1
|
Kimura T, Horikoshi Y, Kuriyagawa C, Niiyama Y. Rho/ROCK Pathway and Noncoding RNAs: Implications in Ischemic Stroke and Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms222111573. [PMID: 34769004 PMCID: PMC8584200 DOI: 10.3390/ijms222111573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 01/18/2023] Open
Abstract
Ischemic strokes (IS) and spinal cord injuries (SCI) are major causes of disability. RhoA is a small GTPase protein that activates a downstream effector, ROCK. The up-regulation of the RhoA/ROCK pathway contributes to neuronal apoptosis, neuroinflammation, blood-brain barrier dysfunction, astrogliosis, and axon growth inhibition in IS and SCI. Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), were previously considered to be non-functional. However, they have attracted much attention because they play an essential role in regulating gene expression in physiological and pathological conditions. There is growing evidence that ROCK inhibitors, such as fasudil and VX-210, can reduce injury in IS and SCI in animal models and clinical trials. Recently, it has been reported that miRNAs are decreased in IS and SCI, while lncRNAs are increased. Inhibiting the Rho/ROCK pathway with miRNAs alleviates apoptosis, neuroinflammation, oxidative stress, and axon growth inhibition in IS and SCI. Further studies are required to explore the significance of ncRNAs in IS and SCI and to establish new strategies for preventing and treating these devastating diseases.
Collapse
Affiliation(s)
- Tetsu Kimura
- Correspondence: ; Tel.: +81-18-884-6175; Fax: +81-18-884-6448
| | | | | | | |
Collapse
|
2
|
Zou C, Zuo X, Huang J, Hua Y, Yang S, Yang X, Guo C, Tan H, Chen J, Chu Z, Pei Q, Yang G. Phase I Trial of Pyragrel, a Novel Thromboxane Synthetase Inhibitor, to Evaluate the Safety, Tolerability, and Pharmacokinetics in Healthy Volunteers. Front Pharmacol 2019; 10:1231. [PMID: 31708774 PMCID: PMC6821791 DOI: 10.3389/fphar.2019.01231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022] Open
Abstract
Background and Objective: Inhibition of thrombosis and platelet aggregation through a thromboxane synthetase inhibitor proved to be an effective and promising treatment for cardiovascular and/or cerebrovascular disease (CCVD) patients. This phase I study evaluated the safety, tolerability, and pharmacokinetics of sodium pyragrel, a novel thromboxane A2 synthetase inhibitor, in healthy volunteers. Methods: A total of 84 healthy Chinese volunteers were enrolled in the study and randomized into one of five dosing regimens of intravenous pyragrel, which were single ascending dose (30 to 300 mg), multiple doses (pyragrel 180 mg once daily on Day 1 and Day 6, twice daily from Day 2 to Day 5), 3×3 Latin square crossover (60, 120, 240 mg), and a continuous dose (360 mg in 24 h), respectively. Plasma concentrations were determined using HPLC-MS/MS. Pharmacokinetics parameters were calculated with non-compartment analysis. Results: The maximum plasma concentrations of pyragrel were essentially reached at the end of the 3 h infusion. The pharmacokinetic process of pyragrel and two main metabolites (BBS and BJS) is linear over the 30–300 mg dose range, with no significant accumulation on multiple doses. The urinary excretion of pyragrel accounted for more than 70% of the total drug amount. Preliminary pharmacodynamic results demonstrated that the production of urinary 11-D-HTXB2 was time- and dose-dependently inhibited by single i.v. dose of pyragrel. Conclusions: Pyragrel was well tolerated after single ascending doses up to 300 mg, multiple doses of 180 mg, and continuous administration of 360 mg within 24 h. No drug-related, serious adverse drug reactions occurred during the five-part study. The most common pyragrel-related adverse events (AEs) were total bilirubin (TB)/direct bilirubin (DB) elevations with a relatively low incidence rate and seemed to be dose independent. Given the acceptable safety and appropriate pharmacokinetic properties of sodium pyragrel proven in this study, continued clinical development is warranted. The study was registered at http://www.chictr.org.cn (ChiCTR-IID-16010159).
Collapse
Affiliation(s)
- Chan Zou
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaocong Zuo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jie Huang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ye Hua
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shuang Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Can Guo
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hongyi Tan
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jun Chen
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoxing Chu
- Innovative Drug Design and Evaluation Center, Hefei Industrial Pharmaceutical Institute Co., Ltd, Anhui, China
| | - Qi Pei
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guoping Yang
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Amin F, Ahmed A, Feroz A, Khaki PSS, Khan MS, Tabrez S, Zaidi SK, Abdulaal WH, Shamsi A, Khan W, Bano B. An Update on the Association of Protein Kinases with Cardiovascular Diseases. Curr Pharm Des 2019; 25:174-183. [DOI: 10.2174/1381612825666190312115140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Background:
Protein kinases are the enzymes involved in phosphorylation of different proteins which
leads to functional changes in those proteins. They belong to serine-threonine kinases family and are classified
into the AGC (Protein kinase A/ Protein kinase G/ Protein kinase C) families of protein and Rho-associated
kinase protein (ROCK). The AGC family of kinases are involved in G-protein stimuli, muscle contraction, platelet
biology and lipid signaling. On the other hand, ROCK regulates actin cytoskeleton which is involved in the
development of stress fibres. Inflammation is the main signal in all ROCK-mediated disease. It triggers the cascade
of a reaction involving various proinflammatory cytokine molecules.
Methods:
Two ROCK isoforms are found in mammals and invertebrates. The first isoforms are present mainly in
the kidney, lung, spleen, liver, and testis. The second one is mainly distributed in the brain and heart.
Results:
ROCK proteins are ubiquitously present in all tissues and are involved in many ailments that include
hypertension, stroke, atherosclerosis, pulmonary hypertension, vasospasm, ischemia-reperfusion injury and heart
failure. Several ROCK inhibitors have shown positive results in the treatment of various disease including cardiovascular
diseases.
Conclusion:
ROCK inhibitors, fasudil and Y27632, have been reported for significant efficiency in dropping
vascular smooth muscle cell hyper-contraction, vascular inflammatory cell recruitment, cardiac remodelling and
endothelial dysfunction which highlight ROCK role in cardiovascular diseases.
Collapse
Affiliation(s)
- Fakhra Amin
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Azaj Ahmed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Anna Feroz
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | | | - Mohd Shahnwaz Khan
- Protein Research Chair, Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shams Tabrez
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Syed Kashif Zaidi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wesam H. Abdulaal
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anas Shamsi
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Wajihullah Khan
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh (U.P.), India
| |
Collapse
|
4
|
Ohbuchi M, Kimura T, Nishikawa T, Horiguchi T, Fukuda M, Masaki Y. Neuroprotective Effects of Fasudil, a Rho-Kinase Inhibitor, After Spinal Cord Ischemia and Reperfusion in Rats. Anesth Analg 2018; 126:815-823. [DOI: 10.1213/ane.0000000000002602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Shah S, Patel B, Savjani JK. Pharmacophore mapping based virtual screening, molecular docking and ADMET studies of ROCK II inhibitors. Mult Scler Relat Disord 2018; 21:35-41. [PMID: 29455072 DOI: 10.1016/j.msard.2018.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 01/20/2018] [Accepted: 02/09/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Surmil Shah
- Department of Pharmaceutical Chemistry Institute of Pharmacy, Nirma University, S.G.Highway, Ahmedabad, Gujarat 382481, India
| | - Bhumika Patel
- Department of Pharmaceutical Chemistry Institute of Pharmacy, Nirma University, S.G.Highway, Ahmedabad, Gujarat 382481, India
| | - Jignasa K Savjani
- Department of Pharmaceutical Chemistry Institute of Pharmacy, Nirma University, S.G.Highway, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
6
|
Shah S, Savjani J. A review on ROCK-II inhibitors: From molecular modelling to synthesis. Bioorg Med Chem Lett 2016; 26:2383-2391. [PMID: 27080184 DOI: 10.1016/j.bmcl.2016.03.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
Rho kinase enzyme expressed in different disease conditions and involved in mediating vasoconstriction and vascular remodeling in the pathogenesis. There are two isoforms of Rho kinases, namely ROCK I and ROCK II, responsible for different physiological function due to difference in distribution, but almost similar in structure. The Rho kinase 2 belongs to AGC family and is widely distributed in brain, heart and muscles. It is responsible for contraction of vascular smooth muscles by calcium sensitization. Its defective and unwanted expression can lead to many medical conditions like multiple sclerosis, myocardial ischemia, inflammatory responses, etc. Many Rho kinase 1 and 2 inhibitors have been designed for Rho/Rho kinase pathway by use of molecular modeling studies. Most of the designed compounds have been modeled based on ROCK 1 enzyme. This article is focused on Rho kinase 2 inhibitors as there are many ways to improvise by use of Computer aided drug designing as very less quantum of research work carried out. Herein, the article highlights different stages of designing like docking, SAR and synthesis of ROCK inhibitors and recent advances. It also highlights future prospective to improve the activity.
Collapse
Affiliation(s)
- Surmil Shah
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, S.G. Highway, Ahmedabad 382481, Gujarat, India
| | - Jignasa Savjani
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, S.G. Highway, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
7
|
Effect of a Rho Kinase Inhibitor on Cognitive Impairment Induced by Chronic Cerebral Hypoperfusion in Rats. NEUROPHYSIOLOGY+ 2016. [DOI: 10.1007/s11062-016-9548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Stankiewicz TR, Linseman DA. Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration. Front Cell Neurosci 2014; 8:314. [PMID: 25339865 PMCID: PMC4187614 DOI: 10.3389/fncel.2014.00314] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/18/2014] [Indexed: 12/11/2022] Open
Abstract
The Rho family of GTPases belongs to the Ras superfamily of low molecular weight (∼21 kDa) guanine nucleotide binding proteins. The most extensively studied members are RhoA, Rac1, and Cdc42. In the last few decades, studies have demonstrated that Rho family GTPases are important regulatory molecules that link surface receptors to the organization of the actin and microtubule cytoskeletons. Indeed, Rho GTPases mediate many diverse critical cellular processes, such as gene transcription, cell–cell adhesion, and cell cycle progression. However, Rho GTPases also play an essential role in regulating neuronal morphology. In particular, Rho GTPases regulate dendritic arborization, spine morphogenesis, growth cone development, and axon guidance. In addition, more recent efforts have underscored an important function for Rho GTPases in regulating neuronal survival and death. Interestingly, Rho GTPases can exert either a pro-survival or pro-death signal in neurons depending upon both the cell type and neurotoxic insult involved. This review summarizes key findings delineating the involvement of Rho GTPases and their effectors in the regulation of neuronal survival and death. Collectively, these results suggest that dysregulation of Rho family GTPases may potentially underscore the etiology of some forms of neurodegenerative disease such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Trisha R Stankiewicz
- Research Service, Veterans Affairs Medical Center Denver, CO, USA ; Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver Denver, CO, USA
| | - Daniel A Linseman
- Research Service, Veterans Affairs Medical Center Denver, CO, USA ; Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver Denver, CO, USA ; Division of Clinical Pharmacology and Toxicology, Department of Medicine and Neuroscience Program, University of Colorado Denver Aurora, CO, USA
| |
Collapse
|
9
|
Xu F, Huang H, Wu Y, Lu L, Jiang L, Chen L, Zeng S, Li L, Li M. Upregulation of Gem relates to retinal ganglion cells apoptosis after optic nerve crush in adult rats. J Mol Histol 2014; 45:565-71. [PMID: 24948002 DOI: 10.1007/s10735-014-9579-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/11/2014] [Indexed: 12/12/2022]
Abstract
GTP-binding protein Gem, a member protein of the Ras superfamily, can regulate actin cytoskeleton reorganization mediated by Rho-associated coiled-coil-containing protein kinase (ROCK). One attractive activity of the ROCK is playing a potential role in physiological and pathological process in retinal ganglion cells (RGCs) apoptosis. However, the function of Gem in retina is still with limited understanding. To investigate whether Gem is involved in optic nerve injury, we performed an optic nerve crush (ONC) model in adult rats. Western blot analysis indicated that Gem was significantly increased in the retina at the 3rd day after ONC. Meanwhile, double-immunofluorescent staining showed that Gem expression was mainly up-regulated in ganglion cell layer and co-localized with NeuN (a marker of RGCs). Additionally, the co-localizations of Gem/active-caspase-3 and Gem/TUNEL-positive cells were detected in RGCs. Furthermore, the expression of active-caspase-3 and TUNEL-positive cells was parallel with that of Gem. Finally, expression pattern of ROCK family (only ROCK2 but not ROCK1) was increased in the differentiated process, which was collected with the expression of GEM and active-caspase-3. Based on the present results, it is suggested that Gem might play a crucial role in RGCs apoptosis after ONC, which might be involved in ROCK pathway.
Collapse
Affiliation(s)
- Fan Xu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Rho kinase (ROCK) is a major downstream effector of the small GTPase RhoA. ROCK family, consisting of ROCK1 and ROCK2, plays central roles in the organization of actin cytoskeleton and is involved in a wide range of fundamental cellular functions, such as contraction, adhesion, migration, proliferation, and apoptosis. Due to the discovery of effective inhibitors, such as fasudil and Y27632, the biological roles of ROCK have been extensively explored with particular attention on the cardiovascular system. In many preclinical models of cardiovascular diseases, including vasospasm, arteriosclerosis, hypertension, pulmonary hypertension, stroke, ischemia-reperfusion injury, and heart failure, ROCK inhibitors have shown a remarkable efficacy in reducing vascular smooth muscle cell hypercontraction, endothelial dysfunction, inflammatory cell recruitment, vascular remodeling, and cardiac remodeling. Moreover, fasudil has been used in the clinical trials of several cardiovascular diseases. The continuing utilization of available pharmacological inhibitors and the development of more potent or isoform-selective inhibitors in ROCK signaling research and in treating human diseases are escalating. In this review, we discuss the recent molecular, cellular, animal, and clinical studies with a focus on the current understanding of ROCK signaling in cardiovascular physiology and diseases. We particularly note that emerging evidence suggests that selective targeting ROCK isoform based on the disease pathophysiology may represent a novel therapeutic approach for the disease treatment including cardiovascular diseases.
Collapse
|
11
|
Chen HH, Namil A, Severns B, Ward J, Kelly C, Drace C, McLaughlin MA, Yacoub S, Li B, Patil R, Sharif N, Hellberg MR, Rusinko A, Pang IH, Combrink KD. In vivo optimization of 2,3-diaminopyrazine Rho Kinase inhibitors for the treatment of glaucoma. Bioorg Med Chem Lett 2014; 24:1875-9. [DOI: 10.1016/j.bmcl.2014.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
|
12
|
Ye R, Zhao G, Liu X. Ginsenoside Rd for acute ischemic stroke: translating from bench to bedside. Expert Rev Neurother 2014; 13:603-13. [PMID: 23738998 DOI: 10.1586/ern.13.51] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Numerous studies have identified pathophysiological mechanisms of acute ischemic stroke and have provided proof-of-principle evidence that strategies designed to impede the ischemic cascade, namely neuroprotection, can protect the ischemic brain. However, the translation of these therapeutic agents to the clinic has not been successful. Ginsenoside Rd, a dammarane-type steroid glycoside extracted from ginseng plants, has exhibited an encouraging neuroprotective efficacy in both laboratory and clinical studies. This article attempts to provide a synopsis of the physiochemical profile, pharmacokinetics, pharmacodynamics, clinical efficacy, safety and putative therapeutic mechanisms of Rd. Finally, the authors discuss the validity of Rd as a neuroprotective agent for acute ischemic stroke.
Collapse
Affiliation(s)
- Ruidong Ye
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | | | | |
Collapse
|
13
|
Foley LM, Hitchens TK, Barbe B, Zhang F, Ho C, Rao GR, Nemoto EM. Quantitative temporal profiles of penumbra and infarction during permanent middle cerebral artery occlusion in rats. Transl Stroke Res 2013; 1:220-9. [PMID: 21666857 DOI: 10.1007/s12975-010-0032-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The basic premise of neuroprotection in acute stroke is the presence of salvageable tissue, but the spatiotemporal volume profiles of the penumbra and infarction remain poorly defined in preclinical animal models of acute stroke used to evaluate therapies for clinical application. Our aim was to define these profiles using magnetic resonance imaging (MRI) quantitative cerebral blood flow (CBF) and apparent diffusion coefficient (ADC) for dual-parameter voxel analysis in the rat suture permanent middle cerebral artery occlusion (pMCAO) model. Eleven male Sprague Dawley rats were subjected to pMCAO with MRI measurements of quantitative CBF and ADC at baseline, over the first 4 h (n=9) and at 7, 14, and 21 days (n=4). Voxel analysis of CBF and ADC was used to characterize brain tissue ischemic transitions. Penumbra, core, and hyperemic infarction volumes were significantly elevated (P<0.05) and unchanged over the first 4 h of pMCAO while the total lesion volume progressively rose. At 7, 14, and 21 days, tissue compartment transitions reflected infarction, tissue cavitation, and selective ischemic neuronal necrosis. Anatomical distribution of penumbra and core revealed marked heterogeneity with penumbra scattered within core and penumbra persisting even after 4 h of permanent MCAO.
Collapse
Affiliation(s)
- Lesley M Foley
- Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Goodarzi M, Heyden YV, Funar-Timofei S. Towards better understanding of feature-selection or reduction techniques for Quantitative Structure–Activity Relationship models. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2012.09.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Wu J, Li J, Hu H, Liu P, Fang Y, Wu D. Rho-kinase inhibitor, fasudil, prevents neuronal apoptosis via the Akt activation and PTEN inactivation in the ischemic penumbra of rat brain. Cell Mol Neurobiol 2012; 32:1187-97. [PMID: 22552888 PMCID: PMC11498490 DOI: 10.1007/s10571-012-9845-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
Abstract
Recently, some studies suggested that inhibition of Rho-kinase (ROCK) prevented cerebral ischemia injury through inhibiting inflammatory reaction, increasing cerebral blood flow, modulating the neuronal actin cytoskeleton polymerization, and preventing tau hyperphosphorylation and p25/CDK5 increase. However, there is little information regarding the effects of ROCK inhibitor on the neuronal apoptosis in ischemic brain injury. In this study, we determined whether ROCK inhibitor, fasudil, inhibited ischemic neuronal apoptosis through phosphatase and tensin homolog deleted on chromosome10 (PTEN)/Akt/signal pathway in vivo. Adult male Sprague-Dawley rats were subjected to permanent middle cerebral artery occlusion. Rats received ROCK inhibitor, fasudil (10 mg/kg), at 30 min before middle cerebral artery occlusion. The infarct area, neuronal apoptosis and caspase-3 activity was significantly decreased by fasudil with improvement of neurological deterioration. However, the beneficial effects of fasudil were attenuated by the co-application of LY294002 (PI3K inhibitor). Fasudil maintained postischemic Akt activity at relatively proper level and decreased the augmentation of PTEN and ROCK activity in the penumbra area. Furthermore, fasudil inhibited attenuation of GSK-β and Bad phosphorylation in the penumbra area. In conclusion, the findings provide another consideration that fasudil protects the brain against ischemia injury through decreasing neuronal apoptosis and reveals the link between the ROCK inhibition and the PTEN/Akt pathway.
Collapse
Affiliation(s)
- Jianhua Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Jianzhe Li
- Department of Pharmacy, Ruikang Hospital, Guangxi College of Traditional Chinese Medicine, Nanning, 530011 Guangxi China
| | - Hankun Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Ping Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Yunxiang Fang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, 410078 China
| | - Dongfang Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| |
Collapse
|
16
|
Kubo T, Yamaguchi A, Iwata N, Yamashita T. The therapeutic effects of Rho-ROCK inhibitors on CNS disorders. Ther Clin Risk Manag 2011; 4:605-15. [PMID: 18827856 PMCID: PMC2500253 DOI: 10.2147/tcrm.s2907] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Rho-kinase (ROCK) is a serine/threonine kinase and one of the major downstream effectors of the small GTPase Rho. The Rho-ROCK pathway is involved in many aspects of neuronal functions including neurite outgrowth and retraction. The Rho-ROCK pathway becomes an attractive target for the development of drugs for treating central nervous system (CNS) disorders, since it has been recently revealed that this pathway is closely related to the pathogenesis of several CNS disorders such as spinal cord injuries, stroke, and Alzheimer's disease (AD). In the adult CNS, injured axons regenerate poorly due to the presence of myelin-associated axonal growth inhibitors such as myelin-associated glycoprotein (MAG), Nogo, oligodendrocyte-myelin glycoprotein (OMgp), and the recently identified repulsive guidance molecule (RGM). The effects of these inhibitors are reversed by blockade of the Rho-ROCK pathway in vitro, and the inhibition of this pathway promotes axonal regeneration and functional recovery in the injured CNS in vivo. In addition, the therapeutic effects of the Rho-ROCK inhibitors have been demonstrated in animal models of stroke. In this review, we summarize the involvement of the Rho-ROCK pathway in CNS disorders such as spinal cord injuries, stroke, and AD and also discuss the potential of Rho-ROCK inhibitors in the treatment of human CNS disorders.
Collapse
Affiliation(s)
- Takekazu Kubo
- Department of Neurobiology, Graduate School of Medicine, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | |
Collapse
|
17
|
Ichinomiya T, Terao Y, Miura K, Higashijima U, Tanise T, Fukusaki M, Sumikawa K. QTc interval and neurological outcomes in aneurysmal subarachnoid hemorrhage. Neurocrit Care 2011; 13:347-54. [PMID: 20652444 DOI: 10.1007/s12028-010-9411-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Prolonged heart rate-corrected QT (QTc) interval is frequently observed in subarachnoid hemorrhage (SAH). This study was conducted to determine the relationship between QTc interval and neurological outcome during the acute posthemorrhagic period after aneurysmal SAH. METHODS We studied 71 patients undergoing surgery who were admitted within 24 h after the onset of aneurysmal SAH. Standard 12-lead electrocardiography was performed on admission (T1) and at 1 and 7 days after operation (T2 and T3). QT intervals were corrected by heart rate according to the Fridericia formula. The Glasgow Coma Scale (GCS) score was calculated over the period T1-T3. Neurological outcome was assessed using the Glasgow Outcome Scale at hospital discharge. RESULTS Among the 71 patients, 31 had an unfavorable neurological outcome. Although QTc interval prolongation improved in patients with a good outcome, QTc interval prolongation continued in patients with an unfavorable outcome. The areas under the receiver-operator characteristic curves showed that the QTc and GCS score at T3, and the Hunt and Hess grade were significant predictors of an unfavorable neurological outcome. The threshold value, sensitivity, and specificity for the QTc at T3 were 448 ms, 73% [95% confidence interval (CI), 68-78], and 93% (95% CI, 90-96), respectively. CONCLUSION This study confirms that QTc interval prolongation continues in the SAH patients with an unfavorable outcome but that QTc interval prolongation improves in patients with a good outcome, suggesting that a QTc interval of more than 448 ms at 7 days after operation is a predictor of neurological outcome after SAH.
Collapse
Affiliation(s)
- Taiga Ichinomiya
- Department of Anesthesia, Nagasaki Rosai Hospital, 2-12-5 Setogoe, Sasebo, 857-0134, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Fasudil protects cultured N1E-115 cells against lysophosphatidic acid-induced neurite retraction through inhibition of Rho-kinase. Brain Res Bull 2010; 84:174-7. [PMID: 21126559 DOI: 10.1016/j.brainresbull.2010.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 11/21/2022]
Abstract
The aim of this study was to investigate the possible effects of the Rho-kinase inhibitor, fasudil, on the lysophosphatidic acid (LPA)-induced neurite retraction in N1E-115 cells. In cultured N1E-115 cells, LPA produced a marked increase in the population of rounded cells. Fasudil or hydroxyfasudil, an active metabolite of fasudil, blocked cell rounding in a concentration-dependent manner at levels between 1 and 10 μM, with IC₅₀ values of 1.7 or 1.6 μM, respectively. Fasudil or hydroxyfasudil concentration-dependently inhibited phosphorylation of the myosin binding subunit of myosin phosphatase in N1E-115 cells. These results indicate that Rho-kinase is essential for LPA-induced neurite retraction in N1E-115 cells and that inactivation of Rho-kinase by a Rho-kinase inhibitor, such as fasudil, eliminates cell rounding and promotes neurite outgrowth, thus improving neurological function in the brain damage.
Collapse
|
19
|
Cloutier M, Tremblay M, Piedboeuf B. ROCK2 is involved in accelerated fetal lung development induced by in vivo lung distension. Pediatr Pulmonol 2010; 45:966-76. [PMID: 20648664 DOI: 10.1002/ppul.21266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Lung development is strongly influenced by its state of distension. For instance, increasing distension induced by fetal tracheal occlusion (TO) stimulates lung development. In contrast, oligohydramnios (OH) reduces lung distending forces and results in lung hypoplasia. We hypothesize that Rho/Rho-associated kinase (ROCK) pathway plays an important role as mechanosensor in vivo acting either directly or indirectly in the translation of increased distension into acceleration of lung growth. TO was done in fetal mice sacrificed either 3 or 24 hr later; in a subset of dam, fasudil, a specific ROCK inhibitor, or vehicle was injected intra-peritoneally. OH was done by puncture of the amniotic sac. ROCK2 protein levels were assessed by Western blot and immunohistochemistry (IHC); lung development was assessed by measuring the generation of distal respiratory airway. Significant differences were found in ROCK2 protein levels between TO and Sham-TO at 3 and 24 hr, but not for ROCK1. Indeed, IHC revealed that ROCK2 staining was sparse and restricted to a few mesenchymal cells in Sham-TO, whereas it was strong in acini of TO lungs. OH lungs expressed lower levels of ROCK2 in the acini when compared to untouched controls. In fasudil-treated animals, the degree of lung development following TO was significantly lower than in the group injected with vehicle. At the dose regimen used, fasudil did not affect normal lung development, as observed in the untouched animals. In summary, ROCK2 protein levels was affected by the degree of lung expansion and blunting ROCK activity abolished the response to increased lung distension, suggesting that ROCK is a key regulator in TO-induced accelerated lung development.
Collapse
Affiliation(s)
- Marc Cloutier
- Unité de Recherche en Pédiatrie, Centre de Recherche du Centre Hospitalier de l'Université Laval, Québec, QC, Canada
| | | | | |
Collapse
|
20
|
Cuesta-Mateos C, López-Giral S, Alfonso-Pérez M, de Soria VGG, Loscertales J, Guasch-Vidal S, Beltrán AE, Zapata JM, Muñoz-Calleja C. Analysis of migratory and prosurvival pathways induced by the homeostatic chemokines CCL19 and CCL21 in B-cell chronic lymphocytic leukemia. Exp Hematol 2010; 38:756-64, 764.e1-4. [DOI: 10.1016/j.exphem.2010.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 05/05/2010] [Accepted: 05/06/2010] [Indexed: 12/16/2022]
|
21
|
Fang X, Yin Y, Chen YT, Yao L, Wang B, Cameron MD, Lin L, Khan S, Ruiz C, Schröter T, Grant W, Weiser A, Pocas J, Pachori A, Schürer S, LoGrasso P, Feng Y. Tetrahydroisoquinoline Derivatives As Highly Selective and Potent Rho Kinase Inhibitors. J Med Chem 2010; 53:5727-37. [DOI: 10.1021/jm100579r] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xingang Fang
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Yan Yin
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Yen Ting Chen
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Lei Yao
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Bo Wang
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Michael D. Cameron
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Li Lin
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Susan Khan
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Claudia Ruiz
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Thomas Schröter
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Wayne Grant
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | | | - Jennifer Pocas
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Alok Pachori
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Stephan Schürer
- Department of Pharmacology and Center for Computational Science, University of Miami, Miami, Florida 33136
| | - Philip LoGrasso
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| | - Yangbo Feng
- Translational Research Institute and Department of Molecular Therapeutics, The Scripps Research Institute, Florida, 130 Scripps Way, 2A1, Jupiter, Florida 33458
| |
Collapse
|
22
|
Qin Q, Liao G, Baudry M, Bi X. Cholesterol Perturbation in Mice Results in p53 Degradation and Axonal Pathology through p38 MAPK and Mdm2 Activation. PLoS One 2010; 5:e9999. [PMID: 20386595 PMCID: PMC2850309 DOI: 10.1371/journal.pone.0009999] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/10/2010] [Indexed: 11/27/2022] Open
Abstract
Perturbation of lipid metabolism, especially of cholesterol homeostasis, can be catastrophic to mammalian brain, as it has the highest level of cholesterol in the body. This notion is best illustrated by the severe progressive neurodegeneration in Niemann-Pick Type C (NPC) disease, one of the lysosomal storage diseases, caused by mutations in the NPC1 or NPC2 gene. In this study, we found that growth cone collapse induced by genetic or pharmacological disruption of cholesterol egress from late endosomes/lysosomes was directly related to a decrease in axonal and growth cone levels of the phosphorylated form of the tumor suppressor factor p53. Cholesterol perturbation-induced growth cone collapse and decrease in phosphorylated p53 were reduced by inhibition of p38 mitogen-activated protein kinase (MAPK) and murine double minute (Mdm2) E3 ligase. Growth cone collapse induced by genetic (npc1−/−) or pharmacological modification of cholesterol metabolism was Rho kinase (ROCK)-dependent and associated with increased RhoA protein synthesis; both processes were significantly reduced by P38 MAPK or Mdm2 inhibition. Finally, in vivo ROCK inhibition significantly increased phosphorylated p53 levels and neurofilaments in axons, and axonal bundle size in npc1−/− mice. These results indicate that NPC-related and cholesterol perturbation-induced axonal pathology is associated with an abnormal signaling pathway consisting in p38 MAPK activation leading to Mdm2-mediated p53 degradation, followed by ROCK activation. These results also suggest new targets for pharmacological treatment of NPC disease and other diseases associated with disruption of cholesterol metabolism.
Collapse
Affiliation(s)
- Qingyu Qin
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific (COMP), Western University of Health Sciences, Pomona, California, United States of America
| | - Guanghong Liao
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific (COMP), Western University of Health Sciences, Pomona, California, United States of America
| | - Michel Baudry
- Neuroscience Program, University of Southern California, Los Angeles, California, United States of America
| | - Xiaoning Bi
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific (COMP), Western University of Health Sciences, Pomona, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Chico LK, Van Eldik LJ, Watterson DM. Targeting protein kinases in central nervous system disorders. Nat Rev Drug Discov 2009; 8:892-909. [PMID: 19876042 PMCID: PMC2825114 DOI: 10.1038/nrd2999] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein kinases are a growing drug target class in disorders in peripheral tissues, but the development of kinase-targeted therapies for central nervous system (CNS) diseases remains a challenge, largely owing to issues associated specifically with CNS drug discovery. However, several candidate therapeutics that target CNS protein kinases are now in various stages of preclinical and clinical development. We review candidate compounds and discuss selected CNS protein kinases that are emerging as important therapeutic targets. In addition, we analyse trends in small-molecule properties that correlate with key challenges in CNS drug discovery, such as blood-brain barrier penetrance and cytochrome P450-mediated metabolism, and discuss the potential of future approaches that will integrate molecular-fragment expansion with pharmacoinformatics to address these challenges.
Collapse
Affiliation(s)
- Laura K Chico
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
24
|
Treatment of rat spinal cord injury with a Rho-kinase inhibitor and bone marrow stromal cell transplantation. Brain Res 2009; 1295:192-202. [PMID: 19651108 DOI: 10.1016/j.brainres.2009.07.087] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 07/24/2009] [Accepted: 07/25/2009] [Indexed: 01/05/2023]
Abstract
In light of reports that the administration of fasudil, a Rho-kinase inhibitor, improved rats locomotor abilities following spinal cord injury, we hypothesized that combining fasudil with another type of therapy, such as stem cell transplantation, might further improve the level of locomotor recovery. Bone marrow stromal cells (BMSCs) are readily available for stem cell therapy. In the present study, we examined whether fasudil combined with BMSC transplantation would produce synergistic effects on recovery. Adult female Sprague-Dawley rats were subjected to spinal cord contusion injury at the T10 vertebral level using an IH impactor (200 Kdyn). Immediately after contusion, they were administrated fasudil intrathecally for 4 weeks. GFP rat-derived BMSCs (2.5x10(6)) were injected into the lesion site 14 days after contusion. Locomotor recovery was assessed for 9 weeks with BBB scoring. Sensory tests were conducted at 8 weeks. Biotinylated dextran amine (BDA) was injected into the sensory-motor cortex at 9 weeks. In addition to an untreated control group, the study also included a fasudil-only group and a BMSC-only group in order to compare the effects of combined therapy vs. single-agent therapy. Animals were perfused transcardially 11 weeks after contusion, and histological examinations were performed. The combined therapy group showed statistically better locomotor recovery than the untreated control group at 8 and 9 weeks after contusion. Neither of the two single-agent treatments improved open field locomotor function. Sensory tests showed no statistically significant difference by treatment. Histological and immunohistochemical studies provided some supporting evidence for better locomotor recovery following combined therapy. The average area of the cystic cavity was significantly smaller in the fasudil+BMSC group than in the control group. The number of 5-HT nerve fibers was significantly higher in the fasudil+BMSC group than in the control group on the rostral side of the lesion site. BDA-labeled fibers on the caudal side of the lesion epicenter were observed only in the fasudil+BMSC group. On the other hand, only small numbers of GFP-labeled grafted cells remained 9 weeks after transplantation, and these were mainly localized at the site of injection. Double immunofluorescence studies showed no evidence of differentiation of grafted BMSCs into glial cells or neurons. The Rho-kinase inhibitor fasudil combined with BMSC transplantation resulted in better locomotor recovery than occurred in the untreated control group. However, the data failed to demonstrate significant synergism from combined therapy compared with the levels of recovery following single-agent treatment.
Collapse
|
25
|
Huentelman MJ, Stephan DA, Talboom J, Corneveaux JJ, Reiman DM, Gerber JD, Barnes CA, Alexander GE, Reiman EM, Bimonte-Nelson HA. Peripheral delivery of a ROCK inhibitor improves learning and working memory. Behav Neurosci 2009; 123:218-23. [PMID: 19170447 DOI: 10.1037/a0014260] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Previously, utilizing a series of genome-wide association, brain imaging, and gene expression studies we implicated the KIBRA gene and the RhoA/ROCK pathway in hippocampal-mediated human memory. Here we show that peripheral administration of the ROCK inhibitor hydroxyfasudil improves spatial learning and working memory in the rodent model. This study supports the action of ROCK on learning and memory, suggests the potential value of ROCK inhibition for the promotion of cognition in humans, and highlights the powerful potential of unbiased genome-wide association studies to inform potential novel uses for existing pharmaceuticals.
Collapse
Affiliation(s)
- Matthew J Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, Arizona 85004, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shin HK, Salomone S, Ayata C. Targeting cerebrovascular Rho-kinase in stroke. Expert Opin Ther Targets 2009; 12:1547-64. [PMID: 19007322 DOI: 10.1517/14728220802539244] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Rho and Rho-associated kinase (ROCK) play pivotal roles in pathogenesis of vascular diseases including stroke. ROCK is expressed in all cell types relevant to stroke, and regulates a range of physiological processes. OBJECTIVE To provide an overview of ROCK as an experimental therapeutic target in cerebral ischemia, and the translational opportunities and obstacles in the prophylaxis and treatment of stroke. METHODS Relevant literature was reviewed. RESULTS ROCK activity is upregulated in chronic vascular risk factors such as diabetes, hyperlipidemia and hypertension, and more acutely by cerebral ischemia. ROCK activation is predicted to increase the risk of cerebral ischemia, and worsen the ischemic tissue outcome and functional recovery. Evidence suggests that ROCK inhibition is protective in models of cerebral ischemia. The benefit is mediated through multiple mechanisms. CONCLUSION ROCK is a promising therapeutic target in all stages of stroke.
Collapse
Affiliation(s)
- Hwa Kyoung Shin
- Pusan National University, Medical Research Center for Ischemic Tissue Regeneration, 10 Ami-dong, 1-Ga, Seo-Gu, Busan 602-739, Korea
| | | | | |
Collapse
|
27
|
Chen YT, Bannister TD, Weiser A, Griffin E, Lin L, Ruiz C, Cameron MD, Schürer S, Duckett D, Schröter T, LoGrasso P, Feng Y. Chroman-3-amides as potent Rho kinase inhibitors. Bioorg Med Chem Lett 2008; 18:6406-9. [DOI: 10.1016/j.bmcl.2008.10.080] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 01/06/2023]
|
28
|
The development of stroke therapeutics: promising mechanisms and translational challenges. Neuropharmacology 2008; 56:329-41. [PMID: 19007799 DOI: 10.1016/j.neuropharm.2008.10.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/29/2008] [Accepted: 10/06/2008] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is the second most common cause of death worldwide and a major cause of disability. Intravenous thrombolysis with rt-PA remains the only available acute therapy in patients who present within 3h of stroke onset other than the recently approved mechanical MERCI device, substantiating the high unmet need in available stroke therapeutics. The development of successful therapeutic strategies remains challenging, as evidenced by the continued failures of new therapies in clinical trials. However, significant lessons have been learned and this knowledge is currently being incorporated into improved pre-clinical and clinical design. Furthermore, advancements in imaging technologies and continued progress in understanding biological pathways have established a prolonged presence of salvageable penumbral brain tissue and have begun to elucidate the natural repair response initiated by ischemic insult. We review important past and current approaches to drug development with an emphasis on implementing principles of translational research to achieve a rigorous conversion of knowledge from bench to bedside. We highlight current strategies to protect and repair brain tissue with the promise to provide longer therapeutic windows, preservation of multiple tissue compartments and improved clinical success.
Collapse
|
29
|
Sessions EH, Yin Y, Bannister TD, Weiser A, Griffin E, Pocas J, Cameron MD, Ruiz C, Lin L, Schürer SC, Schröter T, LoGrasso P, Feng Y. Benzimidazole- and benzoxazole-based inhibitors of Rho kinase. Bioorg Med Chem Lett 2008; 18:6390-3. [PMID: 18996009 DOI: 10.1016/j.bmcl.2008.10.095] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 10/16/2008] [Accepted: 10/17/2008] [Indexed: 11/25/2022]
Abstract
Inhibitors of Rho kinase have been developed based on two distinct scaffolds, benzimidazoles, and benzoxazoles. SAR studies and efforts to optimize the initial lead compounds are described. Novel selective inhibitors of ROCK-II with excellent potency in both enzyme and cell-based assays were obtained. These inhibitors possess good microsomal stability, low cytochrome P-450 inhibitions and good oral bioavailability.
Collapse
Affiliation(s)
- E Hampton Sessions
- Department of Molecular Therapeutics, The Scripps Research Institute Florida, 130 Scripps Way, #2A1, Jupiter, FL 33458, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Satoh SI, Toshima Y, Hitomi A, Ikegaki I, Seto M, Asano T. Wide therapeutic time window for Rho-kinase inhibition therapy in ischemic brain damage in a rat cerebral thrombosis model. Brain Res 2007; 1193:102-8. [PMID: 18187127 DOI: 10.1016/j.brainres.2007.11.050] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/20/2007] [Accepted: 11/23/2007] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate the influence of delayed Rho-kinase inhibition with fasudil on second ischemic injury in a rat cerebral thrombosis model. Cerebral ischemia was induced in rats by injecting 150 mug of sodium laurate into the left internal carotid artery on day 1. In the ischemic group, the regional cerebral blood flow (rCBF) was significantly decreased 6.5 h after the injection. Fasudil (3 mg/kg/30 min i.v. infusion) significantly increased rCBF. The viscosity of whole blood was significantly increased 48 h after the injection of sodium laurate. Fasudil (10 mg/kg, i.p.) significantly decreased blood viscosity. To clarify the therapeutic time window of fasudil, rats received their first i.p. administration of fasudil (10 mg/kg) 6 h after an injection of sodium laurate. Administration of fasudil twice daily was continued until day 4. Fasudil prevented the accumulation of neutrophils within the brain as seen from measurements taken on day 3, and improved neuronal functions and reduced the infarction area as seen on day 5. Fasudil and hydroxyfasudil, an active metabolite of fasudil, concentration-dependently inhibited phosphorylation of myosin binding subunit of myosin phosphatase in neutrophils. The present results indicate that inhibition of Rho-kinase activation with fasudil is effective for the treatment of ischemic brain damage with a wide therapeutic time window by improving hemodynamic function and preventing the inflammatory responses. These results suggest that fasudil will be a novel and efficacious approach for the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Shin-ichi Satoh
- Research Center, Asahi Kasei Pharma Corporation 632-1, Mifuku, Izunokuni-shi, Shizuoka 410-2321, Japan.
| | | | | | | | | | | |
Collapse
|