1
|
Vanessa Becerra-Hernández L, Casanova MF, Buriticá E. Cortical calretinin-positive neurons: Functional and ontogenetic characteristics and their relationship to brain pathologies. Brain Res 2024; 1846:149285. [PMID: 39490954 DOI: 10.1016/j.brainres.2024.149285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/02/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Cortical GABAergic interneurons can be classified according to electrophysiological, biochemical, and/or morphological criteria. In humans, the use of calcium-binding proteins allows us to differentiate three subpopulations of GABAergic interneurons with minimal overlap. Cortical calretinin-positive neurons mainly include bipolar and double-bouquet morphologies, with a largely non-rapid and adaptive firing pattern, originating from the ganglionic eminence and the ventricular and subventricular regions of the developing brain. These cells are distributed from layer I to VI of the neocortex, with predominance in layers II and III. Given their morphology, distribution of processes, and elucidated synaptic contacts, these neurons are considered important in the control of intraminicolumnar processing through vertical inhibition. They have been extensively studied in the context of pathologies characterized by excitation/inhibition imbalance, such as Alzheimer's disease, epilepsy, traumatic brain injury, and autism. In light of the current evidence, this review considers these aspects in depth and discusses the pathophysiological role and selective vulnerability (pathoclisis) vs. the resistance that these interneurons can present against different types of injury.
Collapse
Affiliation(s)
- Lina Vanessa Becerra-Hernández
- Centro de Estudios Cerebrales, Facultad de Salud, Universidad del Valle, Cali, Colombia; Departamento de Ciencias Básicas de la Salud, Pontificia Universidad Javeriana, Cali, Colombia.
| | - Manuel F Casanova
- Department of Biomedical Sciences, School of Medicine Greenville, University of South Carolina, Greenville, SC, United States
| | - Efraín Buriticá
- Centro de Estudios Cerebrales, Facultad de Salud, Universidad del Valle, Cali, Colombia
| |
Collapse
|
2
|
Sneyers F, Speelman-Rooms F, Verhelst SHL, Bootman MD, Bultynck G. Cellular effects of BAPTA: Are they only about Ca 2+ chelation? BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119589. [PMID: 37739271 DOI: 10.1016/j.bbamcr.2023.119589] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023]
Abstract
Intracellular Ca2+ signals play a vital role in a broad range of cell biological and physiological processes in all eukaryotic cell types. Dysregulation of Ca2+ signaling has been implicated in numerous human diseases. Over the past four decades, the understanding of how cells use Ca2+ as a messenger has flourished, largely because of the development of reporters that enable visualization of Ca2+ signals in different cellular compartments, and tools that can modulate cellular Ca2+ signaling. One such tool that is frequently used is BAPTA; a fast, high-affinity Ca2+-chelating molecule. By making use of a cell-permeable acetoxymethyl ester (AM) variant, BAPTA can be readily loaded into the cytosol of cells (referred to as BAPTAi), where it is trapped and able to buffer changes in cytosolic Ca2+. Due to the ease of loading of the AM version of BAPTA, this reagent has been used in hundreds of studies to probe the role of Ca2+ signaling in specific processes. As such, for decades, researchers have almost universally attributed changes in biological processes caused by BAPTAi to the involvement of Ca2+ signaling. However, BAPTAi has often been used without any form of control, and in many cases has neither been shown to be retained in cells for the duration of experiments nor to buffer any Ca2+ signals. Moreover, increasing evidence points to off-target cellular effects of BAPTA that are clearly not related to Ca2+ chelation. Here, we briefly introduce Ca2+ signaling and the history of Ca2+ chelators and fluorescent Ca2+ indicators. We highlight Ca2+-independent effects of BAPTAi on a broad range of molecular targets and describe some of BAPTAi's impacts on cell functions that occur independently of its Ca2+-chelating properties. Finally, we propose strategies for determining whether Ca2+ chelation, the binding of other metal ions, or off-target interactions with cell components are responsible for BAPTAi's effect on a particular process and suggest some future research directions.
Collapse
Affiliation(s)
- Flore Sneyers
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000 Leuven, Belgium
| | - Femke Speelman-Rooms
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000 Leuven, Belgium; KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49 box 901b, B-3000 Leuven, Belgium
| | - Steven H L Verhelst
- KU Leuven, Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, Herestraat 49 box 901b, B-3000 Leuven, Belgium
| | - Martin D Bootman
- The Open University, Cancer Research Group, School of Life, Health and Chemical Sciences, Milton Keynes, UK
| | - Geert Bultynck
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
3
|
Hashizume T, Ozawa Y, Ying BW. Employing active learning in the optimization of culture medium for mammalian cells. NPJ Syst Biol Appl 2023; 9:20. [PMID: 37253825 DOI: 10.1038/s41540-023-00284-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023] Open
Abstract
Medium optimization is a crucial step during cell culture for biopharmaceutics and regenerative medicine; however, this step remains challenging, as both media and cells are highly complex systems. Here, we addressed this issue by employing active learning. Specifically, we introduced machine learning to cell culture experiments to optimize culture medium. The cell line HeLa-S3 and the gradient-boosting decision tree algorithm were used to find optimized media as pilot studies. To acquire the training data, cell culture was performed in a large variety of medium combinations. The cellular NAD(P)H abundance, represented as A450, was used to indicate the goodness of culture media. In active learning, regular and time-saving modes were developed using culture data at 168 h and 96 h, respectively. Both modes successfully fine-tuned 29 components to generate a medium for improved cell culture. Intriguingly, the two modes provided different predictions for the concentrations of vitamins and amino acids, and a significant decrease was commonly predicted for fetal bovine serum (FBS) compared to the commercial medium. In addition, active learning-assisted medium optimization significantly increased the cellular concentration of NAD(P)H, an active chemical with a constant abundance in living cells. Our study demonstrated the efficiency and practicality of active learning for medium optimization and provided valuable information for employing machine learning technology in cell biology experiments.
Collapse
Affiliation(s)
- Takamasa Hashizume
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Ibaraki, Japan
| | - Yuki Ozawa
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Ibaraki, Japan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Ibaraki, Japan.
| |
Collapse
|
4
|
Basheer M, Hassan Z, Gam LH. Upregulation of Brain's Calcium Binding Proteins in Mitragynine Dependence: A Potential Cellular Mechanism to Addiction. Int J Med Sci 2023; 20:102-113. [PMID: 36619231 PMCID: PMC9812809 DOI: 10.7150/ijms.78861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/20/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Mitragyna speciosa Korth or Kratom is widely used traditionally for its medicinal values. The major alkaloid content of kratom leaves is mitragynine, which binds to opioid receptors to give opioid-like effects. This study aimed to analyse the brain proteome of animals that displayed addictive behaviors. Design and Methods: Six groups (n=6-8) of rats made up of negative control, positive control using morphine (10 mg/kg), and treatment groups at low (1mg/kg) and high doses of mitragynine (30 mg/kg) for 1 and 4 days. The rats' behaviors were evaluated and subsequently the rats' brains were harvested for proteomic analysis that was performed by using 2D gel electrophoresis and LC/MS/MS. Results: The rats developed physical dependence only on day 4 following morphine and mitragynine (1 and 30mg/kg) treatments. Among the proteins that were up-regulated in treatment groups were four calcium-binding proteins, namely calretinin, F-actin, annexin A3 and beta-centractin. Conclusions: Upregulation of calretinin acted as low Ca2+ buffering upon the blockage of Ca2+ ion channel by mitragynine in the brain, which subsequently caused a reduction of GABA released and inversely increased the dopamine secretions that contributed to dependence indicators.
Collapse
Affiliation(s)
- Murtadha Basheer
- School of pharmaceutical sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Zurina Hassan
- Center of Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Lay-Harn Gam
- School of pharmaceutical sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
5
|
Fu J, Zhou Q, Wu B, Huang X, Tang Z, Tan W, Zhu Z, Du M, Wu C, Ma J, Balawi E, Liao ZB. Protective effects and regulatory pathways of melatonin in traumatic brain injury mice model: Transcriptomics and bioinformatics analysis. Front Mol Neurosci 2022; 15:974060. [PMID: 36157079 PMCID: PMC9500234 DOI: 10.3389/fnmol.2022.974060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of disability and mortality globally. Melatonin (Mel) is a neuroendocrine hormone synthesized from the pineal gland that protects against TBI. Yet, the precise mechanism of action is not fully understood. In this study, we examined the protective effect and regulatory pathways of melatonin in the TBI mice model using transcriptomics and bioinformatics analysis. The expression profiles of mRNA, long non-coding RNA (lncRNA), microRNA (miRNA), and circular RNA (circRNA) were constructed using the whole transcriptomes sequencing technique. In total, 93 differentially expressed (DE) mRNAs (DEmRNAs), 48 lncRNAs (DElncRNAs), 59 miRNAs (DEmiRNAs), and 59 circRNAs (DEcircRNAs) were identified by the TBI mice with Mel treatment compared to the group without drug intervention. The randomly selected coding RNAs and non-coding RNAs (ncRNAs) were identified by quantitative real-time polymerase chain reaction (qRT-PCR). To further detect the biological functions and potential pathways of those differentially expressed RNAs, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were executed. In our research, the regulatory network was constructed to show the relationship of lncRNA-RBPs. The lncRNA-mRNA co-expression network was established based on the Pearson coefficient to indicate the expression correlations. Moreover, the DEcircRNA–DEmiRNA–DEmRNA and DElncRNA–DEmiRNA–DEmRNA regulatory networks were constructed to demonstrate the regulatory relationship between ncRNAs and mRNA. Finally, to further verify our predicted results, cytoHubba was used to find the hub gene in the synaptic vesicle cycle pathway, and the expression level of SNAP-25 and VAMP-2 after melatonin treatment were detected by Western blotting and immunofluorescence. To sum up, these data offer a new insight regarding the molecular effect of melatonin treatment after TBI and suggest that the high-throughput sequencing and analysis of transcriptomes are useful for studying the drug mechanisms in treatment after TBI.
Collapse
|
6
|
Warm D, Bassetti D, Schroer J, Luhmann HJ, Sinning A. Spontaneous Activity Predicts Survival of Developing Cortical Neurons. Front Cell Dev Biol 2022; 10:937761. [PMID: 36035995 PMCID: PMC9399774 DOI: 10.3389/fcell.2022.937761] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Spontaneous activity plays a crucial role in brain development by coordinating the integration of immature neurons into emerging cortical networks. High levels and complex patterns of spontaneous activity are generally associated with low rates of apoptosis in the cortex. However, whether spontaneous activity patterns directly encode for survival of individual cortical neurons during development remains an open question. Here, we longitudinally investigated spontaneous activity and apoptosis in developing cortical cultures, combining extracellular electrophysiology with calcium imaging. These experiments demonstrated that the early occurrence of calcium transients was strongly linked to neuronal survival. Silent neurons exhibited a higher probability of cell death, whereas high frequency spiking and burst behavior were almost exclusively detected in surviving neurons. In local neuronal clusters, activity of neighboring neurons exerted a pro-survival effect, whereas on the functional level, networks with a high modular topology were associated with lower cell death rates. Using machine learning algorithms, cell fate of individual neurons was predictable through the integration of spontaneous activity features. Our results indicate that high frequency spiking activity constrains apoptosis in single neurons through sustained calcium rises and thereby consolidates networks in which a high modular topology is reached during early development.
Collapse
|
7
|
Duan ZRS, Che A, Chu P, Modol L, Bollmann Y, Babij R, Fetcho RN, Otsuka T, Fuccillo MV, Liston C, Pisapia DJ, Cossart R, De Marco García NV. GABAergic Restriction of Network Dynamics Regulates Interneuron Survival in the Developing Cortex. Neuron 2019; 105:75-92.e5. [PMID: 31780329 DOI: 10.1016/j.neuron.2019.10.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 07/23/2019] [Accepted: 10/01/2019] [Indexed: 12/15/2022]
Abstract
During neonatal development, sensory cortices generate spontaneous activity patterns shaped by both sensory experience and intrinsic influences. How these patterns contribute to the assembly of neuronal circuits is not clearly understood. Using longitudinal in vivo calcium imaging in un-anesthetized mouse pups, we show that spatially segregated functional assemblies composed of interneurons and pyramidal cells are prominent in the somatosensory cortex by postnatal day (P) 7. Both reduction of GABA release and synaptic inputs onto pyramidal cells erode the emergence of functional topography, leading to increased network synchrony. This aberrant pattern effectively blocks interneuron apoptosis, causing increased survival of parvalbumin and somatostatin interneurons. Furthermore, the effect of GABA on apoptosis is mediated by inputs from medial ganglionic eminence (MGE)-derived but not caudal ganglionic eminence (CGE)-derived interneurons. These findings indicate that immature MGE interneurons are fundamental for shaping GABA-driven activity patterns that balance the number of interneurons integrating into maturing cortical networks.
Collapse
Affiliation(s)
- Zhe Ran S Duan
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Alicia Che
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Philip Chu
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Laura Modol
- Aix Marseille University, INSERM, INMED, Turing Center for Living Systems, Marseille, France
| | - Yannick Bollmann
- Aix Marseille University, INSERM, INMED, Turing Center for Living Systems, Marseille, France
| | - Rachel Babij
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Robert N Fetcho
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Takumi Otsuka
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Marc V Fuccillo
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Conor Liston
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rosa Cossart
- Aix Marseille University, INSERM, INMED, Turing Center for Living Systems, Marseille, France
| | - Natalia V De Marco García
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
8
|
Heravi M, Dargahi L, Parsafar S, Tayaranian Marvian A, Aliakbari F, Morshedi D. The primary neuronal cells are more resistant than PC12 cells to α-synuclein toxic aggregates. Neurosci Lett 2019; 701:38-47. [PMID: 30776494 DOI: 10.1016/j.neulet.2019.01.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alpha-synuclein (αSN) is an abundant presynaptic brain protein that its aggregated species believed to play pivotal roles in the development of neurodegenerative diseases, especially Parkinson's disease (PD). In this study, we compared the response of primary neuronal cells with a well-known cell line model, PC12, against the toxic aggregates of αSN. METHODS Primary hippocampal neurons (PHNs) were isolated from 17 to 18 days old rat embryos. Fibrillization was induced in recombinant αSN and monitored by standard methods. The toxicity of different aggregates of αSN on the treated cells was then studied. Furthermore, changes in the intracellular reactive oxygen species (ROS) and Ca2+ levels were also compared in two kinds of treated cells. We also studied the gene expression profile of certain Ca2+ channels and carriers using the GEO2 database. RESULTS The viability rate was significantly lower in PC12 versus PHNs, in response to αSN. This is while the intracellular ROS and Ca2+ levels were significantly increased in both cell types. Analysis of microarray data indicated that some factors involved in Ca2+ hemostasis may face significant changes in the PD condition. CONCLUSION By putting these data together, it is clear that PHN is more resistant than PC12 toward αSN cytotoxicity even in the presence of rising cytoplasmic ROS and Ca2+ levels. Exploring the supporting mechanisms which PHN uses to be more resistant to αSN cytotoxicity can help to open a roadmap toward therapeutic plans in PD and other synucleinopathy disorders.
Collapse
Affiliation(s)
- Mansooreh Heravi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soha Parsafar
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Amir Tayaranian Marvian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), D-81377, Munich, Germany
| | - Farhang Aliakbari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Dina Morshedi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
9
|
Hermanowicz-Sobieraj B, Bogus-Nowakowska K, Równiak M, Robak A. Ontogeny of calcium-binding proteins in the cingulate cortex of the guinea pig: The same onset but different developmental patterns. Ann Anat 2018; 222:103-113. [PMID: 30566895 DOI: 10.1016/j.aanat.2018.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
This paper compared the density of calbindin D28k (CB), calretinin (CR) and parvalbumin (PV) containing neurons in prenatal, newborn and postnatal periods in the cingulate cortex (CC) of the guinea pig as an animal model. The distribution and co-distribution among calcium-binding proteins (CaBPs) was also investigated during the entire ontogeny. The study found that CB-positive neurons exhibited the highest density in the developing CC. The CC development in the prenatal period took place with a high level of CB and CR immunoreactivity and both of these proteins reached peak density during fetal life. The density of PV-positive neurons, in contrast to CB and CR-positive neurons, reached high levels postnatally. The observed changes of the CaBPs-positive neuron density in the developing CC coincide with developmental events in the guinea pig. E.g. the eyes opening moment may be preceded by elevated levels of CB and CR at E50, whereas high immunoreactivity of PV from P10 to P40 with a peak at P20 may indicate the participation of PV in enhancement of the inhibitory cortical pathway maturation.
Collapse
Affiliation(s)
- Beata Hermanowicz-Sobieraj
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 3, 10-727 Olsztyn, Poland.
| | - Krystyna Bogus-Nowakowska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 3, 10-727 Olsztyn, Poland
| | - Maciej Równiak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 3, 10-727 Olsztyn, Poland
| | - Anna Robak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Pl. Łódzki 3, 10-727 Olsztyn, Poland.
| |
Collapse
|
10
|
Carron SF, Yan EB, Allitt BJ, Rajan R. Immediate and Medium-term Changes in Cortical and Hippocampal Inhibitory Neuronal Populations after Diffuse TBI. Neuroscience 2018; 388:152-170. [PMID: 30036662 DOI: 10.1016/j.neuroscience.2018.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 01/09/2023]
Abstract
Changes in inhibition following traumatic brain injury (TBI) appear to be one of the major factors that contribute to excitation:inhibition imbalance. Neuron pathology, interneurons in particular evolves from minutes to weeks post injury and follows a complex time course. Previously, we showed that in the long-term in diffuse TBI (dTBI), there was select reduction of specific dendrite-targeting neurons in sensory cortex and hippocampus while in motor cortex there was up-regulation of specific dendrite-targeting neurons. We now investigated the time course of dTBI effects on interneurons in neocortex and hippocampus. Brains were labeled with antibodies against calbindin (CB), parvalbumin (PV), calretinin (CR) neuropeptide Y (NPY), and somatostatin (SOM) at 24 h and 2 weeks post dTBI. We found time-dependent, brain area-specific changes in inhibition at 24 h and 2 weeks. At 24 h post-injury, reduction of dendrite-targeting inhibitory neurons occurred in sensory cortex and hippocampus. At 2 weeks, we found compensatory changes in the somatosensory cortex and CA2/3 of hippocampus affected at 24 h, with affected interneuronal populations returning to sham levels. However, DG of hippocampus now showed reduction of dendrite-targeting inhibitory neurons. Finally, with respect to motor cortex, there was an upregulation of dendrite-targeting interneurons in the supragranular layers at 24 h returning to normal levels by 2 weeks. Overall, our findings reconfirm that dendritic inhibition is particularly susceptible to brain trauma, but also show that there are complex brain-area-specific changes in inhibitory neuronal numbers and in compensatory changes, rather than a simple monotonic progression of changes post-dTBI.
Collapse
Affiliation(s)
- Simone F Carron
- Department of Physiology, Monash University, Melbourne, VIC, Australia.
| | - Edwin B Yan
- Department of Physiology, Monash University, Melbourne, VIC, Australia.
| | - Benjamin J Allitt
- Department of Physiology, Monash University, Melbourne, VIC, Australia.
| | - Ramesh Rajan
- Department of Physiology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Global proteomic analysis of brain tissues in transient ischemia brain damage in rats. Int J Mol Sci 2015; 16:11873-91. [PMID: 26016499 PMCID: PMC4490420 DOI: 10.3390/ijms160611873] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 01/22/2023] Open
Abstract
Ischemia-reperfusion injury resulting from arterial occlusion or hypotension in patients leads to tissue hypoxia with glucose deprivation, which causes endoplasmic reticulum (ER) stress and neuronal death. A proteomic approach was used to identify the differentially expressed proteins in the brain of rats following a global ischemic stroke. The mechanisms involved the action in apoptotic and ER stress pathways. Rats were treated with ischemia-reperfusion brain injuries by the bilateral occlusion of the common carotid artery. The cortical neuron proteins from the stroke animal model (SAM) and the control rats were separated using two-dimensional gel electrophoresis (2-DE) to purify and identify the protein profiles. Our results demonstrated that the SAM rats experienced brain cell death in the ischemic core. Fifteen proteins were expressed differentially between the SAM rats and control rats, which were assayed and validated in vivo and in vitro. Interestingly, the set of differentially expressed, down-regulated proteins included catechol O-methyltransferase (COMT) and cathepsin D (CATD), which are implicated in oxidative stress, inflammatory response and apoptosis. After an ischemic stroke, one protein spot, namely the calretinin (CALB2) protein, showed increased expression. It mediated the effects of SAM administration on the apoptotic and ER stress pathways. Our results demonstrate that the ischemic injury of neuronal cells increased cell cytoxicity and apoptosis, which were accompanied by sustained activation of the IRE1-alpha/TRAF2, JNK1/2, and p38 MAPK pathways. Proteomic analysis suggested that the differential expression of CALB2 during a global ischemic stroke could be involved in the mechanisms of ER stress-induced neuronal cell apoptosis, which occurred via IRE1-alpha/TRAF2 complex formation, with activation of JNK1/2 and p38 MAPK. Based on these results, we also provide the molecular evidence supporting the ischemia-reperfusion-related neuronal injury.
Collapse
|
12
|
Brown BP, Kang SC, Gawelek K, Zacharias RA, Anderson SR, Turner CP, Morris JK. In vivo and in vitro ketamine exposure exhibits a dose-dependent induction of activity-dependent neuroprotective protein in rat neurons. Neuroscience 2015; 290:31-40. [PMID: 25595994 DOI: 10.1016/j.neuroscience.2014.12.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 11/27/2022]
Abstract
Anesthetic doses of ketamine induce apoptosis, as well as gene expression of activity-dependent neuroprotective protein (ADNP), a putative homeodomain transcription factor in rat pups (P7). This study investigated if ketamine induced ADNP protein in a dose-dependent manner in vitro and in vivo using primary cultures of cortical neurons and neonatal pups (P7). In vivo immunohistochemistry demonstrated a sub-anesthetic dose of ketamine increased ADNP in the somatosensory cortex (SCC) which was previously identified to be damaged by repeated exposure to anesthetic doses of ketamine. Administration of low-dose ketamine prior to full sedation prevented caspase-3 activation in the hippocampus and SCC. Primary cultures of cortical neurons treated with ketamine (10 μM-10mM) at 3 days-in vitro (3 DIV) displayed a concentration-dependent decrease in expanded growth cones. Furthermore, neuronal production and localization of ADNP varied as a function of both ketamine concentration and length of exposure. Taken together, these data support the model that ADNP induction may be partially responsible for the efficacy of a low-dose ketamine pre-treatment in preventing ketamine-induced neuronal cell death.
Collapse
Affiliation(s)
- B P Brown
- Neuroscience Program, Baldwin Wallace University, Berea, OH 44017, USA; Department of Chemistry, Baldwin Wallace University, Berea, OH 44017, USA
| | - S C Kang
- Neuroscience Program, Baldwin Wallace University, Berea, OH 44017, USA
| | - K Gawelek
- Neuroscience Program, Baldwin Wallace University, Berea, OH 44017, USA; Department of Biology, Baldwin Wallace University, Berea, OH 44017, USA; Department of Chemistry, Baldwin Wallace University, Berea, OH 44017, USA
| | - R A Zacharias
- Neuroscience Program, Baldwin Wallace University, Berea, OH 44017, USA; Department of Psychology, Baldwin Wallace University, Berea, OH 44017, USA
| | - S R Anderson
- Neuroscience Program, Baldwin Wallace University, Berea, OH 44017, USA; Department of Psychology, Baldwin Wallace University, Berea, OH 44017, USA; Department of Mathematics, Baldwin Wallace University, Berea, OH 44017, USA
| | - C P Turner
- Neuroscience Program, Baldwin Wallace University, Berea, OH 44017, USA
| | - J K Morris
- Neuroscience Program, Baldwin Wallace University, Berea, OH 44017, USA; Department of Biology, Baldwin Wallace University, Berea, OH 44017, USA.
| |
Collapse
|
13
|
LEE DOHYUNG, KIM SOYOUNG, NAM KYUNGSOO. Protective effects of deep sea water against doxorubicin-induced cardiotoxicity in H9c2 cardiac muscle cells. Int J Oncol 2014; 45:2569-75. [DOI: 10.3892/ijo.2014.2666] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/01/2014] [Indexed: 11/05/2022] Open
|
14
|
Daviaud N, Garbayo E, Schiller PC, Perez-Pinzon M, Montero-Menei CN. Organotypic cultures as tools for optimizing central nervous system cell therapies. Exp Neurol 2013; 248:429-40. [DOI: 10.1016/j.expneurol.2013.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 01/01/2023]
|
15
|
Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid. BMC Neurosci 2013; 14:49. [PMID: 23597229 PMCID: PMC3639069 DOI: 10.1186/1471-2202-14-49] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/09/2013] [Indexed: 02/05/2023] Open
Abstract
Background Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. Results We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. Conclusion Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity.
Collapse
|
16
|
Martín V, Vale C, Bondu S, Thomas OP, Vieytes MR, Botana LM. Differential effects of crambescins and crambescidin 816 in voltage-gated sodium, potassium and calcium channels in neurons. Chem Res Toxicol 2013; 26:169-78. [PMID: 23270282 DOI: 10.1021/tx3004483] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Crambescins and crambescidins are two families of guanidine alkaloids from the marine sponge Crambe crambe. Although very little information about their biological effect has been reported, it is known that crambescidin 816 (Cramb816) blocks calcium channels in a neuroblastoma X glioma cell line. Taking this into account, and the fact that ion channels are frequent targets for natural toxins, we examined the effect of Cramb816 and three compounds from the crambescin family, norcrambescin A2 (NcrambA2), crambescin A2 (CrambA2), and crambescin C1 (CrambC1), in the main voltage-dependent ion channels in neurons: sodium, potassium, and calcium channels. Electrophysiological recordings of voltage gated sodium, potassium, and calcium currents, in the presence of these guanidine alkaloids, were performed in cortical neurons from embryonic mice. Different effects were discovered: crambescins inhibited K(+) currents with the following potency: NcrambA2 > CrambC1 > CrambA2, while Cramb816 lacked an effect. Only CrambC1 and Cramb816 partially blocked Na(+) total current. However, Cramb816 partially blocked Ca(2+) , while NcrambA2 did not. Since the blocking effect of Cramb816 on calcium currents has not been previously reported in detail, we further pharmacologically isolated the two main fractions of HVA Ca(2+) channels in neurons and investigated the Cramb816 effect on them. Here, we revealed that Cav1 or L-type calcium channels are the main target for Cramb816. These two families of guanidine alkaloids clearly showed a structure-activity relationship with the crambescins acting on voltage-gated potassium channels, while Cramb816 blocks the voltage-gated calcium channel Cav1 with higher potency than nifedipine. The novel evidence that Cramb816 partially blocked CaV and NaV channels in neurons suggests that this compound might be involved in decreasing the neurotransmitter release and synaptic transmission in the central nervous system. The findings presented here provide the first detailed approach on the different effects of crambescin and crambescidin compounds in voltage-gated sodium, potassium, and calcium channels in neurons and thus provide a basis for future studies.
Collapse
Affiliation(s)
- Víctor Martín
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela , Lugo, Spain
| | | | | | | | | | | |
Collapse
|
17
|
González-Lafuente L, Egea J, León R, Martínez-Sanz FJ, Monjas L, Perez C, Merino C, García-De Diego AM, Rodríguez-Franco MI, García AG, Villarroya M, López MG, de los Ríos C. Benzothiazepine CGP37157 and its isosteric 2'-methyl analogue provide neuroprotection and block cell calcium entry. ACS Chem Neurosci 2012; 3:519-29. [PMID: 22860221 DOI: 10.1021/cn300009e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/26/2012] [Indexed: 11/28/2022] Open
Abstract
Benzothiazepine CGP37157 is widely used as tool to explore the role of mitochondria in cell Ca(2+) handling, by its blocking effect of the mitochondria Na(+)/Ca(2+) exchanger. Recently, CGP37157 has shown to exhibit neuroprotective properties. In the trend to improve its neuroprotection profile, we have synthesized ITH12505, an isosteric analogue having a methyl instead of chlorine at C2' of the phenyl ring. ITH12505 has exerted neuroprotective properties similar to CGP37157 in chromaffin cells and hippocampal slices stressed with veratridine. Also, both compounds afforded neuroprotection in hippocampal slices stressed with glutamate. However, while ITH12505 elicited protection in SH-SY5Y cells stressed with oligomycin A/rotenone, CGP37157 was ineffective. In hippocampal slices subjected to oxygen/glucose deprivation plus reoxygenation, ITH12505 offered protection at 3-30 μM, while CGP37157 only protected at 30 μM. Both compounds caused blockade of Ca(2+) channels in high K(+)-depolarized SH-SY5Y cells. An in vitro experiment for assaying central nervous system penetration (PAMPA-BBB; parallel artificial membrane permeability assay for blood-brain barrier) revealed that both compounds could cross the blood-brain barrier, thus reaching their biological targets in the central nervous system. In conclusion, by causing a mild isosteric replacement in the benzothiazepine CGP37157, we have obtained ITH12505, with improved neuroprotective properties. These findings may inspire the design and synthesis of new benzothiazepines targeting mitochondrial Na(+)/Ca(2+) exchanger and L-type voltage-dependent Ca(2+) channels, having antioxidant properties.
Collapse
Affiliation(s)
- Laura González-Lafuente
- Instituto de Investigación
Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, C/Diego de León,
62, 28006 Madrid, Spain
- Instituto Teófilo Hernando
and Departamento de Farmacología y Terapéutica, Facultad
de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Javier Egea
- Instituto de Investigación
Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, C/Diego de León,
62, 28006 Madrid, Spain
- Instituto Teófilo Hernando
and Departamento de Farmacología y Terapéutica, Facultad
de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Rafael León
- Instituto de Investigación
Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, C/Diego de León,
62, 28006 Madrid, Spain
- Instituto Teófilo Hernando
and Departamento de Farmacología y Terapéutica, Facultad
de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Francisco J. Martínez-Sanz
- Instituto Teófilo Hernando
and Departamento de Farmacología y Terapéutica, Facultad
de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Leticia Monjas
- Instituto de Química Médica
(IQM), Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Concepción Perez
- Instituto de Química Médica
(IQM), Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Cristina Merino
- Instituto Teófilo Hernando
and Departamento de Farmacología y Terapéutica, Facultad
de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Antonio M. García-De Diego
- Instituto Teófilo Hernando
and Departamento de Farmacología y Terapéutica, Facultad
de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - María I. Rodríguez-Franco
- Instituto de Química Médica
(IQM), Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Antonio G. García
- Instituto de Investigación
Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, C/Diego de León,
62, 28006 Madrid, Spain
- Instituto Teófilo Hernando
and Departamento de Farmacología y Terapéutica, Facultad
de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Mercedes Villarroya
- Instituto Teófilo Hernando
and Departamento de Farmacología y Terapéutica, Facultad
de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Manuela G. López
- Instituto Teófilo Hernando
and Departamento de Farmacología y Terapéutica, Facultad
de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
- Instituto Universitario La Paz-IDIPaz, Universidad Autónoma de Madrid, Spain
| | - Cristóbal de los Ríos
- Instituto de Investigación
Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, C/Diego de León,
62, 28006 Madrid, Spain
- Instituto Teófilo Hernando
and Departamento de Farmacología y Terapéutica, Facultad
de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 4, 28029 Madrid, Spain
| |
Collapse
|
18
|
Turner CP, Gutierrez S, Liu C, Miller L, Chou J, Finucane B, Carnes A, Kim J, Shing E, Haddad T, Phillips A. Strategies to defeat ketamine-induced neonatal brain injury. Neuroscience 2012; 210:384-92. [PMID: 22406413 DOI: 10.1016/j.neuroscience.2012.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 11/19/2022]
Abstract
Studies using animal models have shown that general anesthetics such as ketamine trigger widespread and robust apoptosis in the infant rodent brain. Recent clinical evidence suggests that the use of general anesthetics on young children (at ages equivalent to those used in rodent studies) can promote learning deficits as they mature. Thus, there is a growing need to develop strategies to prevent this injury. In this study, we describe a number of independent approaches to address therapeutic intervention. Postnatal day 7 (P7) rats were injected with vehicle (sterile PBS) or the NMDAR antagonist ketamine (20 mg/kg). After 8 h, we prepared brains for immunohistochemical detection of the pro-apoptotic enzyme activated caspase-3 (AC3). Focusing on the somatosensory cortex, AC3-positive cells were then counted in a non-biased stereological manner. We found AC3 levels were markedly increased in ketamine-treated animals. In one study, microarray analysis of the somatosensory cortex from ketamine-treated P7 pups revealed that expression of activity dependent neuroprotective protein (ADNP) was enhanced. Thus, we injected P7 animals with the ADNP peptide fragment NAPVSIPQ (NAP) 15 min before ketamine administration and found we could dose-dependently reverse the injury. In separate studies, pretreatment of P6 animals with 20 mg/kg vitamin D(3) or a nontoxic dose of ketamine (5 mg/kg) also prevented ketamine-induced apoptosis at P7. In contrast, pretreatment of P7 animals with aspirin (30 mg/kg) 15 min before ketamine administration actually increased AC3 counts in some regions. These data show that a number of unique approaches can be taken to address anesthesia-induced neurotoxicity in the infant brain, thus providing MDs with a variety of alternative strategies that enhance therapeutic flexibility.
Collapse
Affiliation(s)
- C P Turner
- Neurobiology & Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Toxic effects of midazolam on differentiating neurons in vitro as a consequence of suppressed neuronal Ca2+-oscillations. Toxicology 2011; 290:96-101. [PMID: 21920406 DOI: 10.1016/j.tox.2011.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/16/2011] [Accepted: 08/30/2011] [Indexed: 11/23/2022]
Abstract
BACKGROUND In immature neurons anesthetics induce apoptosis and influence neuronal differentiation. Neuronal Ca(2+)-oscillations regulate differentiation and synaptogenesis. We examined the effects of the long-term blockade of hippocampal Ca(2+)-oscillations with midazolam on neuronal synapsin expression. MATERIAL AND METHODS Hippocampal neurons were incubated at day 15 in culture with the specific GABA(A) receptor agonist muscimol (50μM) or with midazolam (100 and 300nM), respectively, for 24h. TUNEL and activated-Caspase-3 staining were used to detect apoptotic neurons. Ca(2+)-oscillations were detected using the Ca(2+)-sensitive dye FURA-2 and dual wavelength excitation fluorescence microscopy. Synapsin was identified with confocal anti-synapsin immunofluorescence microscopy. RESULTS Muscimol, when applied for 24h, decreased the amplitude and frequency Ca(2+)-oscillations significantly. Midazolam concentration-dependently suppressed the amplitude and frequency of the Ca(2+)-oscillations. This was associated by a downregulation of the synapsin expression 24h after washout. CONCLUSION Neuronal Ca(2+)-oscillations mediate neuronal differentiation and are involved in synaptogenesis. By acting via the GABA(A) receptor, midazolam exerts its toxic effect through the suppression of neuronal Ca(2+)-oscillations, a reduction in synapsin expression and consecutively reduced synaptic integrity.
Collapse
|
20
|
Sinner B, Friedrich O, Zink W, Zausig Y, Graf BM. The toxic effects of s(+)-ketamine on differentiating neurons in vitro as a consequence of suppressed neuronal Ca2+ oscillations. Anesth Analg 2011; 113:1161-9. [PMID: 21788311 DOI: 10.1213/ane.0b013e31822747df] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND In the immature brain, neuronal Ca2+ oscillations are present during a time period of high plasticity and regulate neuronal differentiation and synaptogenesis. In this study we examined the long-term blockade of hippocampal Ca2+ oscillations, the role of the N-methyl-D-aspartate (NMDA) receptors and the effects of S(+)-ketamine on neuronal synapsin expression. METHODS Hippocampal neurons were incubated at day 15 in culture with the specific NMDA receptor antagonists dizocilpine (MK 801, 100 μM) or S(+)-ketamine (3 μM to 25 μM) for 24 hours. Terminal-deoxynucleotidyl-transferase (TUNEL) and activated caspase3 were used to detect apoptotic neurons. Ca2+ oscillations were detected after loading the neurons with the Ca2+-sensitive dye fura-2AM, and dual wavelength excitation fluorescence microscopy was performed. Ca2+/calmodulin kinase II (CaMKII) was measured using Western blots. Synapsin was identified with confocal antisynapsin immunofluorescence. RESULTS Blocking the NMDA receptor with MK 801 or 25 μM S(+)-ketamine resulted in a significant increase in apoptotic neurons. MK 801 led to a significant increase in cytosolic Ca2+ concentration and reduction of the amplitude and frequency of the Ca2+ oscillations. Similar to MK 801, the long-term application of S(+)-ketamine resulted in a significant increase in cytosolic Ca2+ concentration 24 hours after washout. This was associated with a down-regulation of the CaMKII and a reduction of the synapsin 24 hours after washout. CONCLUSION Neuronal Ca2+ oscillations mediate neuronal differentiation and synaptogenesis via activating CaMKII. By acting via the NMDA receptor, S(+)-ketamine exerts its toxic effect through the suppression of neuronal Ca2+ oscillations, down-regulation of the CaMKII, and consecutively reduced synaptic integrity.
Collapse
Affiliation(s)
- Barbara Sinner
- Department of Anesthesiology, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | | | | | | | | |
Collapse
|
21
|
Feng H, Guo L, Gao H, Li XA. Deficiency of calcium and magnesium induces apoptosis via scavenger receptor BI. Life Sci 2011; 88:606-12. [PMID: 21291896 PMCID: PMC3061308 DOI: 10.1016/j.lfs.2011.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 12/14/2010] [Accepted: 01/14/2011] [Indexed: 10/18/2022]
Abstract
AIMS Cells undergo apoptosis in stressed status such as in intracellular calcium overload or extracellular calcium/magnesium deficiency. The mechanisms of how deficiency of the divalent metal ions induces apoptosis remain to be defined. Scavenger receptor BI (SR-BI) is a high density lipoprotein (HDL) receptor. Recent studies demonstrated that SR-BI is a stress response molecule which induces apoptosis upon serum deprivation. In this study, we assessed our hypothesis that the deficiency of calcium/magnesium induces apoptosis via SR-BI apoptotic pathway. MAIN METHODS We employed CHO cell lines expressing vector and SR-BI to test the effect of SR-BI on apoptosis induced by deficiency of calcium, magnesium and zinc in culture medium. The regain of different metal ions in deficient medium was also performed, respectively. Cell death was detected by morphological changes and quantified by LDH cytotoxicity assay. Apoptosis was also assessed by DNA ladder assay and DNA condensation assay. The SR-BIC323G mutant cells which lack the apoptotic activity of SR-BI were employed to verify the SR-BI-dependent effect on calcium/magnesium induced apoptosis. KEY FINDINGS The deficiency of calcium/magnesium induced cell apoptosis in CHO-SR-BI cells, but not in CHO-vector cells. Moreover, no apoptotic cell death was observed in SR-BIC323G mutant cells, indicating that the deficiency of divalent metal ions induces apoptosis in a SR-BI-dependent manner. Furthermore, the restoration of calcium or magnesium, but not zinc, protected CHO-SR-BI cells from apoptotic cell death, in a dose-dependent fashion. SIGNIFICANCE These findings extend our understanding about how calcium and magnesium deficiency induces apoptosis.
Collapse
Affiliation(s)
- Hong Feng
- Department of Pediatrics, University of Kentucky Medical School, Lexington, Kentucky 40536 United States
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, 250012 P.R. China
| | - Ling Guo
- Department of Pediatrics, University of Kentucky Medical School, Lexington, Kentucky 40536 United States
| | - Haiqing Gao
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, 250012 P.R. China
| | - Xiang-An Li
- Department of Pediatrics, University of Kentucky Medical School, Lexington, Kentucky 40536 United States
- Graduate Center for Nutritional Sciences, University of Kentucky Medical School, Lexington, Kentucky 40536 United States
| |
Collapse
|
22
|
Gutierrez S, Carnes A, Finucane B, Musci G, Oelsner W, Hicks L, Russell GB, Liu C, Turner CP. Is age-dependent, ketamine-induced apoptosis in the rat somatosensory cortex influenced by temperature? Neuroscience 2010; 168:253-62. [PMID: 20298758 PMCID: PMC2871987 DOI: 10.1016/j.neuroscience.2010.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/09/2010] [Accepted: 03/08/2010] [Indexed: 01/18/2023]
Abstract
General anesthetics have long been thought to be relatively safe but recent clinical studies have revealed that exposure of very young children (4 years or less) to agents that act by blocking the N-methyl-D-aspartate receptor (NMDAR) can lead to cognitive deficits as they mature. In rodent and non-human primate studies, blockade of this receptor during the perinatal period leads to a number of molecular, cellular and behavioral pathologies. Despite the overwhelming evidence from such studies, doubt remains as to their clinical relevance. A key issue is whether the primary injury (apoptotic cell death) is specific to receptor blockade or due to non-specific, patho-physiological changes. Principal to this argument is that loss of core body temperature following NMDAR blockade could explain why injury is observed hours later. We therefore examined the neurotoxicity of the general anesthetic ketamine in P7, P14 and P21 rats while monitoring core body temperature. We found that, at P7, ketamine induced the pro-apoptotic enzyme activated caspase-3 in a dose-dependent manner. As expected, injury was greatly diminished by P14 and absent by P21. However, contrary to expectations, we found that core body temperature was not a factor in determining injury. Our data imply that injury is directly related to receptor blockade and is unlikely to be overcome by artificially changing core body temperature.
Collapse
Affiliation(s)
- S Gutierrez
- Department of Neurobiology & Anatomy, Wake Forest University School of Medicine, 1 Medical Center Boulevard, Winston-Salem, NC 27157-1010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Barinka F, Druga R, Marusic P, Krsek P, Zamecnik J. Calretinin immunoreactivity in focal cortical dysplasias and in non-malformed epileptic cortex. Epilepsy Res 2009; 88:76-86. [PMID: 19854615 DOI: 10.1016/j.eplepsyres.2009.09.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/23/2009] [Accepted: 09/25/2009] [Indexed: 11/16/2022]
Abstract
Focal cortical dysplasias (FCDs) represent a prominent cause of pharmacologically intractable epilepsy. In FCD, the decrease of parvalbumin immunoreactive (PV+) inhibitory interneurons has been repeatedly documented. Here, we wanted to show whether another interneuronal population, the calretinin immunoreactive (CR+) neurons, exhibits any change in human FCD. We also investigated samples of morphologically normal temporal neocortex resected together with sclerotic hippocampus (nHSTN), where decrease of PV+ interneurons was previously documented as well. Brain tissue from 24 patients surgically treated for pharmacoresistant epilepsy was examined. Calretinin immunoreactivity was qualitatively evaluated and the density of CR+ neuronal profiles was quantified. As a control, post-mortem acquired neocortical samples of nine patients without any brain affecting disease were used. CR+ neurons were located predominantly in superficial cortical layers both in controls and pathological samples. Similarly, the morphology of CR+ neurons was unaffected in pathological samples. The overall density of CR+ neurons was significantly decreased in FCD type I (to approximately 70% of control values) and even more in FCD type II (to approximately 50% of controls). In nHSTN, no change compared to controls was found in CR+ neuronal density. Our results may contribute to the better understanding of the role of individual interneuronal populations in epileptogenesis.
Collapse
Affiliation(s)
- Filip Barinka
- Department of Anatomy, Charles University in Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
24
|
Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Prog Neurobiol 2009; 88:221-45. [DOI: 10.1016/j.pneurobio.2009.01.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 12/09/2008] [Accepted: 01/07/2009] [Indexed: 11/24/2022]
|
25
|
Turner CP, Debenedetto D, Liu C. NMDAR blockade-induced neonatal brain injury: Reversal by the calcium channel agonist BayK 8644. Neurosci Lett 2009; 450:292-5. [PMID: 19070650 PMCID: PMC2699449 DOI: 10.1016/j.neulet.2008.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/22/2008] [Accepted: 12/03/2008] [Indexed: 01/12/2023]
Abstract
We have previously shown that P7 rat pups injected with the N-methyl-d-aspartate receptor (NMDAR) blocker MK801 displayed robust apoptotic injury within hours after injection. Further studies from our lab suggest that loss of calcium cannot be compensated for when vulnerable neurons lack calcium buffering capabilities. Thus, to elevate calcium in these neurons prior to MK801 exposure, we injected P7 rats with the calcium channel agonist BayK 8644. Whereas BayK 8644 did not induce apoptosis by itself, it was found to block MK801-induced injury in a dose-dependent manner. Reversal of MK801 toxicity was complete in the caudate-putamen, partial in the somatosensory cortex but was not observed in the retrosplenial cortex. These results suggest that postnatal brain injury resulting from agents that block the NMDAR, which include commonly used anesthetics as well as drugs of abuse, may be prevented in vulnerable neurons by compensatory increases in calcium prior to exposure to these antagonists.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Animals, Newborn
- Apoptosis/drug effects
- Apoptosis/physiology
- Brain/drug effects
- Brain/pathology
- Brain/physiopathology
- Brain Damage, Chronic/chemically induced
- Brain Damage, Chronic/pathology
- Brain Damage, Chronic/physiopathology
- Calcium Channel Agonists/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Disease Models, Animal
- Dizocilpine Maleate/toxicity
- Excitatory Amino Acid Antagonists/toxicity
- Neostriatum/drug effects
- Neostriatum/pathology
- Neostriatum/physiopathology
- Nerve Degeneration/chemically induced
- Nerve Degeneration/pathology
- Nerve Degeneration/physiopathology
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Rats
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
- Somatosensory Cortex/drug effects
- Somatosensory Cortex/pathology
- Somatosensory Cortex/physiopathology
Collapse
|
26
|
Lema Tomé CM, Miller R, Bauer C, Smith C, Blackstone K, Leigh A, Busch J, Turner CP. Decline in age-dependent, MK801-induced injury coincides with developmental switch in parvalbumin expression: somatosensory and motor cortex. Dev Psychobiol 2008; 50:665-79. [PMID: 18688810 PMCID: PMC2679950 DOI: 10.1002/dev.20325] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
MK801-induced activation of caspase-3 is developmentally regulated, peaking at postnatal day (P) 7 and decreasing with increasing postnatal age thereafter. Further, at P7, cells displaying activation of caspase-3 lack expression of calcium binding proteins (CaBPs). To further explore this relationship, we investigated postnatal expression of calbindin (CB), calretinin (CR) and parvalbumin (PV) in two brain regions susceptible to MK801-induced injury, the somatosensory cortex (S1) and layer II/III of motor cortex (M1/M2). Expression of CB and especially PV was low to absent prior to P7 but substantially increased from P7 through to P21 and adulthood. In contrast, CR expression was more variable at early developmental ages, stabilized to lower levels after P7 and showed a marked decline by P21. The results suggest that not only does calcium buffering capacity increase developmentally but also acquisition of enhanced buffering may be one mechanism by which neurons survive agent-induced alterations in calcium homeostasis.
Collapse
Affiliation(s)
- Carla M Lema Tomé
- Neurobiology & Anatomy, Wake Forest University Medical School, Medical Center Boulevard, Winston Salem, NC 27157-1010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ringler SL, Aye J, Byrne E, Anderson M, Turner CP. Effects of disrupting calcium homeostasis on neuronal maturation: early inhibition and later recovery. Cell Mol Neurobiol 2008; 28:389-409. [PMID: 18196452 PMCID: PMC2714481 DOI: 10.1007/s10571-007-9255-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Accepted: 12/14/2007] [Indexed: 10/22/2022]
Abstract
It has become increasingly clear that agents that disrupt calcium homeostasis may also be toxic to developing neurons. Using isolated primary neurons, we sought to understand the neurotoxicity of agents such as MK801 (which blocks ligand-gated calcium entry), BAPTA (which chelates intracellular calcium), and thapsigargin (TG; which inhibits the endoplasmic reticulum Ca(2+)-ATPase pump). Thus, E18 rat cortical neurons were grown for 1 day in vitro (DIV) and then exposed to vehicle (0.1% DMSO), MK801 (0.01-20 microM), BAPTA (0.1-20 microM), or TG (0.001-1 microM) for 24 h. We found that all three agents could profoundly influence early neuronal maturation (growth cone expansion, neurite length, neurite complexity), with the order of potency being MK801 < BAPTA < TG. We next asked if cultures exposed to these agents were able to re-establish their developmental program once the agent was removed. When we examined network maturity at 4 and 7 DIV, the order of recovery was MK801 > BAPTA > TG. Thus, mechanistically distinct ways of disrupting calcium homeostasis differentially influenced both short-term and long-term neuronal maturation. These observations suggest that agents that act by altering intracellular calcium and are used in obstetrics or neonatology may be quite harmful to the still-developing human brain.
Collapse
Affiliation(s)
- Sarah L. Ringler
- Neurobiology & Anatomy, Wake Forest University Medical School, Medical Center Boulevard, Winston Salem, NC 27157-1010 USA
| | - Jamie Aye
- Neurobiology & Anatomy, Wake Forest University Medical School, Medical Center Boulevard, Winston Salem, NC 27157-1010 USA
| | - Erica Byrne
- Neurobiology & Anatomy, Wake Forest University Medical School, Medical Center Boulevard, Winston Salem, NC 27157-1010 USA
| | - Megan Anderson
- Neurobiology & Anatomy, Wake Forest University Medical School, Medical Center Boulevard, Winston Salem, NC 27157-1010 USA
| | - Christopher P. Turner
- Neurobiology & Anatomy, Wake Forest University Medical School, Medical Center Boulevard, Winston Salem, NC 27157-1010 USA
| |
Collapse
|
28
|
Lema Tomé CM, Miller R, Bauer C, Nottingham C, Smith C, Blackstone K, Brown L, Bryan R, Leigh A, Brady M, Busch J, Turner CP. Decline in age-dependent, MK801-induced injury coincides with developmental switch in parvalbumin expression: Cingulate and retrosplenial cortex. Dev Psychobiol 2007; 49:606-18. [PMID: 17680608 DOI: 10.1002/dev.20246] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Age-dependent, MK801-induced, activated caspase-3 expression in the postnatal brain is generally not observed in neurons expressing calcium-binding proteins (CaBPs), suggesting that apoptosis and calcium buffering are inversely related. In regions such as the cingulate and retrosplenial cortex, injury peaks at postnatal Day 7 (P7) and rapidly diminishes thereafter, whereas expression of calbindin (CB) and calretinin (CR) was relatively low from P0 to P7 and steadily increased from P7 to P14. At ages thereafter, CB and CR expression either remained stable then declined or rapidly declined. Parvalbumin (PV) was generally low-absent prior to P7 but expression dramatically increased from P10 onwards, peaking at P21. These studies suggest calcium entry (through N-methyl-D-aspartate receptor (NMDARs)) and buffering (by CaBPs) are integral to normal CNS maturation. Because schizophrenia is associated with glutamate hypo-function, developmental injury, and aberrant CaBP expression, our data indicate that this postnatal brain injury model may offer important insights into the nature of this disorder.
Collapse
Affiliation(s)
- Carla M Lema Tomé
- Neurobiology & Anatomy, Wake Forest University Medical School, Medical Center Boulevard, Winston Salem, NC 27157-1010, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lema Tomé CM, Bauer C, Nottingham C, Smith C, Blackstone K, Brown L, Hlavaty C, Nelson C, Daker R, Sola R, Miller R, Bryan R, Turner CP. Mk801-induced caspase-3 in the postnatal brain: Inverse relationship with calcium binding proteins. Neuroscience 2006; 141:1351-63. [PMID: 16782280 DOI: 10.1016/j.neuroscience.2006.05.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 05/03/2006] [Accepted: 05/04/2006] [Indexed: 10/24/2022]
Abstract
Age-dependent, neuronal apoptosis following N-methyl-D-aspartate receptor blockade has been linked to loss of calcium. To further explore this relationship, we examined expression of activated caspase-3, as well as the calcium binding proteins, calbindin-D 28K, calretinin and parvalbumin, following injection of vehicle or the N-methyl-D-aspartate receptor blocker, MK801, in postnatal day 7 or 21 rats. At postnatal day 7, MK801-induced activated caspase-3 expression was most frequently found in mutually exclusive cell populations to those expressing any of the three calcium binding proteins. For example, in the somatosensory cortex, most immunoreactivity for activated caspase-3 was found in layers IV/V, layered between areas of high calbindin or calretinin expression. Further, in the caudate putamen, activated caspase-3 rarely invaded zones of intense calbindin immunoreactivity. Suggesting expression patterns of these proteins were inversely related, these same brain regions no longer displayed MK801-induced activated caspase-3 at postnatal day 21, but instead robustly expressed calcium binding proteins. This later surge in expression was especially true for parvalbumin in regions such as the somatosensory and retrosplenial cortex, as well as the subicular complex. Calbindin-D 28K was also found to increase in the same regions though not as impressively as parvalbumin. Thus, developmental regulation of calcium binding protein expression may be a critical factor in age-dependent sensitivity to agents that disrupt calcium homeostasis in maturing neurons, providing a possible mechanistic explanation for age-dependent MK801 toxicity.
Collapse
Affiliation(s)
- C M Lema Tomé
- Neurobiology and Anatomy, Wake Forest University Medical School, Medical Center Boulevard, Winston Salem, NC 27157-1010, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|