtet
- Fondation FondaMental, Créteil, France; IGF, Univ. Montpellier, CNRS, INSERM, Department of Emergency Psychiatry and Acute Care, CHU Montpellier, Montpellier, France
| | - Caroline Dubertret
- Fondation FondaMental, Créteil, France; AP-HP, Groupe Hospitalo-Universitaire AP-HP Nord, DMU ESPRIT, Service de Psychiatrie et Addictologie, Hôpital Louis Mourier, Colombes, France, Université de Paris, Inserm UMR1266, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Bruno Etain
- Fondation FondaMental, Créteil, France; Université Paris Cité, INSERM UMR-S1144, AP-HPm GH Saint-Louis-Bariboisière-Fernand Widal, Pôle Neurosciences, Paris Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France; AP-HP, Groupe Hospitalo-Universitaire AP-HP Nord, DMU Neurosciences, Hôpital Fernand Widal, Département de Psychiatrie et de Médecine Addictologique, Paris, France
| | - Emmanuel Haffen
- Fondation FondaMental, Créteil, France; Université de Franche-Comté, UR 481 LINC, Service de Psychiatrie de l'Adulte, CIC-1431 INSERM, CHU de Besançon, F-2500, France
| | - Antoine Lefrere A
- Fondation FondaMental, Créteil, France; Pôle de Psychiatrie, Assistance Publique Hôpitaux de Marseille, Marseille, France, INT-UMR7289, CNRS Aix-Marseille Université, Marseille, France
| | - Pierre-Michel Llorca
- Fondation FondaMental, Créteil, France; Department of Psychiatry, CHU Clermont-Ferrand, University of Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal (UMR 6602), Clermont-Ferrand, France
| | - Emilie Olié
- Fondation FondaMental, Créteil, France; IGF, Univ. Montpellier, CNRS, INSERM, Department of Emergency Psychiatry and Acute Care, CHU Montpellier, Montpellier, France
| | - Mircea Polosan
- Fondation FondaMental, Créteil, France; Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Ludovic Samalin
- Fondation FondaMental, Créteil, France; Department of Psychiatry, CHU Clermont-Ferrand, University of Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal (UMR 6602), Clermont-Ferrand, France
| | - Raymund Schwan
- Université de Lorraine, Centre Psychothérapique de Nancy, Inserm U1254, Nancy, France
| | - Paul Roux
- Fondation FondaMental, Créteil, France; Centre Hospitalier de Versailles, Service Universitaire de Psychiatrie d'Adulte et d'Addictologie, Le Chesnay, France; Université Paris-Saclay & Université Versailles Saint-Quentin-En-Yvelines, INSERM UMR1018, Centre de recherche en Épidémiologie et Santé des Populations, Equipe DevPsy-DisAP, Paris, France
| | - Caroline Barau
- Plateforme de Ressources Biologiques, HU Henri Mondor, Créteil, France
| | - Jean Romain Richard
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), ECNP Immuno-NeuroPsychiatry Network
| | - Ryad Tamouza
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), ECNP Immuno-NeuroPsychiatry Network; Fondation FondaMental, Créteil, France
| | - Marion Leboyer
- INSERM U955 IMRB, Translational Neuropsychiatry laboratory, AP-HP, Hôpital Henri Mondor, DMU IMPACT, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Paris Est Créteil University (UPEC), ECNP Immuno-NeuroPsychiatry Network; Fondation FondaMental, Créteil, France.
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Mitochondrial Innovation Initiative, MITO2i, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Xie J, Yan J, Ji K, Guo Y, Xu S, Shen D, Li C, Gao H, Zhao L. Fibroblast growth factor 21 enhances learning and memory performance in mice by regulating hippocampal L-lactate homeostasis. Int J Biol Macromol 2024; 271:132667. [PMID: 38801850 DOI: 10.1016/j.ijbiomac.2024.132667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Fibroblast growth factor 21 (FGF21) is one endogenous metabolic molecule that functions as a regulator in glucose and lipid homeostasis. However, the effect of FGF21 on L-lactate homeostasis and its mechanism remains unclear until now. Forty-five Six-week-old male C57BL/6 mice were divided into three groups: control, L-lactate, and FGF21 (1.5 mg/kg) groups. At the end of the treatment, nuclear magnetic resonance-based metabolomics, and key proteins related to L-lactate homeostasis were determined respectively to evaluate the efficacy of FGF21 and its mechanisms. The results showed that, compared to the vehicle group, the L-lactate-treated mice displayed learning and memory performance impairments, as well as reduced hippocampal ATP and NADH levels, but increased oxidative stress, mitochondrial dysfunction, and apoptosis, which suggesting inhibited L-lactate-pyruvate conversion in the brain. Conversely, FGF21 treatment ameliorated the L-lactate accumulation state, accompanied by restoration of the learning and memory defects, indicating enhanced L-lactate uptake and utilization in hippocampal neurons. We demonstrated that maintaining constant L-lactate-pyruvate flux is essential for preserving neuronal bioenergetic and redox levels. FGF21 contributed to preparing the brain for situations of high availability of L-lactate, thus preventing neuronal vulnerability in metabolic reprogramming.
Collapse
Affiliation(s)
- Jiaojiao Xie
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jiapin Yan
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Keru Ji
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yuejun Guo
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Sibei Xu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Danjie Shen
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Chen Li
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Hongchang Gao
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou 325035, Zhejiang, China.
| | - Liangcai Zhao
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| |
Collapse
|
7
|
Kann O. Lactate as a supplemental fuel for synaptic transmission and neuronal network oscillations: Potentials and limitations. J Neurochem 2024; 168:608-631. [PMID: 37309602 DOI: 10.1111/jnc.15867] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/14/2023]
Abstract
Lactate shuttled from the blood circulation, astrocytes, oligodendrocytes or even activated microglia (resident macrophages) to neurons has been hypothesized to represent a major source of pyruvate compared to what is normally produced endogenously by neuronal glucose metabolism. However, the role of lactate oxidation in fueling neuronal signaling associated with complex cortex function, such as perception, motor activity, and memory formation, is widely unclear. This issue has been experimentally addressed using electrophysiology in hippocampal slice preparations (ex vivo) that permit the induction of different neural network activation states by electrical stimulation, optogenetic tools or receptor ligand application. Collectively, these studies suggest that lactate in the absence of glucose (lactate only) impairs gamma (30-70 Hz) and theta-gamma oscillations, which feature high energy demand revealed by the cerebral metabolic rate of oxygen (CMRO2, set to 100%). The impairment comprises oscillation attenuation or moderate neural bursts (excitation-inhibition imbalance). The bursting is suppressed by elevating the glucose fraction in energy substrate supply. By contrast, lactate can retain certain electric stimulus-induced neural population responses and intermittent sharp wave-ripple activity that features lower energy expenditure (CMRO2 of about 65%). Lactate utilization increases the oxygen consumption by about 9% during sharp wave-ripples reflecting enhanced adenosine-5'-triphosphate (ATP) synthesis by oxidative phosphorylation in mitochondria. Moreover, lactate attenuates neurotransmission in glutamatergic pyramidal cells and fast-spiking, γ-aminobutyric acid (GABA)ergic interneurons by reducing neurotransmitter release from presynaptic terminals. By contrast, the generation and propagation of action potentials in the axon is regular. In conclusion, lactate is less effective than glucose and potentially detrimental during neural network rhythms featuring high energetic costs, likely through the lack of some obligatory ATP synthesis by aerobic glycolysis at excitatory and inhibitory synapses. High lactate/glucose ratios might contribute to central fatigue, cognitive impairment, and epileptic seizures partially seen, for instance, during exhaustive physical exercise, hypoglycemia and neuroinflammation.
Collapse
Affiliation(s)
- Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Caddye E, Pineau J, Reyniers J, Ronen I, Colasanti A. Lactate: A Theranostic Biomarker for Metabolic Psychiatry? Antioxidants (Basel) 2023; 12:1656. [PMID: 37759960 PMCID: PMC10526106 DOI: 10.3390/antiox12091656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Alterations in neurometabolism and mitochondria are implicated in the pathophysiology of psychiatric conditions such as mood disorders and schizophrenia. Thus, developing objective biomarkers related to brain mitochondrial function is crucial for the development of interventions, such as central nervous system penetrating agents that target brain health. Lactate, a major circulatory fuel source that can be produced and utilized by the brain and body, is presented as a theranostic biomarker for neurometabolic dysfunction in psychiatric conditions. This concept is based on three key properties of lactate that make it an intriguing metabolic intermediate with implications for this field: Firstly, the lactate response to various stimuli, including physiological or psychological stress, represents a quantifiable and dynamic marker that reflects metabolic and mitochondrial health. Second, lactate concentration in the brain is tightly regulated according to the sleep-wake cycle, the dysregulation of which is implicated in both metabolic and mood disorders. Third, lactate universally integrates arousal behaviours, pH, cellular metabolism, redox states, oxidative stress, and inflammation, and can signal and encode this information via intra- and extracellular pathways in the brain. In this review, we expand on the above properties of lactate and discuss the methodological developments and rationale for the use of functional magnetic resonance spectroscopy for in vivo monitoring of brain lactate. We conclude that accurate and dynamic assessment of brain lactate responses might contribute to the development of novel and personalized therapies that improve mitochondrial health in psychiatric disorders and other conditions associated with neurometabolic dysfunction.
Collapse
Affiliation(s)
- Edward Caddye
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| | - Julien Pineau
- Independent Researcher, Florianópolis 88062-300, Brazil
| | - Joshua Reyniers
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- School of Life Sciences, University of Sussex, Falmer BN1 9RR, UK
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| | - Alessandro Colasanti
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| |
Collapse
|
9
|
Colucci ACM, Tassinari ID, Loss EDS, de Fraga LS. History and Function of the Lactate Receptor GPR81/HCAR1 in the Brain: A Putative Therapeutic Target for the Treatment of Cerebral Ischemia. Neuroscience 2023; 526:144-163. [PMID: 37391123 DOI: 10.1016/j.neuroscience.2023.06.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
GPR81 is a G-protein coupled receptor (GPCR) discovered in 2001, but deorphanized only 7 years later, when its affinity for lactate as an endogenous ligand was demonstrated. More recently, GPR81 expression and distribution in the brain were also confirmed and the function of lactate as a volume transmitter has been suggested since then. These findings shed light on a new function of lactate acting as a signaling molecule in the central nervous system, in addition to its well-known role as a metabolic fuel for neurons. GPR81 seems to act as a metabolic sensor, coupling energy metabolism, synaptic activity, and blood flow. Activation of this receptor leads to Gi-mediated downregulation of adenylyl cyclase and subsequent reduction in cAMP levels, regulating several downstream pathways. Recent studies have also suggested the potential role of lactate as a neuroprotective agent, mainly under brain ischemic conditions. This effect is usually attributed to the metabolic role of lactate, but the underlying mechanisms need further investigation and could be related to lactate signaling via GPR81. The activation of GPR81 showed promising results for neuroprotection: it modulates many processes involved in the pathophysiology of ischemia. In this review, we summarize the history of GPR81, starting with its deorphanization; then, we discuss GPR81 expression and distribution, signaling transduction cascades, and neuroprotective roles. Lastly, we propose GPR81 as a potential target for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Anna Clara Machado Colucci
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil
| | - Isadora D'Ávila Tassinari
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil
| | - Eloísa da Silveira Loss
- Laboratório de Endocrinologia Experimental (LABENEX), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil
| | - Luciano Stürmer de Fraga
- Laboratório de Neurobiologia e Metabolismo (NeuroMet), Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, lab. 660, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Porto Alegre, Brazil; Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, Porto Alegre, Brazil.
| |
Collapse
|
10
|
Cruz E, Bessières B, Magistretti P, Alberini CM. Differential role of neuronal glucose and PFKFB3 in memory formation during development. Glia 2022; 70:2207-2231. [PMID: 35916383 PMCID: PMC9474594 DOI: 10.1002/glia.24248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/06/2022]
Abstract
The consumption of glucose in the brain peaks during late childhood; yet, whether and how glucose metabolism is differentially regulated in the brain during childhood compared to adulthood remains to be understood. In particular, it remains to be determined how glucose metabolism is involved in behavioral activations such as learning. Here we show that, compared to adult, the juvenile rat hippocampus has significantly higher mRNA levels of several glucose metabolism enzymes belonging to all glucose metabolism pathways, as well as higher levels of the monocarboxylate transporters MCT1 and MCT4 and the glucose transporters endothelial-GLUT1 and GLUT3 proteins. Furthermore, relative to adults, long-term episodic memory formation in juvenile animals requires significantly higher rates of aerobic glycolysis and astrocytic-neuronal lactate coupling in the hippocampus. Only juvenile but not adult long-term memory formation recruits GLUT3, neuronal 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and more efficiently engages glucose in the hippocampus. Hence, compared to adult, the juvenile hippocampus distinctively regulates glucose metabolism pathways, and formation of long-term memory in juveniles involves differential neuronal glucose metabolism mechanisms.
Collapse
Affiliation(s)
- Emmanuel Cruz
- Center for Neural Science, New York University, New York, New York 10003
| | - Benjamin Bessières
- Center for Neural Science, New York University, New York, New York 10003
| | - Pierre Magistretti
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Cristina M. Alberini
- Center for Neural Science, New York University, New York, New York 10003
- Lead contact: Cristina M. Alberini
| |
Collapse
|
11
|
Zhang M, Wang Y, Bai Y, Dai L, Guo H. Monocarboxylate Transporter 1 May Benefit Cerebral Ischemia via Facilitating Lactate Transport From Glial Cells to Neurons. Front Neurol 2022; 13:781063. [PMID: 35547368 PMCID: PMC9081727 DOI: 10.3389/fneur.2022.781063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Monocarboxylate transporter 1 (MCT1) is expressed in glial cells and some populations of neurons. MCT1 facilitates astrocytes or oligodendrocytes (OLs) in the energy supplement of neurons, which is crucial for maintaining the neuronal activity and axonal function. It is suggested that MCT1 upregulation in cerebral ischemia is protective to ischemia/reperfusion (I/R) injury. Otherwise, its underlying mechanism has not been clearly discussed. In this review, it provides a novel insight that MCT1 may protect brain from I/R injury via facilitating lactate transport from glial cells (such as, astrocytes and OLs) to neurons. It extensively discusses (1) the structure and localization of MCT1; (2) the regulation of MCT1 in lactate transport among astrocytes, OLs, and neurons; and (3) the regulation of MCT1 in the cellular response of lactate accumulation under ischemic attack. At last, this review concludes that MCT1, in cerebral ischemia, may improve lactate transport from glial cells to neurons, which subsequently alleviates cellular damage induced by lactate accumulation (mostly in glial cells), and meets the energy metabolism of neurons.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yanyan Wang
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yun Bai
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Limeng Dai
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Hong Guo
- Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| |
Collapse
|
12
|
Geßner C, Krüger A, Folkow LP, Fehrle W, Mikkelsen B, Burmester T. Transcriptomes Suggest That Pinniped and Cetacean Brains Have a High Capacity for Aerobic Metabolism While Reducing Energy-Intensive Processes Such as Synaptic Transmission. Front Mol Neurosci 2022; 15:877349. [PMID: 35615068 PMCID: PMC9126210 DOI: 10.3389/fnmol.2022.877349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
The mammalian brain is characterized by high energy expenditure and small energy reserves, making it dependent on continuous vascular oxygen and nutritional supply. The brain is therefore extremely vulnerable to hypoxia. While neurons of most terrestrial mammals suffer from irreversible damage after only short periods of hypoxia, neurons of the deep-diving hooded seal (Cystophora cristata) show a remarkable hypoxia-tolerance. To identify the molecular mechanisms underlying the intrinsic hypoxia-tolerance, we excised neurons from the visual cortices of hooded seals and mice (Mus musculus) by laser capture microdissection. A comparison of the neuronal transcriptomes suggests that, compared to mice, hooded seal neurons are endowed with an enhanced aerobic metabolic capacity, a reduced synaptic transmission and an elevated antioxidant defense. Publicly available whole-tissue brain transcriptomes of the bowhead whale (Balaena mysticetus), long-finned pilot whale (Globicephala melas), minke whale (Balaenoptera acutorostrata) and killer whale (Orcinus orca), supplemented with 2 newly sequenced long-finned pilot whales, suggest that, compared to cattle (Bos taurus), the cetacean brain also displays elevated aerobic capacity and reduced synaptic transmission. We conclude that the brain energy balance of diving mammals is preserved during diving, due to reduced synaptic transmission that limits energy expenditure, while the elevated aerobic capacity allows efficient use of oxygen to restore energy balance during surfacing between dives.
Collapse
Affiliation(s)
- Cornelia Geßner
- Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Alena Krüger
- Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Lars P. Folkow
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Wilfrid Fehrle
- Institute of Pathology With the Sections Molecular Pathology and Cytopathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | |
Collapse
|
13
|
Lactate induces synapse-specific potentiation on CA3 pyramidal cells of rat hippocampus. PLoS One 2020; 15:e0242309. [PMID: 33180836 PMCID: PMC7660554 DOI: 10.1371/journal.pone.0242309] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023] Open
Abstract
Neuronal activity within the physiologic range stimulates lactate production that, via metabolic pathways or operating through an array of G-protein-coupled receptors, regulates intrinsic excitability and synaptic transmission. The recent discovery that lactate exerts a tight control of ion channels, neurotransmitter release, and synaptic plasticity-related intracellular signaling cascades opens up the possibility that lactate regulates synaptic potentiation at central synapses. Here, we demonstrate that extracellular lactate (1–2 mM) induces glutamatergic potentiation on the recurrent collateral synapses of hippocampal CA3 pyramidal cells. This potentiation is independent of lactate transport and further metabolism, but requires activation of NMDA receptors, postsynaptic calcium accumulation, and activation of a G-protein-coupled receptor sensitive to cholera toxin. Furthermore, perfusion of 3,5- dihydroxybenzoic acid, a lactate receptor agonist, mimics this form of synaptic potentiation. The transduction mechanism underlying this novel form of synaptic plasticity requires G-protein βγ subunits, inositol-1,4,5-trisphosphate 3-kinase, PKC, and CaMKII. Activation of these signaling cascades is compartmentalized in a synapse-specific manner since lactate does not induce potentiation at the mossy fiber synapses of CA3 pyramidal cells. Consistent with this synapse-specific potentiation, lactate increases the output discharge of CA3 neurons when recurrent collaterals are repeatedly activated during lactate perfusion. This study provides new insights into the cellular mechanisms by which lactate, acting via a membrane receptor, contributes to the memory formation process.
Collapse
|
14
|
Augusto-Oliveira M, Arrifano GP, Takeda PY, Lopes-Araújo A, Santos-Sacramento L, Anthony DC, Verkhratsky A, Crespo-Lopez ME. Astroglia-specific contributions to the regulation of synapses, cognition and behaviour. Neurosci Biobehav Rev 2020; 118:331-357. [DOI: 10.1016/j.neubiorev.2020.07.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
|
15
|
The Lactate Receptor HCAR1 Modulates Neuronal Network Activity through the Activation of G α and G βγ Subunits. J Neurosci 2019; 39:4422-4433. [PMID: 30926749 DOI: 10.1523/jneurosci.2092-18.2019] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/28/2022] Open
Abstract
The discovery of a G-protein-coupled receptor for lactate named hydroxycarboxylic acid receptor 1 (HCAR1) in neurons has pointed to additional nonmetabolic effects of lactate for regulating neuronal network activity. In this study, we characterized the intracellular pathways engaged by HCAR1 activation, using mouse primary cortical neurons from wild-type (WT) and HCAR1 knock-out (KO) mice from both sexes. Using whole-cell patch clamp, we found that the activation of HCAR1 with 3-chloro-5-hydroxybenzoic acid (3Cl-HBA) decreased miniature EPSC frequency, increased paired-pulse ratio, decreased firing frequency, and modulated membrane intrinsic properties. Using fast calcium imaging, we show that HCAR1 agonists 3,5-dihydroxybenzoic acid, 3Cl-HBA, and lactate decreased by 40% spontaneous calcium spiking activity of primary cortical neurons from WT but not from HCAR1 KO mice. Notably, in neurons lacking HCAR1, the basal activity was increased compared with WT. HCAR1 mediates its effect in neurons through a Giα-protein. We observed that the adenylyl cyclase-cAMP-protein kinase A axis is involved in HCAR1 downmodulation of neuronal activity. We found that HCAR1 interacts with adenosine A1, GABAB, and α2A-adrenergic receptors, through a mechanism involving both its Giα and Giβγ subunits, resulting in a complex modulation of neuronal network activity. We conclude that HCAR1 activation in neurons causes a downmodulation of neuronal activity through presynaptic mechanisms and by reducing neuronal excitability. HCAR1 activation engages both Giα and Giβγ intracellular pathways to functionally interact with other Gi-coupled receptors for the fine tuning of neuronal activity.SIGNIFICANCE STATEMENT Expression of the lactate receptor hydroxycarboxylic acid receptor 1 (HCAR1) was recently described in neurons. Here, we describe the physiological role of this G-protein-coupled receptor (GPCR) and its activation in neurons, providing information on its expression and mechanism of action. We dissected out the intracellular pathway through which HCAR1 activation tunes down neuronal network activity. For the first time, we provide evidence for the functional cross talk of HCAR1 with other GPCRs, such as GABAB, adenosine A1- and α2A-adrenergic receptors. These results set HCAR1 as a new player for the regulation of neuronal network activity acting in concert with other established receptors. Thus, HCAR1 represents a novel therapeutic target for pathologies characterized by network hyperexcitability dysfunction, such as epilepsy.
Collapse
|
16
|
Frenguelli BG. The Purine Salvage Pathway and the Restoration of Cerebral ATP: Implications for Brain Slice Physiology and Brain Injury. Neurochem Res 2019; 44:661-675. [PMID: 28836168 PMCID: PMC6420432 DOI: 10.1007/s11064-017-2386-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 12/24/2022]
Abstract
Brain slices have been the workhorse for many neuroscience labs since the pioneering work of Henry McIlwain in the 1950s. Their utility is undisputed and their acceptance as appropriate models for the central nervous system is widespread, if not universal. However, the skeleton in the closet is that ATP levels in brain slices are lower than those found in vivo, which may have important implications for cellular physiology and plasticity. Far from this being a disadvantage, the ATP-impoverished slice can serve as a useful and experimentally-tractable surrogate for the injured brain, which experiences similar depletion of cellular ATP. We have shown that the restoration of cellular ATP in brain slices to in vivo values is possible with a simple combination of D-ribose and adenine (RibAde), two substrates for ATP synthesis. Restoration of ATP in slices to physiological levels has implications for synaptic transmission and plasticity, whilst in the injured brain in vivo RibAde shows encouraging positive results. Given that ribose, adenine, and a third compound, allopurinol, are all separately in use in man, their combined application after acute brain injury, in accelerating ATP synthesis and increasing the reservoir of the neuroprotective metabolite, adenosine, may help reduce the morbidity associated with stroke and traumatic brain injury.
Collapse
|
17
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
18
|
Dienel GA. Does shuttling of glycogen-derived lactate from astrocytes to neurons take place during neurotransmission and memory consolidation? J Neurosci Res 2019; 97:863-882. [PMID: 30667077 DOI: 10.1002/jnr.24387] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/24/2018] [Accepted: 01/07/2019] [Indexed: 12/17/2022]
Abstract
Glycogen levels in resting brain and its utilization rates during brain activation are high, but the functions fulfilled by glycogenolysis in living brain are poorly understood. Studies in cultured astrocytes have identified glycogen as the preferred fuel to provide ATP for Na+ ,K+ -ATPase for the uptake of extracellular K+ and for Ca2+ -ATPase to pump Ca2+ into the endoplasmic reticulum. Studies in astrocyte-neuron co-cultures led to the suggestion that glycogen-derived lactate is shuttled to neurons as oxidative fuel to support glutamatergic neurotransmission. Furthermore, both knockout of brain glycogen synthase and inhibition of glycogenolysis prior to a memory-evoking event impair memory consolidation, and shuttling of glycogen-derived lactate as neuronal fuel was postulated to be required for memory. However, lactate shuttling has not been measured in any of these studies, and procedures to inhibit glycogenolysis and neuronal lactate uptake are not specific. Testable alternative mechanisms to explain the observed findings are proposed: (i) disruption of K+ and Ca2+ homeostasis, (ii) release of gliotransmitters, (iii) imposition of an energy crisis on astrocytes and neurons by inhibition of mitochondrial pyruvate transport by compounds used to block neuronal monocarboxylic acid transporters, and (iv) inhibition of astrocytic filopodial movements that secondarily interfere with glutamate and K+ uptake from the synaptic cleft. Evidence that most pyruvate/lactate derived from glycogen is not oxidized and does not accumulate suggests predominant glycolytic metabolism of glycogen to support astrocytic energy demands. Sparing of blood-borne glucose for use by neurons is a reasonable explanation for the requirement for glycogenolysis in neurotransmission and memory processing.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.,Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
19
|
Glycogenolysis in Cerebral Cortex During Sensory Stimulation, Acute Hypoglycemia, and Exercise: Impact on Astrocytic Energetics, Aerobic Glycolysis, and Astrocyte-Neuron Interactions. ADVANCES IN NEUROBIOLOGY 2019; 23:209-267. [DOI: 10.1007/978-3-030-27480-1_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
The Antidepressant-Like Effect of Lactate in an Animal Model of Menopausal Depression. Biomedicines 2018; 6:biomedicines6040108. [PMID: 30469388 PMCID: PMC6316721 DOI: 10.3390/biomedicines6040108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND This study aimed to investigate the antidepressant-like effect of lactate and elucidate its mechanisms in ovariectomized rats with repeated stress. METHODS Two experiments were conducted on female rats in which all groups, except normal, were ovariectomized and underwent immobilization for 14 days. Lactate was administered orally (100, 250, and 500 mg/kg) for 14 consecutive days, and the rats' cutaneous body temperature was measured during the same period. Depression-like behavior in rats was assessed by the tail suspension test (TST) and forced swimming test (FST). Furthermore, enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry were conducted to evaluate the changes that occurred in the neurotransmitter levels and activity. RESULTS The lactate 100 and 250 groups had reduced time spent immobile in TST and FST and decreased peripheral body temperature. In ELISA tests, the lactate 250 group expressed elevated levels of serotonin and dopamine in many brain areas. Tyrosine hydroxylase (TH), tryptophan hydroxylase (TPH), and protein kinase C (PKC) immunoreactive cells showed increased density and cell counts in lactate administered groups. CONCLUSION Results indicated that lactate has an antidepressant effect that is achieved by activation of PKC and upregulation of TH and TPH expression, which eventually leads to enhanced serotonin and dopamine levels in the menopausal rat's brain.
Collapse
|
21
|
Herrera-López G, Galván EJ. Modulation of hippocampal excitability via the hydroxycarboxylic acid receptor 1. Hippocampus 2018; 28:557-567. [PMID: 29704292 DOI: 10.1002/hipo.22958] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 01/15/2023]
Abstract
In addition to its prominent role as an energetic substrate in the brain, lactate is emerging as a signaling molecule capable of controlling neuronal excitability. The finding that the lactate-activated receptor (hydroxycarboxylic acid receptor 1; HCA1) is widely expressed in the brain opened up the possibility that lactate exerts modulation of neuronal activity via a transmembranal receptor-linked mechanism. Here, we show that lactate causes biphasic modulation of the intrinsic excitability of CA1 pyramidal cells. In the low millimolar range, lactate or the HCA1 agonist 3,5-DHBA reduced the input resistance and membrane time constant. In addition, activation of HCA1 significantly blocked the fast inactivating sodium current and increased the delay from inactivation to a conducting state of the sodium channel. As the observed actions occurred in the presence of 4-CIN, a blocker of the neuronal monocarboxylate transporter, the possibility that lactate acted via neuronal metabolism is unlikely. Consistently, modulation of the intrinsic excitability was abolished when CA1 pyramidal cells were dialyzed with pertussis toxin, indicating the dependency of a Gαi/o -protein-coupled receptor. The activation of HCA1 appears to serve as a restraining mechanism during enhanced network activity and may function as a negative feedback for the astrocytic production of lactate.
Collapse
Affiliation(s)
- Gabriel Herrera-López
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City 14330, México
| | - Emilio J Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, México City 14330, México
| |
Collapse
|
22
|
Bonnet U, Bingmann D, Speckmann EJ, Wiemann M. Small intraneuronal acidification via short-chain monocarboxylates: First evidence of an inhibitory action on over-excited human neocortical neurons. Life Sci 2018; 204:65-70. [PMID: 29730171 DOI: 10.1016/j.lfs.2018.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 10/17/2022]
Abstract
AIMS In cortical mammalian neurons, small fluctuations of intracellular pH (pHi) play a crucial role for inter- and intracellular signaling as well as for cellular and synaptic plasticity. Yet, there have been no respective data about humans. Thus, we investigated the interrelation of pHi and excitability of human cortical neurons. MATERIALS AND METHODS Intracellular electrophysiological and pH-recordings were made in neurons in slices taken from brain tissue resected from the middle temporal gyrus of two male children (26 months and 35 months old) who suffered from pharmacotherapy-resistant temporal lobe epilepsy. To excite the tissue (n = 13), we used the 0-Mg2+/high-K+-in vitro epilepsy model producing robust epileptiform discharges (ED). To evoke an intracellular acidification (n = 12), we used the well-established propionate-model and applied 10 mM propionate to the bath solutions. In addition, we recorded the effects of other strongly related short-chain monocarboxylates (l-lactate (10 mM) and the ketone body DL-β-hydroxybutyrate (10 mM)) on ED and pHi. KEY FINDINGS The ED-frequency was reversibly reduced by propionate (n = 5), l-lactate (n = 5), or DL-β-hydroxybutyrate (n = 3), while the durations of EDs and their after-depolarizations increased. In parallel experiments, all three short-chain monocarboxylates (each n = 4) lowered the pHi of the neurons (n = 12) by 0.05-0.07 pH units which was temporally related to the reported changes in bioelectric activity. SIGNIFICANCE A mild drop of the intraneuronal pH was associated with the control of even over-excited human neocortical tissue. This is identical with prior observations in non-human mammalian cortical neurons. Possible implications for neuroplasticity and the treatment of neuropsychiatric disorders are discussed.
Collapse
Affiliation(s)
- Udo Bonnet
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Evangelisches Krankenhaus Castrop-Rauxel, Academic Teaching Hospital of the University Duisburg-Essen, Castrop-Rauxel, Germany; Department of Psychiatry and Psychotherapy, Faculty of Medicine, LVR-Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Dieter Bingmann
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | | | - Martin Wiemann
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany; IBE R&D gGmbH, Institute for Lung Health, D-48149 Münster, Germany
| |
Collapse
|
23
|
Abad N, Rosenberg JT, Roussel T, Grice DC, Harrington MG, Grant SC. Metabolic assessment of a migraine model using relaxation-enhanced 1 H spectroscopy at ultrahigh field. Magn Reson Med 2018; 79:1266-1275. [PMID: 28921630 PMCID: PMC5775911 DOI: 10.1002/mrm.26811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 04/10/2017] [Accepted: 06/02/2017] [Indexed: 01/08/2023]
Abstract
PURPOSE This study evaluates biochemical imbalances in a rat model that reflects dysfunctional pathways in migraine. The high sensitivity and spectral dispersion available to 1 H MRS at 21.1 T expands metabolic profiling in this migraine model to include lactate (Lac), taurine (Tau), aspartate, and Gly-a mixture of glycine, glutamine, and glutamate. METHODS Sprague-Dawley male rats were administered in situ an intraperitoneal injection of nitroglycerin (NTG) to induce the migraine analogue or saline as a control. A selective relaxation-enhanced MR spectroscopy sequence was used to target upfield metabolites from a 4-mm3 voxel for 2.5 h after injection. RESULTS Significant increases were evident for Lac as early as 10 min after NTG injection, peaking over 50% compared with baseline and control (normalized Lac/N-acetyl aspartate with NTG = 1.54 ± 0.65 versus with saline = 0.99 ± 0.08). Tau decreased progressively in controls over 2 h after injection, but remained elevated with NTG, peaking at 105 min after injection (normalized Tau/N-acetyl aspartate with NTG = 1.10 ± 0.18 versus with saline = 0.85 ± 0.14). Total creatine under NTG showed significant decreases with time and compared with saline; Gly demonstrated temporal increases for NTG. CONCLUSIONS These changes indicate an altered metabolic profile in the migraine analogue consistent with early changes in neural activity and/or vasodilation consistent with progressively enhanced neuroprotection and osmoregulation. Magn Reson Med 79:1266-1275, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Nastaren Abad
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Jens T Rosenberg
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Tangi Roussel
- Department of Chemical Physics, Weizmann Institute Science, Rehovot, Israel
| | - Dillon C Grice
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA
| | - Michael G Harrington
- Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, California, USA
| | - Samuel C Grant
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
24
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
25
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1073] [Impact Index Per Article: 153.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
26
|
Bergström U, Lindfors C, Svedberg M, Johansen JE, Häggkvist J, Schalling M, Wibom R, Katz A, Nilsson IAK. Reduced metabolism in the hypothalamus of the anorectic anx/anx mouse. J Endocrinol 2017; 233:15-24. [PMID: 28130409 DOI: 10.1530/joe-16-0383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/27/2017] [Indexed: 12/13/2022]
Abstract
The anorectic anx/anx mouse exhibits a mitochondrial complex I dysfunction that is related to aberrant expression of hypothalamic neuropeptides and transmitters regulating food intake. Hypothalamic activity, i.e. neuronal firing and transmitter release, is dependent on glucose utilization and energy metabolism. To better understand the role of hypothalamic activity in anorexia, we assessed carbohydrate and high-energy phosphate metabolism, in vivo and in vitro, in the anx/anx hypothalamus. In the fasted state, hypothalamic glucose uptake in the anx/anx mouse was reduced by ~50% of that seen in wild-type (wt) mice (P < 0.05). Under basal conditions, anx/anx hypothalamus ATP and glucose 6-P contents were similar to those in wt hypothalamus, whereas phosphocreatine was elevated (~2-fold; P < 0.001) and lactate was reduced (~35%; P < 0.001). The anx/anx hypothalamus had elevated total AMPK (~25%; P < 0.05) and GLUT4 (~60%; P < 0.01) protein contents, whereas GLUT1 and GLUT3 were similar to that of wt hypothalamus. Interestingly, the activation state of AMPK (ratio of phosphorylated AMPK/total AMPK) was significantly decreased in hypothalamus of the anx/anx mouse (~60% of that in wt; P < 0.05). Finally, during metabolic stress (ischemia), accumulation of lactate (measure of glycolysis) and IMP and AMP (breakdown products of ATP) were ~50% lower in anx/anx vs wt hypothalamus. These data demonstrate that carbohydrate and high-energy phosphate utilization in the anx/anx hypothalamus are diminished under basal and stress conditions. The decrease in hypothalamic metabolism may contribute to the anorectic behavior of the anx/anx mouse, i.e. its inability to regulate food intake in accordance with energy status.
Collapse
Affiliation(s)
- Ulrika Bergström
- Department of Molecular Medicine and SurgeryKarolinska Institutet, Stockholm, Sweden
- Center for Molecular MedicineKarolinska University Hospital, Stockholm, Sweden
| | - Charlotte Lindfors
- Department of Molecular Medicine and SurgeryKarolinska Institutet, Stockholm, Sweden
- Center for Molecular MedicineKarolinska University Hospital, Stockholm, Sweden
| | - Marie Svedberg
- Department of Clinical NeuroscienceCenter for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Jeanette E Johansen
- Department of Molecular Medicine and SurgeryKarolinska Institutet, Stockholm, Sweden
- Center for Molecular MedicineKarolinska University Hospital, Stockholm, Sweden
| | - Jenny Häggkvist
- Department of Clinical NeuroscienceCenter for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and SurgeryKarolinska Institutet, Stockholm, Sweden
- Center for Molecular MedicineKarolinska University Hospital, Stockholm, Sweden
| | - Rolf Wibom
- Department of Medical Biochemistry and BiophysicsKarolinska Institutet, Stockholm, Sweden
| | - Abram Katz
- Department of Physical TherapyAriel University, Ariel, Israel
| | - Ida A K Nilsson
- Department of Molecular Medicine and SurgeryKarolinska Institutet, Stockholm, Sweden
- Center for Molecular MedicineKarolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
27
|
Dienel GA. Lack of appropriate stoichiometry: Strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. J Neurosci Res 2017; 95:2103-2125. [PMID: 28151548 DOI: 10.1002/jnr.24015] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 11/28/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022]
Abstract
Glutamate-stimulated aerobic glycolysis in astrocytes coupled with lactate shuttling to neurons where it can be oxidized was proposed as a mechanism to couple excitatory neuronal activity with glucose utilization (CMRglc ) during brain activation. From the outset, this model was not viable because it did not fulfill critical stoichiometric requirements: (i) Calculated glycolytic rates and measured lactate release rates were discordant in cultured astrocytes. (ii) Lactate oxidation requires oxygen consumption, but the oxygen-glucose index (OGI, calculated as CMRO2 /CMRglc ) fell during activation in human brain, and the small rise in CMRO2 could not fully support oxidation of lactate produced by disproportionate increases in CMRglc . (iii) Labeled products of glucose metabolism are not retained in activated rat brain, indicating rapid release of a highly labeled, diffusible metabolite identified as lactate, thereby explaining the CMRglc -CMRO2 mismatch. Additional independent lines of evidence against lactate shuttling include the following: astrocytic oxidation of glutamate after its uptake can help "pay" for its uptake without stimulating glycolysis; blockade of glutamate receptors during activation in vivo prevents upregulation of metabolism and lactate release without impairing glutamate uptake; blockade of β-adrenergic receptors prevents the fall in OGI in activated human and rat brain while allowing glutamate uptake; and neurons upregulate glucose utilization in vivo and in vitro under many stimulatory conditions. Studies in immature cultured cells are not appropriate models for lactate shuttling in adult brain because of their incomplete development of metabolic capability and astrocyte-neuron interactions. Astrocyte-neuron lactate shuttling does not make large, metabolically significant contributions to energetics of brain activation. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
28
|
Béland-Millar A, Larcher J, Courtemanche J, Yuan T, Messier C. Effects of Systemic Metabolic Fuels on Glucose and Lactate Levels in the Brain Extracellular Compartment of the Mouse. Front Neurosci 2017; 11:7. [PMID: 28154523 PMCID: PMC5243849 DOI: 10.3389/fnins.2017.00007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/04/2017] [Indexed: 01/11/2023] Open
Abstract
Classic neuroenergetic research has emphasized the role of glucose, its transport and its metabolism in sustaining normal neural function leading to the textbook statement that it is the necessary and sole metabolic fuel of the mammalian brain. New evidence, including the Astrocyte-to-Neuron Lactate Shuttle hypothesis, suggests that the brain can use other metabolic substrates. To further study that possibility, we examined the effect of intraperitoneally administered metabolic fuels (glucose, fructose, lactate, pyruvate, ß-hydroxybutyrate, and galactose), and insulin, on blood, and extracellular brain levels of glucose and lactate in the adult male CD1 mouse. Primary motor cortex extracellular levels of glucose and lactate were monitored in freely moving mice with the use of electrochemical electrodes. Blood concentration of these same metabolites were obtained by tail vein sampling and measured with glucose and lactate meters. Blood and extracellular fluctuations of glucose and lactate were monitored for a 2-h period. We found that the systemic injections of glucose, fructose, lactate, pyruvate, and ß-hydroxybutyrate increased blood lactate levels. Apart for a small transitory rise in brain extracellular lactate levels, the main effect of the systemic injection of glucose, fructose, lactate, pyruvate, and ß-hydroxybutyrate was an increase in brain extracellular glucose levels. Systemic galactose injections produced a small rise in blood glucose and lactate but almost no change in brain extracellular lactate and glucose. Systemic insulin injections led to a decrease in blood glucose and a small rise in blood lactate; however brain extracellular glucose and lactate monotonically decreased at the same rate. Our results support the concept that the brain is able to use alternative fuels and the current experiments suggest some of the mechanisms involved.
Collapse
Affiliation(s)
| | - Jeremy Larcher
- School of Psychology, University of Ottawa Ottawa, ON, Canada
| | | | - Tina Yuan
- School of Psychology, University of Ottawa Ottawa, ON, Canada
| | - Claude Messier
- School of Psychology, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
29
|
Zimmer P, Binnebößel S, Bloch W, Hübner ST, Schenk A, Predel HG, Wright P, Stritt C, Oberste M. Exhaustive Exercise Alters Thinking Times in a Tower of London Task in a Time-Dependent Manner. Front Physiol 2017; 7:694. [PMID: 28127289 PMCID: PMC5226945 DOI: 10.3389/fphys.2016.00694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/29/2016] [Indexed: 11/13/2022] Open
Abstract
Purpose: In contrast to other aspects of executive functions, acute exercise-induced alterations in planning are poorly investigated. While only few studies report improved planning performances after exercise, even less is known about their time course after exhaustive exercise. Methods: One hundred and nineteen healthy adults performed the Tower of London (ToL) task at baseline, followed by a graded exercise test (GXT). Participants were subsequently randomized into one of four groups (immediately, 30, 60, and 90 min after the GXT) to repeat the ToL. Main outcomes of the ToL were planning (number of tasks completed in the minimum number of moves), solutions (correct responses independent of the given number of moves) as well as thinking times (time between presentation of each problem and first action) for tasks with varying difficulty (four-, five,- and six-move problems). Blood lactate levels were analyzed as a potential mediator. Results: No effect of exercise on planning could be detected. In contrast to complex problem conditions, median thinking times deteriorated significantly in the immediately after GXT tested group in less challenging problem conditions (four-move problems: p = 0.001, F = 5.933, df = 3; five-move problems: p = 0.005, F = 4.548, df = 3). Decreased lactate elimination rates were associated with impaired median thinking times across all groups ΔMTT4-6 (p = 0.001, r = −0.309), ΔMTT4 (p < 0.001, r = −0.367), and ΔMTT5 (p = 0.001, r = −0.290). Conclusion: These results suggest that planning does not improve within 90 min after exhaustive exercise. In line with previous research, revealing a negative impact of exhaustive exercise on memory and attention, our study extends this knowledge of exercise-induced alterations in cognitive functioning as thinking times as subcomponents of planning are negatively affected immediately after exercise. This is further associated with peripheral lactate levels.
Collapse
Affiliation(s)
- Philipp Zimmer
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University CologneCologne, Germany; National Center for Tumor Diseases (NCT) and German Cancer Research CenterHeidelberg, Germany
| | - Stephan Binnebößel
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne Cologne, Germany
| | - Sven T Hübner
- Institute of Cardiovascular Research and Sports Medicine, Department for Preventive and Rehabilitative Sport Medicine, German Sport University Cologne Cologne, Germany
| | - Alexander Schenk
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne Cologne, Germany
| | - Hans-Georg Predel
- Institute of Cardiovascular Research and Sports Medicine, Department for Preventive and Rehabilitative Sport Medicine, German Sport University Cologne Cologne, Germany
| | - Peter Wright
- Chair of Sports Medicine, Chemnitz University of Technology Chemnitz, Germany
| | - Christian Stritt
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne Cologne, Germany
| | - Max Oberste
- Institute of Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sport Medicine, German Sport University Cologne Cologne, Germany
| |
Collapse
|
30
|
Dienel GA, Rothman DL, Nordström CH. Microdialysate concentration changes do not provide sufficient information to evaluate metabolic effects of lactate supplementation in brain-injured patients. J Cereb Blood Flow Metab 2016; 36:1844-1864. [PMID: 27604313 PMCID: PMC5094313 DOI: 10.1177/0271678x16666552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022]
Abstract
Cerebral microdialysis is a widely used clinical tool for monitoring extracellular concentrations of selected metabolites after brain injury and to guide neurocritical care. Extracellular glucose levels and lactate/pyruvate ratios have high diagnostic value because they can detect hypoglycemia and deficits in oxidative metabolism, respectively. In addition, patterns of metabolite concentrations can distinguish between ischemia and mitochondrial dysfunction, and are helpful to choose and evaluate therapy. Increased intracranial pressure can be life-threatening after brain injury, and hypertonic solutions are commonly used for pressure reduction. Recent reports have advocated use of hypertonic sodium lactate, based on claims that it is glucose sparing and provides an oxidative fuel for injured brain. However, changes in extracellular concentrations in microdialysate are not evidence that a rise in extracellular glucose level is beneficial or that lactate is metabolized and improves neuroenergetics. The increase in glucose concentration may reflect inhibition of glycolysis, glycogenolysis, and pentose phosphate shunt pathway fluxes by lactate flooding in patients with mitochondrial dysfunction. In such cases, lactate will not be metabolizable and lactate flooding may be harmful. More rigorous approaches are required to evaluate metabolic and physiological effects of administration of hypertonic sodium lactate to brain-injured patients.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA, and Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, USA
| | - Douglas L Rothman
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Carl-Henrik Nordström
- Department of Neurosurgery, Lund University Hospital, Lund, Sweden, and Department of Neurosurgery, Odense University Hospital, Odense, Denmark
| |
Collapse
|
31
|
Dienel GA, Cruz NF. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism. J Neurochem 2016; 138:14-52. [DOI: 10.1111/jnc.13630] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/24/2016] [Accepted: 03/31/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Gerald A. Dienel
- Department of Cell Biology and Physiology; University of New Mexico; Albuquerque; New Mexico USA
- Department of Neurology; University of Arkansas for Medical Sciences; Little Rock Arkansas USA
| | - Nancy F. Cruz
- Department of Neurology; University of Arkansas for Medical Sciences; Little Rock Arkansas USA
| |
Collapse
|
32
|
Quan L, Wu J, Lane LA, Wang J, Lu Q, Gu Z, Wang Y. Enhanced Detection Specificity and Sensitivity of Alzheimer’s Disease Using Amyloid-β-Targeted Quantum Dots. Bioconjug Chem 2016; 27:809-14. [DOI: 10.1021/acs.bioconjchem.6b00019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Li Quan
- Department
of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jiangxiao Wu
- Department
of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lucas A. Lane
- Department
of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
| | - Jianquan Wang
- Department
of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Qian Lu
- Department
of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zheng Gu
- Department
of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
| | - Yiqing Wang
- Department
of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, China
- Department
of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30322, United States
| |
Collapse
|
33
|
DiNuzzo M. Astrocyte-Neuron Interactions during Learning May Occur by Lactate Signaling Rather than Metabolism. Front Integr Neurosci 2016; 10:2. [PMID: 26858613 PMCID: PMC4731513 DOI: 10.3389/fnint.2016.00002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/11/2016] [Indexed: 12/25/2022] Open
Affiliation(s)
- Mauro DiNuzzo
- Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi,"Rome, Italy; Dipartimento di Fisica, Sapienza Università di RomaRome, Italy
| |
Collapse
|
34
|
Coppola G, Bracaglia M, Di Lenola D, Di Lorenzo C, Serrao M, Parisi V, Di Renzo A, Martelli F, Fadda A, Schoenen J, Pierelli F. Visual evoked potentials in subgroups of migraine with aura patients. J Headache Pain 2015; 16:92. [PMID: 26527348 PMCID: PMC4630240 DOI: 10.1186/s10194-015-0577-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/15/2015] [Indexed: 01/06/2023] Open
Abstract
Background Patients suffering from migraine with aura can have either pure visual auras or complex auras with sensory disturbances and dysphasia, or both. Few studies have searched for possible pathophysiological differences between these two subgroups of patients. Methods Methods - Forty-seven migraine with aura patients were subdivided in a subgroup with exclusively visual auras (MA, N = 27) and another with complex neurological auras (MA+, N = 20). We recorded pattern-reversal visual evoked potentials (VEP: 15 min of arc cheques, 3.1 reversal per second, 600 sweeps) and measured amplitude and habituation (slope of the linear regression line of amplitude changes from the 1st to 6th block of 100 sweeps) for the N1-P1 and P1-N2 components in patients and, for comparison, in 30 healthy volunteers (HV) of similar age and gender distribution. Results VEP N1-P1 habituation, i.e. amplitude decrement between 1st and 6th block, which was obvious in most HV (mean slope −0.50), was deficient in both MA (slope +0.01, p = 0.0001) and MA+ (−0.0049, p = 0.001) patients. However, VEP N1-P1 amplitudes across blocks were normal in MA patients, while they were significantly greater in MA+ patients than in HVs. Conclusions Our findings suggest that in migraine with aura patients different aura phenotypes may be underpinned by different pathophysiological mechanisms. Pre-activation cortical excitability could be higher in patients with complex neurological auras than in those having pure visual auras or in healthy volunteers.
Collapse
Affiliation(s)
- Gianluca Coppola
- G.B. Bietti Foundation-IRCCS, Department of Neurophysiology of Vision and Neurophthalmology, Via Livenza 3, 00198, Rome, Italy.
| | - Martina Bracaglia
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome Polo Pontino, Latina, Italy
| | - Davide Di Lenola
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome Polo Pontino, Latina, Italy
| | | | - Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome Polo Pontino, Latina, Italy
| | - Vincenzo Parisi
- G.B. Bietti Foundation-IRCCS, Department of Neurophysiology of Vision and Neurophthalmology, Via Livenza 3, 00198, Rome, Italy
| | - Antonio Di Renzo
- G.B. Bietti Foundation-IRCCS, Department of Neurophysiology of Vision and Neurophthalmology, Via Livenza 3, 00198, Rome, Italy
| | - Francesco Martelli
- Istituto Superiore di Sanità, Dipartimento Tecnologie e Salute, Rome, Italy
| | - Antonello Fadda
- Istituto Superiore di Sanità, Dipartimento Tecnologie e Salute, Rome, Italy
| | - Jean Schoenen
- Headache Research Unit, Department of Neurology-CHR Citadelle, University of Liège, Liège, Belgium
| | - Francesco Pierelli
- Department of Medical and Surgical Sciences and Biotechnologies, "Sapienza" University of Rome Polo Pontino, Latina, Italy.,IRCCS-Neuromed, Pozzilli, IS, Italy
| |
Collapse
|
35
|
Is L-lactate a novel signaling molecule in the brain? J Cereb Blood Flow Metab 2015; 35:1069-75. [PMID: 25920953 PMCID: PMC4640281 DOI: 10.1038/jcbfm.2015.77] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/24/2015] [Accepted: 03/24/2015] [Indexed: 01/01/2023]
Abstract
In the brain, L-lactate is produced by both neurons and astrocytes. There is no doubt that neurons use L-lactate as a supplementary fuel although the importance of this energy source is disputed. Irrespective of its caloric value, L-lactate might also have a signaling role in the brain. Here, we review several current hypotheses of L-lactate mediated signaling. Some proposed mechanisms require L-lactate entry into the neurons leading to a shift in ATP/ADP ratio or redox state. Others postulate interaction with either known receptor HCA1 (GPR81) or a novel, yet unidentified receptor. We argue that the sensitivity of any such mechanism has to match the concentration range of extracellular L-lactate, which is less than ~1.5 mmol/L under physiologic conditions. From that point of view, some of the proposed mechanisms require supraphysiologic levels of L-lactate and could be engaged during ischemia or seizures when L-lactate concentration rises dramatically. Currently, we do not know whether L-lactate production in the brain occurs in microdomains, which might create higher than average local concentrations. Nevertheless, it is clear that in the brain, as in the peripheral tissues, L-lactate is not only used as a source of energy but also acts as a signaling molecule.
Collapse
|
36
|
Abstract
Excitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have shown that lactate modulates neuronal excitability acting through various targets, including NMDA receptors and G-protein-coupled receptors specific for lactate, but little is known about the cellular and molecular mechanisms responsible for the increase in interstitial lactate. Using a panel of genetically encoded fluorescence nanosensors for energy metabolites, we show here that mouse astrocytes in culture, in cortical slices, and in vivo maintain a steady-state reservoir of lactate. The reservoir was released to the extracellular space immediately after exposure of astrocytes to a physiological rise in extracellular K(+) or cell depolarization. Cell-attached patch-clamp analysis of cultured astrocytes revealed a 37 pS lactate-permeable ion channel activated by cell depolarization. The channel was modulated by lactate itself, resulting in a positive feedback loop for lactate release. A rapid fall in intracellular lactate levels was also observed in cortical astrocytes of anesthetized mice in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.
Collapse
|
37
|
Dienel GA. The metabolic trinity, glucose-glycogen-lactate, links astrocytes and neurons in brain energetics, signaling, memory, and gene expression. Neurosci Lett 2015; 637:18-25. [PMID: 25725168 DOI: 10.1016/j.neulet.2015.02.052] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
Glucose, glycogen, and lactate are traditionally identified with brain energetics, ATP turnover, and pathophysiology. However, recent studies extend their roles to include involvement in astrocytic signaling, memory consolidation, and gene expression. Emerging roles for these brain fuels and a readily-diffusible by-product are linked to differential fluxes in glycolytic and oxidative pathways, astrocytic glycogen dynamics, redox shifts, neuron-astrocyte interactions, and regulation of astrocytic activities by noradrenaline released from the locus coeruleus. Disproportionate utilization of carbohydrate compared with oxygen during brain activation is influenced by catecholamines, but its physiological basis is not understood and its magnitude may be affected by technical aspects of metabolite assays. Memory consolidation and gene expression are impaired by glycogenolysis blockade, and prevention of these deficits by injection of abnormally-high concentrations of lactate was interpreted as a requirement for astrocyte-to-neuron lactate shuttling in memory and gene expression. However, lactate transport was not measured and evidence for presumed shuttling is not compelling. In fact, high levels of lactate used to preserve memory consolidation and induce gene expression are sufficient to shut down neuronal firing via the HCAR1 receptor. In contrast, low lactate levels activate a receptor in locus coeruleus that stimulates noradrenaline release that may activate astrocytes throughout brain. Physiological relevance of exogenous concentrations of lactate used to mimic and evaluate metabolic, molecular, and behavioral effects of lactate requires close correspondence with the normal lactate levels, the biochemical and cellular sources and sinks, and specificity of lactate delivery to target cells.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
38
|
Rempe MJ, Wisor JP. Cerebral lactate dynamics across sleep/wake cycles. Front Comput Neurosci 2015; 8:174. [PMID: 25642184 PMCID: PMC4294128 DOI: 10.3389/fncom.2014.00174] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/23/2014] [Indexed: 12/17/2022] Open
Abstract
Cerebral metabolism varies dramatically as a function of sleep state. Brain concentration of lactate, the end product of glucose utilization via glycolysis, varies as a function of sleep state, and like slow wave activity (SWA) in the electroencephalogram (EEG), increases as a function of time spent awake or in rapid eye movement sleep and declines as a function of time spent in slow wave sleep (SWS). We sought to determine whether lactate concentration exhibits homeostatic dynamics akin to those of SWA in SWS. Lactate concentration in the cerebral cortex was measured by indwelling enzymatic biosensors. A set of equations based conceptually on Process S (previously used to quantify the homeostatic dynamics of SWA) was used to predict the sleep/wake state-dependent dynamics of lactate concentration in the cerebral cortex. Additionally, we applied an iterative parameter space-restricting algorithm (the Nelder-Mead method) to reduce computational time to find the optimal values of the free parameters. Compared to an exhaustive search, this algorithm reduced the computation time required by orders of magnitude. We show that state-dependent lactate concentration dynamics can be described by a homeostatic model, but that the optimal time constants for describing lactate dynamics are much smaller than those of SWA. This disconnect between lactate dynamics and SWA dynamics does not support the concept that lactate concentration is a biochemical mediator of sleep homeostasis. However, lactate synthesis in the cerebral cortex may nonetheless be informative with regard to sleep function, since the impact of glycolysis on sleep slow wave regulation is only just now being investigated.
Collapse
Affiliation(s)
- Michael J Rempe
- Mathematics and Computer Science, Whitworth University Spokane, WA, USA ; Department of Integrative Physiology and Neuroscience, College of Medical Sciences, Washington State University Spokane Spokane, WA, USA
| | - Jonathan P Wisor
- Department of Integrative Physiology and Neuroscience, College of Medical Sciences, Washington State University Spokane Spokane, WA, USA
| |
Collapse
|
39
|
Czech-Damal N, Geiseler S, Hoff M, Schliep R, Ramirez JM, Folkow L, Burmester T. The role of glycogen, glucose and lactate in neuronal activity during hypoxia in the hooded seal (Cystophora cristata) brain. Neuroscience 2014; 275:374-83. [DOI: 10.1016/j.neuroscience.2014.06.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
|
40
|
Metabolic signaling by lactate in the brain. Trends Neurosci 2013; 36:396-404. [DOI: 10.1016/j.tins.2013.04.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/31/2013] [Accepted: 04/01/2013] [Indexed: 01/27/2023]
|
41
|
de Souza DK, Ribeiro MFM, Kucharski LCR. Effects of dehydroepiandrosterone (DHEA) and lactate on glucose uptake in the central nervous system. Neurosci Lett 2012; 507:62-6. [DOI: 10.1016/j.neulet.2011.11.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 11/06/2011] [Accepted: 11/26/2011] [Indexed: 10/14/2022]
|
42
|
Ben-Ari Y, Tyzio R, Nehlig A. Excitatory action of GABA on immature neurons is not due to absence of ketone bodies metabolites or other energy substrates. Epilepsia 2011; 52:1544-58. [PMID: 21692780 DOI: 10.1111/j.1528-1167.2011.03132.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Brain slices incubated with glucose have provided most of our knowledge on cellular, synaptic, and network driven mechanisms. It has been recently suggested that γ-aminobutyric acid (GABA) excites neonatal neurons in conventional glucose-perfused slices but not when ketone bodies metabolites, pyruvate, and/or lactate are added, suggesting that the excitatory actions of GABA are due to energy deprivation when glucose is the sole energy source. In this article, we review the vast number of studies that show that slices are not energy deprived in glucose-containing medium, and that addition of other energy substrates at physiologic concentrations does not alter the excitatory actions of GABA on neonatal neurons. In contrast, lactate, like other weak acids, can produce an intracellular acidification that will cause a reduction of intracellular chloride and a shift of GABA actions. The effects of high concentrations of lactate, and particularly of pyruvate (4-5 mm), as used are relevant primarily to pathologic conditions; these concentrations not being found in the brain in normal "control" conditions. Slices in glucose-containing medium may not be ideal, but additional energy substrates neither correspond to physiologic conditions nor alter GABA actions. In keeping with extensive observations in a wide range of animal species and brain structures, GABA depolarizes immature neurons and the reduction of the intracellular concentration of chloride ([Cl(-)](i)) is a basic property of brain maturation that has been preserved throughout evolution. In addition, this developmental sequence has important clinical implications, notably concerning the higher incidence of seizures early in life and their long-lasting deleterious sequels. Immature neurons have difficulties exporting chloride that accumulates during seizures, leading to permanent increase of [Cl(-)](i) that converts the inhibitory actions of GABA to excitatory and hampers the efficacy of GABA-acting antiepileptic drugs.
Collapse
|
43
|
Erlichman JS, Leiter JC. Glia modulation of the extracellular milieu as a factor in central CO2 chemosensitivity and respiratory control. J Appl Physiol (1985) 2010; 108:1803-11. [PMID: 20110540 DOI: 10.1152/japplphysiol.01321.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We discuss the influence of astrocytes on respiratory function, particularly central CO2 chemosensitivity. Fluorocitrate (FC) poisons astrocytes, and studies in intact animals using FC provide strong evidence that disrupting astrocytic function can influence CO2 chemosensitivity and ventilation. Gap junctions interconnect astrocytes and contribute to K+ homeostasis in the extracellular fluid (ECF). Blocking gap junctions alters respiratory control, but proof that this is truly an astrocytic effect is lacking. Intracellular pH regulation of astrocytes has reciprocal effects on extracellular pH. Electrogenic sodium-bicarbonate transport (NBCe) is present in astrocytes. The activity of NBCe alkalinizes intracellular pH and acidifies extracellular pH when activated by depolarization (and a subset of astrocytes are depolarized by hypercapnia). Thus, to the extent that astrocytic intracellular pH regulation during hypercapnia lowers extracellular pH, astrocytes will amplify the hypercapnic stimulus and may influence central chemosensitivity. However, the data so far provide only inferential support for this hypothesis. A lactate shuttle from astrocytes to neurons seems to be active in the retrotrapezoid nucleus (RTN) and important in setting the chemosensory stimulus in the RTN (and possibly other chemosensory nuclei). Thus astrocytic processes, so vital in controlling the constituents of the ECF in the central nervous system, may profoundly influence central CO2 chemosensitivity and respiratory control.
Collapse
Affiliation(s)
- Joseph S Erlichman
- Department of Biology, St. Lawrence University, Canton, NY 13617-1475, USA.
| | | |
Collapse
|
44
|
Coco M, Di Corrado D, Calogero RA, Perciavalle V, Maci T, Perciavalle V. Attentional processes and blood lactate levels. Brain Res 2009; 1302:205-11. [DOI: 10.1016/j.brainres.2009.09.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 09/03/2009] [Accepted: 09/06/2009] [Indexed: 10/20/2022]
|
45
|
Production of panic-like symptoms by lactate is associated with increased neural firing and oxidation of brain redox in the rat hippocampus. Neurosci Lett 2009; 453:219-24. [PMID: 19429039 DOI: 10.1016/j.neulet.2009.02.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 02/13/2009] [Accepted: 02/19/2009] [Indexed: 11/20/2022]
Abstract
Lactate uses an unknown mechanism to induce panic attacks in people and panic-like symptoms in rodents. We tested whether intraperitoneal (IP) lactate injections act peripherally or centrally to induce panic-like symptoms in rats by examining whether IP lactate directly affects the CNS. In Long-Evans rats, IP lactate (2 mmol/kg) injection increased lactate levels in the plasma and the cerebrospinal fluid. IP lactate also induced tachycardia and behavioral freezing suggesting the production of panic-like behavior. To enter intermediate metabolism, lactate is oxidized by lactate dehydrogenase (LDH) to pyruvate with co-reduction of NAD(+) to NADH. Therefore, we measured the ratio of NADH/NAD(+) to test whether IP lactate altered lactate metabolism in the CNS. Lactate metabolism was studied in the hippocampus, a brain region believed to contribute to panic-like symptoms. IP lactate injection lowered the ratio of NADH/NAD(+) without altering the total amount of NADH and NAD(+) suggesting oxidation of hippocampal redox state. Lactate oxidized hippocampal redox since intrahippocampal injection of the LDH inhibitor, oxamate (50mM) prevented the oxidation of NADH/NAD(+) by IP lactate. In addition to oxidizing hippocampal redox, IP lactate rapidly increased the firing rate of hippocampal neurons. Similar IP pyruvate injections had no effect. Neural discharge also increased following intrahippocampal lactate injection suggesting that increased discharge was a direct action of lactate on the hippocampus. These studies show that oxidation of brain redox and increased hippocampal firing are direct actions of lactate on the CNS that may contribute to the production of lactate-induced panic.
Collapse
|