1
|
Kovács Z, Rauch E, D’Agostino DP, Ari C. Putative Role of Adenosine A1 Receptors in Exogenous Ketone Supplements-Evoked Anti-Epileptic Effect. Int J Mol Sci 2024; 25:9869. [PMID: 39337356 PMCID: PMC11432942 DOI: 10.3390/ijms25189869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Approximately 30% of patients with epilepsy are drug-refractory. There is an urgent need to elucidate the exact pathophysiology of different types of epilepsies and the mechanisms of action of both antiseizure medication and metabolic therapies to treat patients more effectively and safely. For example, it has been demonstrated that exogenous ketone supplement (EKS)-generated therapeutic ketosis, as a metabolic therapy, may decrease epileptic activity in both animal models and humans, but its exact mechanism of action is unknown. However, it was demonstrated that therapeutic ketosis, among others, can increase adenosine level, which may enhance activity of A1 adenosine receptors (A1Rs) in the brain. It has also been demonstrated previously that adenosine has anti-epileptic effect through A1Rs in different models of epilepsies. Thus, it is possible that (i) therapeutic ketosis generated by the administration of EKSs may exert its anti-epileptic effect through, among other mechanisms, increased adenosine level and A1R activity and that (ii) the enhanced activity of A1Rs may be a necessary anti-epileptic mechanism evoked by EKS administration-generated ketosis. Moreover, EKSs can evoke and maintain ketosis without severe side effects. These results also suggest that the therapeutic application of EKS-generated ketosis may be a promising opportunity to treat different types of epilepsies. In this literature review, we specifically focus on the putative role of A1Rs in the anti-epileptic effect of EKS-induced ketosis.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, BDTTC, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary or (Z.K.); (E.R.)
| | - Enikő Rauch
- Department of Biology, BDTTC, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary or (Z.K.); (E.R.)
- Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Dominic P. D’Agostino
- Ketone Technologies LLC., Tampa, FL 33612, USA;
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Csilla Ari
- Ketone Technologies LLC., Tampa, FL 33612, USA;
- Department of Psychology, Behavioral Neuroscience Research Laboratory, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
2
|
Zhang A, Mandeville ET, Xu L, Stary CM, Lo EH, Lieber CM. Ultraflexible endovascular probes for brain recording through micrometer-scale vasculature. Science 2023; 381:306-312. [PMID: 37471542 PMCID: PMC11412271 DOI: 10.1126/science.adh3916] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/19/2023] [Indexed: 07/22/2023]
Abstract
Implantable neuroelectronic interfaces have enabled advances in both fundamental research and treatment of neurological diseases but traditional intracranial depth electrodes require invasive surgery to place and can disrupt neural networks during implantation. We developed an ultrasmall and flexible endovascular neural probe that can be implanted into sub-100-micrometer-scale blood vessels in the brains of rodents without damaging the brain or vasculature. In vivo electrophysiology recording of local field potentials and single-unit spikes have been selectively achieved in the cortex and olfactory bulb. Histology analysis of the tissue interface showed minimal immune response and long-term stability. This platform technology can be readily extended as both research tools and medical devices for the detection and intervention of neurological diseases.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Chemical Engineering and Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Emiri T Mandeville
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, MA 02129, USA
| | - Lijun Xu
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Creed M Stary
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, MA 02129, USA
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Zhang A, Mandeville ET, Xu L, Stary CM, Lo EH, Lieber CM. Ultra-flexible endovascular probes for brain recording through micron-scale vasculature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533576. [PMID: 36993229 PMCID: PMC10055285 DOI: 10.1101/2023.03.20.533576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Implantable neuroelectronic interfaces have enabled significant advances in both fundamental research and treatment of neurological diseases, yet traditional intracranial depth electrodes require invasive surgery to place and can disrupt the neural networks during implantation. To address these limitations, we have developed an ultra-small and flexible endovascular neural probe that can be implanted into small 100-micron scale blood vessels in the brains of rodents without damaging the brain or vasculature. The structure and mechanical properties of the flexible probes were designed to meet the key constraints for implantation into tortuous blood vessels inaccessible with existing techniques. In vivo electrophysiology recording of local field potentials and single-unit spikes has been selectively achieved in the cortex and the olfactory bulb. Histology analysis of the tissue interface showed minimal immune response and long-term stability. This platform technology can be readily extended as both research tools and medical devices for the detection and intervention of neurological diseases.
Collapse
|
4
|
Recent advancements to enhance the therapeutic efficacy of antiepileptic drugs. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:527-544. [PMID: 36651558 DOI: 10.2478/acph-2021-0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 01/19/2023]
Abstract
Epilepsy is a multifactorial neurological disorder characterized by recurrent or unprovoked seizures. Over the past two decades, many new antiepileptic drugs (AEDs) were developed and are in use for the treatment of epilepsy. However, drug resistance, drug-drug interaction and adverse events are common problems associated with AEDs. Antiepileptic drugs must be used only if the ratio of efficacy, safety, and tolerability of treatment are favorable and outweigh the disadvantages including treatment costs. The application of novel drug delivery techniques could enhance the efficacy and reduce the toxicity of AEDs. These novel techniques aim to deliver an optimal concentration of the drug more specifically to the seizure focus or foci in the CNS without numerous side-effects. The purpose of this article is to review the recent advancements in antiepileptic treatment and summarize the novel modalities in the route of administration and drug delivery, including gene therapy, for effective treatment of epilepsy.
Collapse
|
5
|
Attenuation of pentylenetrazole-induced acute status epilepticus in rats by adenosine involves inhibition of the mammalian target of rapamycin pathway. Neuroreport 2018; 28:1016-1021. [PMID: 28902712 DOI: 10.1097/wnr.0000000000000878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Adenosine (ADO) has been characterized as an endogenous anticonvulsant and alternative therapeutic drug, but its mechanism is not entirely clear. This study aimed to examine the relationship of ADO with the mammalian target of rapamycin (mTOR) in a Wistar rat model of pentylenetetrazole (PTZ)-induced acute status epilepticus. ADO (200 mg/kg) was administered intraperitoneally 30 min before PTZ (55-65 mg/kg) treatment, and Western blot assays and immunohistochemistry were performed 3 h after the onset of acute status epilepticus to detect phospho-TOR and the downstream target of mTOR, phospho-S6. The expression of these phosphoproteins in the hippocampus was significantly increased in PTZ-treated rats, but this increase was attenuated by the addition of ADO. To further verify a role for ADO in attenuating mTOR activity, we also evaluated its ability to suppress mTOR activity in normal rats that were not treated with PTZ. Our results suggest that ADO suppresses mTOR and S6 phosphorylation in normal rats and that this suppression can be reversed by the application of Compound C, an inhibitor of AMP-activated protein kinase, which functions as an upstream suppressor of the mTOR pathway. Thus, our results provide a novel antiepileptic mechanism for ADO in suppressing mTOR pathway activation upon PTZ-induced acute status epilepticus.
Collapse
|
6
|
Thomas TP, Shih TM. Stimulation of central A1 adenosine receptors suppresses seizure and neuropathology in a soman nerve agent seizure rat model. Toxicol Mech Methods 2014; 24:385-95. [DOI: 10.3109/15376516.2014.920450] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Van Gompel JJ, Bower MR, Worrell GA, Stead M, Chang SY, Goerss SJ, Kim I, Bennet KE, Meyer FB, Marsh WR, Blaha CD, Lee KH. Increased cortical extracellular adenosine correlates with seizure termination. Epilepsia 2014; 55:233-44. [PMID: 24483230 DOI: 10.1111/epi.12511] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2013] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Seizures are currently defined by their electrographic features. However, neuronal networks are intrinsically dependent on neurotransmitters of which little is known regarding their periictal dynamics. Evidence supports adenosine as having a prominent role in seizure termination, as its administration can terminate and reduce seizures in animal models. Furthermore, microdialysis studies in humans suggest that adenosine is elevated periictally, but the relationship to the seizure is obscured by its temporal measurement limitations. Because electrochemical techniques can provide vastly superior temporal resolution, we test the hypothesis that extracellular adenosine concentrations rise during seizure termination in an animal model and humans using electrochemistry. METHODS White farm swine (n = 45) were used in an acute cortical model of epilepsy, and 10 human epilepsy patients were studied during intraoperative electrocorticography (ECoG). Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS)-based fast scan cyclic voltammetry (FSCV) and fixed potential amperometry were obtained utilizing an adenosine-specific triangular waveform or biosensors, respectively. RESULTS Simultaneous ECoG and electrochemistry demonstrated an average adenosine increase of 260% compared to baseline, at 7.5 ± 16.9 s with amperometry (n = 75 events) and 2.6 ± 11.2 s with FSCV (n = 15 events) prior to electrographic seizure termination. In agreement with these animal data, adenosine elevation prior to seizure termination in a human patient utilizing FSCV was also seen. SIGNIFICANCE Simultaneous ECoG and electrochemical recording supports the hypothesis that adenosine rises prior to seizure termination, suggesting that adenosine itself may be responsible for seizure termination. Future work using intraoperative WINCS-based FSCV recording may help to elucidate the precise relationship between adenosine and seizure termination.
Collapse
Affiliation(s)
- Jamie J Van Gompel
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, U.S.A
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Aydin-Abidin S, Yildirim M, Abidin İ, Cansu A. Chronic application of topiramate and carbamazepine differentially affects the EEG and penicillin-induced epileptiform activity in rats. Neurol Res 2013; 34:246-51. [DOI: 10.1179/1743132812y.0000000004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Selcen Aydin-Abidin
- Department of BiophysicsFaculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
- Karadeniz Technical University Epilepsy Research Group, Turkey
| | - Mehmet Yildirim
- Karadeniz Technical University Epilepsy Research Group, Turkey
- Department of PhysiologyFaculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - İsmail Abidin
- Department of BiophysicsFaculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
- Karadeniz Technical University Epilepsy Research Group, Turkey
| | - Ali Cansu
- Karadeniz Technical University Epilepsy Research Group, Turkey
- Department of Pediatric NeurologyFaculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
9
|
Effects of anesthetic agents on seizure-induction with intra-cortical injection of convulsants. Epilepsy Res 2013; 105:52-61. [DOI: 10.1016/j.eplepsyres.2012.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/02/2012] [Accepted: 12/13/2012] [Indexed: 11/21/2022]
|
10
|
Evaluation of the Role of Chronic Daily Melatonin Administration and Pinealectomy on Penicillin-Induced Focal Epileptiform Activity and Spectral Analysis of ECoG in Rats: An In Vivo Electrophysiological Study. Neurochem Res 2013; 38:1672-85. [DOI: 10.1007/s11064-013-1069-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/25/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
|
11
|
Rossi MA. Targeting anti-epileptic drug therapy without collateral damage: nanocarrier-based drug delivery. Epilepsy Curr 2012; 12:199-200. [PMID: 23118608 PMCID: PMC3482724 DOI: 10.5698/1535-7511-12.5.199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Marangoz AH, Yildirim M, Ayyildiz M, Marangoz C. The Interactions of Nitric Oxide and Acetylcholine on Penicillin-Induced Epilepsy in Rats. Neurochem Res 2012; 37:1465-74. [DOI: 10.1007/s11064-012-0737-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/06/2012] [Accepted: 02/20/2012] [Indexed: 11/28/2022]
|
13
|
Hamil NE, Cock HR, Walker MC. Acute down-regulation of adenosine A1 receptor activity in status epilepticus. Epilepsia 2011; 53:177-88. [DOI: 10.1111/j.1528-1167.2011.03340.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Burnstock G, Krügel U, Abbracchio MP, Illes P. Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 2011; 95:229-74. [PMID: 21907261 DOI: 10.1016/j.pneurobio.2011.08.006] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/07/2023]
Abstract
Purinergic neurotransmission, involving release of ATP as an efferent neurotransmitter was first proposed in 1972. Later, ATP was recognised as a cotransmitter in peripheral nerves and more recently as a cotransmitter with glutamate, noradrenaline, GABA, acetylcholine and dopamine in the CNS. Both ATP, together with some of its enzymatic breakdown products (ADP and adenosine) and uracil nucleotides are now recognised to act via P2X ion channels and P1 and P2Y G protein-coupled receptors, which are widely expressed in the brain. They mediate both fast signalling in neurotransmission and neuromodulation and long-term (trophic) signalling in cell proliferation, differentiation and death. Purinergic signalling is prominent in neurone-glial cell interactions. In this review we discuss first the evidence implicating purinergic signalling in normal behaviour, including learning and memory, sleep and arousal, locomotor activity and exploration, feeding behaviour and mood and motivation. Then we turn to the involvement of P1 and P2 receptors in pathological brain function; firstly in trauma, ischemia and stroke, then in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's, as well as multiple sclerosis and amyotrophic lateral sclerosis. Finally, the role of purinergic signalling in neuropsychiatric diseases (including schizophrenia), epilepsy, migraine, cognitive impairment and neuropathic pain will be considered.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | |
Collapse
|
15
|
El-Mas MM, El-Gowilly SM, Fouda MA, Saad EI. Role of adenosine A2A receptor signaling in the nicotine-evoked attenuation of reflex cardiac sympathetic control. Toxicol Appl Pharmacol 2011; 254:229-37. [PMID: 21550361 DOI: 10.1016/j.taap.2011.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 04/18/2011] [Accepted: 04/21/2011] [Indexed: 12/27/2022]
Abstract
Baroreflex dysfunction contributes to increased cardiovascular risk in cigarette smokers. Given the importance of adenosinergic pathways in baroreflex control, the hypothesis was tested that defective central adenosinergic modulation of cardiac autonomic activity mediates the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate (HR) to increases or decreases in blood pressure (BP) evoked by i.v. doses (1-16μg/kg) of phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious rats; slopes of the curves were taken as measures of baroreflex sensitivity (BRS). Nicotine (25 and 100μg/kg i.v.) dose-dependently reduced BRS(SNP) in contrast to no effect on BRS(PE). BRS(SNP) was also attenuated after intracisternal (i.c.) administration of nicotine. Similar reductions in BRS(SNP) were observed in rats pretreated with atropine or propranolol. The combined treatment with nicotine and atropine produced additive inhibitory effects on BRS, an effect that was not demonstrated upon concurrent exposure to nicotine and propranolol. BRS(SNP) was reduced in preparations treated with i.c. 8-phenyltheophylline (8-PT, nonselective adenosine receptor antagonist), 8-(3-Chlorostyryl) caffeine (CSC, A(2A) antagonist), or VUF5574 (A(3) antagonist). In contrast, BRS(SNP) was preserved after blockade of A(1) (DPCPX) or A(2B) (alloxazine) receptors or inhibition of adenosine uptake by dipyridamole. CSC or 8-PT abrogated the BRS(SNP) depressant effect of nicotine whereas other adenosinergic antagonists were without effect. Together, nicotine preferentially impairs reflex tachycardia via disruption of adenosine A(2A) receptor-mediated facilitation of reflex cardiac sympathoexcitation. Clinically, the attenuation by nicotine of compensatory sympathoexcitation may be detrimental in conditions such as hypothalamic defense response, posture changes, and ventricular rhythms.
Collapse
Affiliation(s)
- Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | | | | | | |
Collapse
|
16
|
Bennewitz MF, Saltzman WM. Nanotechnology for delivery of drugs to the brain for epilepsy. Neurotherapeutics 2009; 6:323-36. [PMID: 19332327 PMCID: PMC2673491 DOI: 10.1016/j.nurt.2009.01.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 01/23/2009] [Accepted: 01/23/2009] [Indexed: 01/16/2023] Open
Abstract
Epilepsy results from aberrant electrical activity that can affect either a focal area or the entire brain. In treating epilepsy with drugs, the aim is to decrease seizure frequency and severity while minimizing toxicity to the brain and other tissues. Antiepileptic drugs (AEDs) are usually administered by oral and intravenous routes, but these drug treatments are not always effective. Drug access to the brain is severely limited by a number of biological factors, particularly the blood-brain barrier, which impedes the ability of AEDs to enter and remain in the brain. To improve the efficacy of AEDs, new drug delivery strategies are being developed; these methods fall into the three main categories: drug modification, blood-brain barrier modification, and direct drug delivery. Recently, all three methods have been improved through the use of drug-loaded nanoparticles.
Collapse
Affiliation(s)
- Margaret F. Bennewitz
- grid.47100.320000000419368710Department of Biomedical Engineering, Yale University, 414 Malone Engineering Center, 55 Prospect Street, 06520-8260 New Haven, CT
| | - W. Mark Saltzman
- grid.47100.320000000419368710Department of Biomedical Engineering, Yale University, 414 Malone Engineering Center, 55 Prospect Street, 06520-8260 New Haven, CT
| |
Collapse
|
17
|
Canan S, Ankarali S, Marangoz C. Detailed spectral profile analysis of penicillin-induced epileptiform activity in anesthetized rats. Epilepsy Res 2008; 82:7-14. [PMID: 18657397 DOI: 10.1016/j.eplepsyres.2008.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/16/2008] [Accepted: 06/17/2008] [Indexed: 11/24/2022]
Abstract
Penicillin model is a widely used experimental model for epilepsy research. In the present study we aimed to portray a detailed spectral analysis of penicillin-induced epileptiform activity in comparison with basal brain activity in anesthetized Wistar rats. Male Wistar rats were anesthetized with i.p. urethane and connected to an electrocorticogram setup. After a short period of basal activity recording, epileptic focus was induced by injecting 400IU/2 microl penicillin-G potassium into the left lateral ventricle while the cortical activity was continuously recorded. Basal activity, latent period and the penicillin-induced epileptiform activity periods were then analyzed using both conventional methods and spectral analysis. Spectral analyses were conducted by dividing the whole spectrum into different frequency bands including delta, theta (slow and fast), alpha-sigma, beta (1 and 2) and gamma (1 and 2) bands. Our results show that the most affected frequency bands were delta, theta, beta-2 and gamma-2 bands during the epileptiform activity and there were marked differences in terms of spectral densities between three investigated episodes (basal activity, latent period and epileptiform activity). Our results may help to analyze novel data obtained using similar experimental models and the simple analysis method described here can be used in similar studies to investigate the basic neuronal mechanism of this or other types of experimental epilepsies.
Collapse
Affiliation(s)
- Sinan Canan
- Department of Physiology, Faculty of Medicine, University of Baskent, 06530 Ankara, Turkey
| | | | | |
Collapse
|
18
|
Akula KK, Dhir A, Kulkarni SK. Nitric oxide signaling pathway in the anti-convulsant effect of adenosine against pentylenetetrazol-induced seizure threshold in mice. Eur J Pharmacol 2008; 587:129-34. [PMID: 18457833 DOI: 10.1016/j.ejphar.2008.03.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/06/2008] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
Abstract
The present study was performed to examine the involvement of nitric oxide (NO) signaling pathway in the anti-convulsant effect of adenosine against pentylenetetrazol seizure threshold in mice. Minimal dose of pentylenetetrazol (i.v., mg/kg) needed to induce different phases (myoclonic jerks, generalized clonus and tonic extension) of convulsions was recorded as an index of seizure threshold. Adenosine (100 or 200 mg/kg i.p.) produced a significant increase in the seizure threshold for convulsions induced by pentylenetetrazol i.v. infusion. The anti-convulsant effect of adenosine (100 mg/kg i.p.) was prevented by either L-arginine (50 mg/kg i.p.) [substrate for nitric oxide synthase (NOS)] or sodium nitroprusside (3 mg/kg i.p.) [a NO donor]. On the other hand, N(G)-nitro-L-arginine methyl ester (L-NAME, 2.5 mg/kg i.p.) [a non-selective NOS inhibitor] or 7-nitroindazole (7-NI) (25 mg/kg i.p.) [a specific neuronal nitric oxide synthase (nNOS) inhibitor] potentiated the anti-convulsant action of sub-effective dose of adenosine (50 mg/kg i.p.). Aminoguanidine (100 mg/kg i.p.) [a specific inducible NOS (iNOS) inhibitor] pre-treatment was not effective in inducing anti-convulsant effect with sub-effective dose of adenosine (50 mg/kg i.p.). Furthermore, the increase in seizure threshold elicited by adenosine (100 mg/kg i.p.) was also inhibited by concomitant administration with sildenafil (5 mg/kg i.p.) [phosphodiesterase 5 inhibitor]. In contrast, treatment of mice with methylene blue (1 mg/kg i.p.) [a direct inhibitor of both nitric oxide synthase (NOS) and soluble guanylate cyclase (sGC)] failed to induce anti-convulsant action with adenosine (50 mg/kg i.p.) against pentylenetetrazol i.v. infusion. The results demonstrated that the anti-convulsant action of adenosine in the pentylenetetrazol i.v. seizure threshold paradigm may possibly involve an interaction with the L-arginine-NO-cGMP pathway which may be secondary to the activation of adenosine receptors.
Collapse
Affiliation(s)
- Kiran Kumar Akula
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh-160014, India
| | | | | |
Collapse
|
19
|
Akula KK, Dhir A, Bishnoi M, Kulkarni SK. Effect of systemic administration of adenosine on brain adenosine levels in pentylenetetrazol-induced seizure threshold in mice. Neurosci Lett 2007; 425:39-42. [PMID: 17720312 DOI: 10.1016/j.neulet.2007.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 08/02/2007] [Accepted: 08/07/2007] [Indexed: 11/21/2022]
Abstract
Adenosine is one of the inhibitory neuromodulators in the brain. The present study was carried out to elucidate the effect of adenosine on the pentylenetetrazol (PTZ)-induced seizure threshold in mice. Further, the study also correlated the brain adenosine levels in PTZ-induced seizure threshold. PTZ (0.5%, w/v) was infused through lateral tail vein of mouse at a constant rate of 0.3 ml/min until various stages of convulsions were observed. Minimal dose of PTZ (mg/kg) needed to induce different phases (myoclonic jerks, generalized clonus and tonic extensor) of PTZ convulsions were noted as an index of seizure threshold. Intravenous infusion of PTZ resulted in a significant decrease in brain adenosine levels. Systemic administration of adenosine (100 and 200 mg/kg, i.p.), 30 min before PTZ infusion, produced a dose-dependent elevation of PTZ-seizure threshold and also enhanced brain adenosine levels as compared to vehicle treated group. The behavioral and neurochemical observations demonstrated a relationship between adenosine levels in the brain and the PTZ seizure threshold in mice.
Collapse
Affiliation(s)
- Kiran Kumar Akula
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | | | | | | |
Collapse
|